Synthesis of PI- and PID-Regulators in Control Systems Derived by the Feedback Linearization Method
| dc.citation.epage | 130 | |
| dc.citation.issue | 2 | |
| dc.citation.journalTitle | Енергетика та системи керування | |
| dc.citation.spage | 120 | |
| dc.citation.volume | 10 | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Радомський університет ім. Казіміра Пуласкєго | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.affiliation | Casimir Pulaski Radom University | |
| dc.contributor.author | Лозинський, Андрій | |
| dc.contributor.author | Каша, Лідія | |
| dc.contributor.author | Пакіж, Степан | |
| dc.contributor.author | Садовський, Роман | |
| dc.contributor.author | Lozynskyy, Andriy | |
| dc.contributor.author | Kasha, Lidiia | |
| dc.contributor.author | Pakizh, Stepan | |
| dc.contributor.author | Sadovskyi, Roman | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2025-10-20T09:16:18Z | |
| dc.date.created | 2024-02-27 | |
| dc.date.issued | 2024-02-27 | |
| dc.description.abstract | У роботі запропоновано комплексний підхід до синтезу коефіцієнтів ПІ- та ПІД-регуляторів, а також коефіцієнтів зворотних зв’язків за змінними стану системи із застосуванням методу лінеаризації зворотним зв’язком для синтезу керуючих впливів. Цей підхід ураховує не лише статичні, але й динамічні характеристики системи, що дає змогу досягти вищої точності в управлінні. Метод лінеаризації зворотним зв’язком забезпечує перетворення нелінійних систем на лінійні, що спрощує їх подальший аналіз та проєктування контролерів. Дослідження показує, що нова методологія синтезу коефіцієнтів регуляторів забезпечує підвищену стабільність системи, знижує чутливість до зовнішніх впливів та зменшує час реагування системи на зміни в умовах експлуатації. Порівняння запропонованого підходу із класичним методом лінеаризації зворотним зв’язком засвідчило істотні переваги в адаптивності та точності. Зокрема, нова методологія дає змогу враховувати зміни в параметрах системи в реальному часі, що критично важливо для складних автоматизованих процесів. На прикладі двомасової системи продемонстровано практичне застосування цього підходу для синтезу системи керування, що дає можливість досягти більшої точності в управлінні та зменшити енергетичні витрати. Результати експериментальних досліджень підтверджують ефективність запропонованої методології, вказуючи на її здатність забезпечувати стабільну роботу системи в умовах змінних навантажень і зовнішніх впливів. Аналіз показав, що новий підхід можна використовувати не лише в традиційних автоматизованих системах, але й в широкому спектрі застосувань, таких як робототехніка, промислова автоматизація та системи управління електричними приводами. Це дослідження відкриває нові горизонти для подальшого розвитку адаптивних методів управління та може слугувати основою для майбутніх досліджень у цій галузі. | |
| dc.description.abstract | The work proposes a comprehensive approach to the synthesis of the coefficients of PI- and PID-controllers, as well as the coefficients of feedback based on the state variables of the system, using the feedback linearization method for the synthesis of control influences. This approach considers not only the static but also the dynamic characteristics of the system, allowing for higher control accuracy. The feedback linearization method facilitates the transformation of nonlinear systems into linear ones, simplifying their further analysis and controller design. The research shows that the new methodology for synthesizing the coefficients of controllers provides improved system stability, reduces sensitivity to external influences, and decreases the response time of the system to changes in operating conditions. A comparison of the proposed approach with the classical feedback linearization method demonstrates significant advantages in adaptability and accuracy. Specifically, the new methodology accounts for real-time changes in system parameters, which is critically important for complex automated processes. Using a twomass system as an example, the practical application of this approach for synthesizing a control system is demonstrated, allowing for greater precision in control and reduced energy costs. The results of experimental studies confirm the effectiveness of the proposed methodology, indicating its ability to ensure stable system operation under variable loads and external influences. The analysis showed that the new approach can be utilized not only in traditional automated systems but also in a wide range of applications, such as robotics, industrial automation, and electric drive control systems. This research opens new horizons for the further development of adaptive control methods and can serve as a foundation for future studies in this field. | |
| dc.format.extent | 120-130 | |
| dc.format.pages | 11 | |
| dc.identifier.citation | Synthesis of PI- and PID-Regulators in Control Systems Derived by the Feedback Linearization Method / Andriy Lozynskyy, Lidiia Kasha, Stepan Pakizh, Roman Sadovskyi // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 10. — No 2. — P. 120–130. | |
| dc.identifier.citationen | Synthesis of PI- and PID-Regulators in Control Systems Derived by the Feedback Linearization Method / Andriy Lozynskyy, Lidiia Kasha, Stepan Pakizh, Roman Sadovskyi // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 10. — No 2. — P. 120–130. | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/113851 | |
| dc.language.iso | en | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Енергетика та системи керування, 2 (10), 2024 | |
| dc.relation.ispartof | Energy Engineering and Control Systems, 2 (10), 2024 | |
| dc.relation.references | [1] Hassan K. Khalil (2022). Nonlinear Systems. Prentice Hall, New York, 2002, 768 p. | |
| dc.relation.references | [2] Isidori, A. (1995). Nonlinear control systems, Springer-Verlag, pp. 550. https://doi.org/10.1007/978-1-84628-615-5 | |
| dc.relation.references | [3] Ortega, R., Garcı´a-Canseco, E. (2004). Interconnection and damping assignment passivity-based control: A survey, European J. of Control, Vol. 10(5), pp. 432–450. https://doi.org/10.3166/ejc.10.432-450 | |
| dc.relation.references | [4] Shchur, I., Rusek, A., & Biletskyi, Y. (2014). Energy-shaping optimal load control of PMSG in a stand-alone wind turbine as a portncontrolled Hamiltonian system. Przegląd Elektrotechniczny (Electrical Review), 5, pp. 50–55. | |
| dc.relation.references | [5] Lozynskyy, A., & Demkiv, L. (2016). Application of dynamic systems family for synthesis of fuzzy control for electromechanical systems. Advances in Electrical and Electronic Engineering, 14(5), pp. 543–550. https://doi.org/10.15598/aeee.v14i5.1717 | |
| dc.relation.references | [6] Lozynskyi, O. Yu., Lozynskyi, A. O., Paranchuk, Ya. S., Marushchak, Ya. Yu., & Tsapa, V. B. (2016). Methods for synthesizing optimal linear systems. Lviv Polytechnic Publishing House, 392 p. (in Ukrainian). | |
| dc.relation.references | [7] Lascu, C., Jafarzadeh, S., Fadali, M. S., & Blaabjerg, F. (2017). Direct torque control with feedback linearization for induction motor drives. IEEE Transactions on Power Electronics, 32(3), pp. 2072–2080. https://doi.org/10.1109/TPEL.2016.2564943 | |
| dc.relation.references | [8] Choi, Y.-S., Choi, H. H., & Jung, J.-W. (2016). Feedback linearization direct torque control with reduced torque and flux ripples for IPMSM drives. IEEE Transactions on Power Electronics, 31(5), pp. 3728–3737. https://doi.org/10.1109/TPEL.2015.2460249 | |
| dc.relation.references | [9] Baltag, A., Livint, G., Belehuz, L., & Baciu, A. G. (2023). Application of feedback linearization method to wind turbines with PMSG for extracting maximum power from wind energy. In 2023 10th International Conference on Modern Power Systems (MPS), Cluj-Napoca, Romania, pp. 01–06. https://doi.org/10.1109/MPS58874.2023.10187595 | |
| dc.relation.references | [10] Lozynskyy, A., Lozynskyy, O., Marushchak, Ya., & Kasha, L. (2020). Synthesis of combine feedback control of electromechanical system by feedback linearization method. In IEEE Problems of Automated Electrodrive. Theory and Practice (PAEP) Kremenchuk, Ukraine, pp. 1–6. https://doi.org/10.1109/PAEP49887.2020.9240776 | |
| dc.relation.references | [11] Accetta, A., et al. (2019). Robust control for high performance induction motor drives based on partial state-feedback linearization. IEEE Transactions on Industry Applications, 55(1), pp. 490–503. https://doi.org/10.1109/TIA.2018.2869112 | |
| dc.relation.references | [12] Gastaldini, C. C., Vieira, R. P., Azzolin, R. Z., & Grndling, H. A. (2013). Feedback linearization control with sliding mode speed observer for three-phase induction machines. In 2013 Brazilian Power Electronics Conference, Gramado, Brazil, pp. 345–349. https://doi.org/10.1109/COBEP.2013.6785138 | |
| dc.relation.references | [13] Morawiec, M., Strankowski, P., Lewicki, A., Guziński, J., & Wilczyński, F. (2020). Feedback control of multiphase induction machines with backstepping technique. IEEE Transactions on Industrial Electronics, 67(6), pp. 4305–4314. https://doi.org/10.1109/TIE.2019.2931236 | |
| dc.relation.references | [14] Boukas, T. K., & Habetler, T. G. (2004). High-performance induction motor speed control using exact feedback linearization with state and state derivative feedback. IEEE Transactions on Power Electronics, 19(4), pp. 1022–1028. https://doi.org/10.1109/TPEL.2004.830042 | |
| dc.relation.references | [15] Marushchak, Y. Yu., Lozynskyi, A. O., & Kushnir, A. P. (2011). Dynamics of two-mass systems for stabilization of modes in electric arc furnaces. Lviv Polytechnic Publishing House, 224 p. (in Ukrainian). | |
| dc.relation.referencesen | [1] Hassan K. Khalil (2022). Nonlinear Systems. Prentice Hall, New York, 2002, 768 p. | |
| dc.relation.referencesen | [2] Isidori, A. (1995). Nonlinear control systems, Springer-Verlag, pp. 550. https://doi.org/10.1007/978-1-84628-615-5 | |
| dc.relation.referencesen | [3] Ortega, R., Garcı´a-Canseco, E. (2004). Interconnection and damping assignment passivity-based control: A survey, European J. of Control, Vol. 10(5), pp. 432–450. https://doi.org/10.3166/ejc.10.432-450 | |
| dc.relation.referencesen | [4] Shchur, I., Rusek, A., & Biletskyi, Y. (2014). Energy-shaping optimal load control of PMSG in a stand-alone wind turbine as a portncontrolled Hamiltonian system. Przegląd Elektrotechniczny (Electrical Review), 5, pp. 50–55. | |
| dc.relation.referencesen | [5] Lozynskyy, A., & Demkiv, L. (2016). Application of dynamic systems family for synthesis of fuzzy control for electromechanical systems. Advances in Electrical and Electronic Engineering, 14(5), pp. 543–550. https://doi.org/10.15598/aeee.v14i5.1717 | |
| dc.relation.referencesen | [6] Lozynskyi, O. Yu., Lozynskyi, A. O., Paranchuk, Ya. S., Marushchak, Ya. Yu., & Tsapa, V. B. (2016). Methods for synthesizing optimal linear systems. Lviv Polytechnic Publishing House, 392 p. (in Ukrainian). | |
| dc.relation.referencesen | [7] Lascu, C., Jafarzadeh, S., Fadali, M. S., & Blaabjerg, F. (2017). Direct torque control with feedback linearization for induction motor drives. IEEE Transactions on Power Electronics, 32(3), pp. 2072–2080. https://doi.org/10.1109/TPEL.2016.2564943 | |
| dc.relation.referencesen | [8] Choi, Y.-S., Choi, H. H., & Jung, J.-W. (2016). Feedback linearization direct torque control with reduced torque and flux ripples for IPMSM drives. IEEE Transactions on Power Electronics, 31(5), pp. 3728–3737. https://doi.org/10.1109/TPEL.2015.2460249 | |
| dc.relation.referencesen | [9] Baltag, A., Livint, G., Belehuz, L., & Baciu, A. G. (2023). Application of feedback linearization method to wind turbines with PMSG for extracting maximum power from wind energy. In 2023 10th International Conference on Modern Power Systems (MPS), Cluj-Napoca, Romania, pp. 01–06. https://doi.org/10.1109/MPS58874.2023.10187595 | |
| dc.relation.referencesen | [10] Lozynskyy, A., Lozynskyy, O., Marushchak, Ya., & Kasha, L. (2020). Synthesis of combine feedback control of electromechanical system by feedback linearization method. In IEEE Problems of Automated Electrodrive. Theory and Practice (PAEP) Kremenchuk, Ukraine, pp. 1–6. https://doi.org/10.1109/PAEP49887.2020.9240776 | |
| dc.relation.referencesen | [11] Accetta, A., et al. (2019). Robust control for high performance induction motor drives based on partial state-feedback linearization. IEEE Transactions on Industry Applications, 55(1), pp. 490–503. https://doi.org/10.1109/TIA.2018.2869112 | |
| dc.relation.referencesen | [12] Gastaldini, C. C., Vieira, R. P., Azzolin, R. Z., & Grndling, H. A. (2013). Feedback linearization control with sliding mode speed observer for three-phase induction machines. In 2013 Brazilian Power Electronics Conference, Gramado, Brazil, pp. 345–349. https://doi.org/10.1109/COBEP.2013.6785138 | |
| dc.relation.referencesen | [13] Morawiec, M., Strankowski, P., Lewicki, A., Guziński, J., & Wilczyński, F. (2020). Feedback control of multiphase induction machines with backstepping technique. IEEE Transactions on Industrial Electronics, 67(6), pp. 4305–4314. https://doi.org/10.1109/TIE.2019.2931236 | |
| dc.relation.referencesen | [14] Boukas, T. K., & Habetler, T. G. (2004). High-performance induction motor speed control using exact feedback linearization with state and state derivative feedback. IEEE Transactions on Power Electronics, 19(4), pp. 1022–1028. https://doi.org/10.1109/TPEL.2004.830042 | |
| dc.relation.referencesen | [15] Marushchak, Y. Yu., Lozynskyi, A. O., & Kushnir, A. P. (2011). Dynamics of two-mass systems for stabilization of modes in electric arc furnaces. Lviv Polytechnic Publishing House, 224 p. (in Ukrainian). | |
| dc.relation.uri | https://doi.org/10.1007/978-1-84628-615-5 | |
| dc.relation.uri | https://doi.org/10.3166/ejc.10.432-450 | |
| dc.relation.uri | https://doi.org/10.15598/aeee.v14i5.1717 | |
| dc.relation.uri | https://doi.org/10.1109/TPEL.2016.2564943 | |
| dc.relation.uri | https://doi.org/10.1109/TPEL.2015.2460249 | |
| dc.relation.uri | https://doi.org/10.1109/MPS58874.2023.10187595 | |
| dc.relation.uri | https://doi.org/10.1109/PAEP49887.2020.9240776 | |
| dc.relation.uri | https://doi.org/10.1109/TIA.2018.2869112 | |
| dc.relation.uri | https://doi.org/10.1109/COBEP.2013.6785138 | |
| dc.relation.uri | https://doi.org/10.1109/TIE.2019.2931236 | |
| dc.relation.uri | https://doi.org/10.1109/TPEL.2004.830042 | |
| dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
| dc.subject | лінеаризація зворотним зв’язком | |
| dc.subject | ПІД-регулятор | |
| dc.subject | система керування | |
| dc.subject | синтез | |
| dc.subject | двомасова система | |
| dc.subject | feedback linearization | |
| dc.subject | PID-controller | |
| dc.subject | control system | |
| dc.subject | synthesis | |
| dc.subject | two-mass system | |
| dc.title | Synthesis of PI- and PID-Regulators in Control Systems Derived by the Feedback Linearization Method | |
| dc.title.alternative | Синтез ПІ- та ПІД-регуляторів у системах керування, отриманих методом лінеаризації зворотним зв’язком | |
| dc.type | Article |
Files
License bundle
1 - 1 of 1