Evaluation of microhardness uncertainty components of composite material

dc.citation.epage79
dc.citation.issue2
dc.citation.journalTitleВимірювальна техніка та метрологія
dc.citation.spage73
dc.contributor.affiliationUkrainian State University of Science and Technologies
dc.contributor.affiliationUkrainian State University of Science and Technologies
dc.contributor.authorChornoivanenko, Kateryna
dc.contributor.authorPovzlo, Yevhen
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-11-25T13:13:58Z
dc.date.created2025-06-20
dc.date.issued2025-06-20
dc.description.abstractThe study substantiates the necessity of evaluating measurement uncertainty in the context of product quality control. The evaluation of uncertainty in determining measurement accuracy provides an evidence-based approach to verifying whether the measured quality characteristic complies with established standards. The process of uncertainty evaluation in quality control is complex and labor-intensive, involving the identification of uncertainty sources, detection of correlations among input quantities, determination of probability distribution laws of influencing factors, calculation of sensitivity coefficients, as well as standard, total and expanded uncertainties. The paper presents a methodology for determining the uncertainty components in the measurement of microhardness of structural components in a composite material. Using the Ishikawa diagram, the primary sources of uncertainty were identified, including inaccuracies in the applied load, errors in the optical system, deviations in indentation diagonal measurements, and time measurement errors. The study includes an analysis of the influencing factors and provides mathematical models for estimating standard and expanded uncertainties. The proposed methodology holds practical value for testing and research laboratories engaged in the examination of mechanical properties of materials. Measurement uncertainty evaluation enables compliance with established standards, as well as control and improvement of measurement accuracy and reliability.
dc.format.extent73-79
dc.format.pages7
dc.identifier.citationChornoivanenko K. Evaluation of microhardness uncertainty components of composite material / Kateryna Chornoivanenko, Yevhen Povzlo // Measuring Equipment and Metrology. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 86. — No 2. — P. 73–79.
dc.identifier.citation2015Chornoivanenko K., Povzlo Y. Evaluation of microhardness uncertainty components of composite material // Measuring Equipment and Metrology, Lviv. 2025. Vol 86. No 2. P. 73–79.
dc.identifier.citationenAPAChornoivanenko, K., & Povzlo, Y. (2025). Evaluation of microhardness uncertainty components of composite material. Measuring Equipment and Metrology, 86(2), 73-79. Lviv Politechnic Publishing House..
dc.identifier.citationenCHICAGOChornoivanenko K., Povzlo Y. (2025) Evaluation of microhardness uncertainty components of composite material. Measuring Equipment and Metrology (Lviv), vol. 86, no 2, pp. 73-79.
dc.identifier.doihttps://doi.org/10.23939/istcmtm2025.02.073
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/121867
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofВимірювальна техніка та метрологія, 2 (86), 2025
dc.relation.ispartofMeasuring Equipment and Metrology, 2 (86), 2025
dc.relation.referencesen[1] I. Farrance, R. Frenkel, “Uncertainty of Measurement: A Review of the Rules for Calculating Uncertainty Components through Functional Relationships”, Clin Biochem Rev., vol. 33, 2012, pp. 49–75.
dc.relation.referencesen[2] G. H. White, “Basics of estimating measurement uncertainty”, Clin Biochem Rev., vol. 29, 2008, p. 53–60.
dc.relation.referencesen[3] A. Deacon, Calculations in Laboratory Science. London: ACB Venture Publications, 2009.
dc.relation.referencesen[4] L. Kirkup, B. Frenkel, An Introduction to Uncertainty in Measurement. Cambridge University Press, 2006.
dc.relation.referencesen[5] Joint Committee for Guides in Metrology Evaluation of measurement data – Guide to the expression of uncertaintyin measurement (GUM) JCGM 100:2008. http:// www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
dc.relation.referencesen[6] Joint Committee for Guides in Metrology Evaluation of measurement data – An introduction to the “Guide to the expression of uncertainty in measurement” and related documents. JCGM 104:2009. http://www.bipm.org/ utils/common/documents/jcgm/JCGM_104_2009_E.pdf
dc.relation.referencesen[7] Guide to the Expression of Uncertainly in Measurement.Switerland: ISO, 1993. 101 p.
dc.relation.referencesen[8] ISO/IEC 17025 – General requirements for the competence of testing and calibration laboratories, 2017.
dc.relation.referencesen[9] ISO 6507-1:2023 Metallic materials – Vickers hardness test, 2023.
dc.relation.referencesen[10] K. O. Chornoivanenko, A. M. Dolzhanskyi, “Otsinka skladovykh nevyznachenosti znosostiikosti kompozytnoho materialu”, Vymiriuvalna tekhnika ta metrolohiia, vol. 86, No. 1, 2025, pp. 86–92. https://doi.org/10.23939/istcmtm2025.01.086
dc.relation.urihttp://www.bipm.org/
dc.relation.urihttps://doi.org/10.23939/istcmtm2025.01.086
dc.rights.holder© Національний університет „Львівська політехніка“, 2025
dc.subjectuncertainty
dc.subjectmeasurement
dc.subjectmicrohardness
dc.subjectuncertainty evaluation
dc.subjectsources of error
dc.subjectaccuracy
dc.subjectcomposite material
dc.titleEvaluation of microhardness uncertainty components of composite material
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2025v86n2_Chornoivanenko_K-Evaluation_of_microhardness_73-79.pdf
Size:
1.5 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Plain Text
Description: