Гідродинамічні та кінетичні закономірності фільтраційного сушіння жовтого залізооксидного пігменту

dc.citation.epage195
dc.citation.issue7
dc.citation.journalTitleХімія, технологія речовин та їх застосування
dc.citation.spage188
dc.citation.volume1
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorКіндзера, Д. П.
dc.contributor.authorАтаманюк, В. М.
dc.contributor.authorГелеш, А. Б.
dc.contributor.authorЦюра, Н. Я.
dc.contributor.authorKindzera, D. P.
dc.contributor.authorAtamanyuk, V. M.
dc.contributor.authorHelesh, A. B.
dc.contributor.authorTsiura, N. Y.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-09-12T07:59:56Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractЗапропоновано фільтраційний метод сушіння жовтого залізооксидного пігменту. Наведено основні характеристики стаціонарного шару та експериментальні результати гідродинаміки профільтровування теплового агенту крізь стаціонарний шар пігменту різної висоти, що дають підстави зробити висновок про доцільність застосування фільтраційного методу з огляду на невеликі значення перепадів тиску. Визначено кінетичні закономірності фільтраційного процесу сушіння жовтого залізооксидного пігменту за різних висот шару матеріалу, перепадів тиску та температур теплового агенту, що дають змогу науково обґрунтовано вибирати оптимальні параметри для реалізації процесу у виробничих умовах.
dc.description.abstractThe filtration drying method of the yellow iron oxide pigment has been proposed. The main characteristics of the stationary layer and the experimental results of the hydrodynamics of filtering the heat agent through the stationary layer of pigment of different heights have been presented, which allows us to conclude the application feasibility of the filtration method by taking into account insignificant values of pressure drops. The obtained kinetic regularities of the yellow iron oxide pigment filtration drying process at different heights of the material layer, pressure drops, and temperatures of the heat agent, make it possible to select, in a scientifically based way, the optimal parameters for the process implementation in the production conditions.
dc.format.extent188-195
dc.format.pages8
dc.identifier.citationГідродинамічні та кінетичні закономірності фільтраційного сушіння жовтого залізооксидного пігменту / Д. П. Кіндзера, В. М. Атаманюк, А. Б. Гелеш, Н. Я. Цюра // Хімія, технологія речовин та їх застосування. — Львів : Видавництво Львівської політехніки, 2024. — Том 1. — № 7. — С. 188–195.
dc.identifier.citationenHydrodynamic and kinetic patterns of yellow iron oxide pigment filtration drying / D. P. Kindzera, V. M. Atamanyuk, A. B. Helesh, N. Y. Tsiura // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 7. — P. 188–195.
dc.identifier.doidoi.org/10.23939/ctas2024.01.188
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111745
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofХімія, технологія речовин та їх застосування, 7 (1), 2024
dc.relation.ispartofChemistry, Technology and Application of Substances, 7 (1), 2024
dc.relation.references1. Saade, J., & Assaad, J.J. (2022). Effect of Pigments on Structural Properties of Colored Reinforced Concrete Beams. Advances in Civil Engineering Materials, 11(1), 20210075. https://doi.org/10.1520/acem20210075
dc.relation.references2. Porto, T.R., Lopes Lucena, A. E. d. F., de Moraes, T. M. R. P., Melo Neto, O. d. M., Costa, D. B., de Sousa Carvalho, F. d. S., & Torres, P. R. B. (2022). The use of iron oxide in asphalt mixtures to reduce the effects of urban heat islands. Case Studies in Construction Materials, 18, e01709. https://doi.org/10.1016/j.cscm.2022.e01709
dc.relation.references3. Lemos, MZ., Jaerger, S., Balaba, N., et al. (2023). Synthesis and characterization of iron oxides and their application as inorganic pigments in white paint. Coloration Technology, 1-13. https://doi.org/10.1111/cote.12735
dc.relation.references4. Xu, M., Pan, G., Guo, Y., Yang, S., & Fang, Z. (2021). Surface modification and structure analysis of coated iron oxide yellow pigments to improve dispersion in organic solvents. Surface and Interface Analysis, 53(11), 933-945. https://doi.org/10.1002/sia.6995
dc.relation.references5. Fiuza TER., Borges JFM., Cunha JBMd., et al. (2018). Iron-based inorganic pigments from residue: Preparation and application in ceramic, polymer, and paint. Dyes Pigments, 148, 319-328. https://doi.org/10.1016/j.dyepig.2017.09.025
dc.relation.references6. Pfaff, G. The world of inorganic pigments. (2022). ChemTexts 8, 2-17. https://doi.org/10.1007/s40828-022-00166-1
dc.relation.references7. Vasylenko, I. A., & Pivovarov, O.A. (2016). 217. Zalizooksydni pihmenty. Syntez, modyfikuvannya, vykorystannya u riznykh haluzyakh nauky i tekhniky: Monohrafiya. Dnipropetrovsʹk: Aktsent PP, 217 p.
dc.relation.references8. Yavorsʹkyy, V. T., Helesh, A. B., Kalymon, YA. A., & Znak, Z. O. (2014). Ekolohichnyy monitorynh vyrobnytstva chervonoho ferumoksydnoho pihmenta. Enerhotekhnolohiyi ta resursozberezhennya, 3, 46-55. http://dspace.nbuv.gov.ua/handle/123456789/127293
dc.relation.references9. Dos Santos, I. S. F., Edwards, H. G. M., & de Faria, D. L. A. (2023). Hematite colour revisited: Particle size and electronic transitions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 123810. https://doi.org/10.1016/j.saa.2023.123810
dc.relation.references10. Iron Oxide Pigments Market Size, Share & Trends. (2020). Analysis Report By Product (Synthetic, Natural), By Color (Red, Yellow, Black, Blends), By Application (Construction, Coatings, Plastics, Paper), And Segment Forecasts, 2021 - 2028. https://www.grandviewresearch.com/industry-analysis/iron-oxide-pigment-market
dc.relation.references11. Barsukova, H. V., Savchenko-Pererva, M. Y. (2020). Reducing the technogenic load on the environment due to the technical solution for the disposal of iron sulphate. Journal of Chemistry and Technologies, 28(2), 168-176. https://doi.org/10.15421/082018
dc.relation.references12. Jiffin Sam, Kirankumar, P.S., Sanatha, K., Prathish, K.P. (2021). Development of saleable chloride free iron oxide from hazardous waste in titanium industries via layered double hydroxide formation. Journal of Environmental Management, 290, 112566. https://doi.org/10.1016/j.jenvman.2021.112566.
dc.relation.references13. Kalymon, Y., Helesh, A., Yavorskyi, O. (2012). Hydrolytic sulphate acid evaporation by waste gases from burning furnaces of meta-titanic acid paste. Chemistry and Chemical Technology, 6(4), 423 - 429, https://doi.org/10.23939/chcht06.04.423.
dc.relation.references14. Kindzera, D. P., Kochubey, V. V., Atamanyuk, V. M., Tsyura, N. YA., & Helesh, A. B. (2023). Doslidzhennya vplyvu rezhymnykh faktoriv na kinetyku protsesu dehidratatsiyi zaliza (II) sulʹfat heptahidratu filʹtratsiynym metodom. Chemistry, Technology and Application of Substances, 6(1), 110-117. https://doi.org/10.23939/ctas2023.01.110
dc.relation.references15. Atamanyuk, V.M., Kochubei, V.V., Kindzera, D.P., Tsiura, N.Y. (2022). Doslidzhennya protsesu dehidratatsiyi zalizo(II) sulʹfat heptahidratu filʹtratsiynym metodom. Pytannya khimiyi ta khimichnoyi tekhnolohiyi, 5, 24-32. http://dx.doi.org/10.32434/0321-4095-2022-144-5-24-32
dc.relation.references16. Kindzera, D., Hosovskyi, R., Atamanyuk, V., & Symak, D. (2021). Heat Transfer Process During Filtration Drying of Grinded Sunflower Biomass. Chemistry & Chemical Technology, 15(1), 118-124. https://doi.org/10.23939/chcht15.01.118
dc.relation.references17. Atamanyuk, V. M., Khanyk Ya. M. (2007). Klasyfikatsiya dyspersnykh materialiv, yak obʺyektiv sushinnya filʹtratsiynym metodom. Khimichna promyslovistʹ Ukrayiny, 3, 37-45.
dc.relation.references18. Tsiura, N., Kindzera, D., Huzova, I., Atamanyuk, V. (2021). Study of the kinetics of drying iron (II) sulfate heptahydrate by filtration method. ScienceRise, (1), 11-21. https://doi.org/10.21303/2313-8416.2021.001583
dc.relation.references19. Mitin I., Kindzera D., Atamanyuk V. (2021). Application of slag from thermal power plant for the production of porous filler. Journal Environmental Problems, 6(2), 110-116. doi: https://doi.org/10.23939/ep2021.02.110
dc.relation.references20.Atamanyuk V.M., Terlych A.I., Khalaniya O.M. (2016). Filʹtratsiyne sushinnya pyvnoyi drobyny - vidkhodiv pyvovarnoho vyrobnytstva. Naukovyy visnyk NLTU Ukrayiny, 26.8, 264-270. https://doi.org/10.15421/40260841
dc.relation.referencesen1. Saade, J., & Assaad, J.J. (2022). Effect of Pigments on Structural Properties of Colored Reinforced Concrete Beams. Advances in Civil Engineering Materials, 11(1), 20210075. https://doi.org/10.1520/acem20210075
dc.relation.referencesen2. Porto, T.R., Lopes Lucena, A. E. d. F., de Moraes, T. M. R. P., Melo Neto, O. d. M., Costa, D. B., de Sousa Carvalho, F. d. S., & Torres, P. R. B. (2022). The use of iron oxide in asphalt mixtures to reduce the effects of urban heat islands. Case Studies in Construction Materials, 18, e01709. https://doi.org/10.1016/j.cscm.2022.e01709
dc.relation.referencesen3. Lemos, MZ., Jaerger, S., Balaba, N., et al. (2023). Synthesis and characterization of iron oxides and their application as inorganic pigments in white paint. Coloration Technology, 1-13. https://doi.org/10.1111/cote.12735
dc.relation.referencesen4. Xu, M., Pan, G., Guo, Y., Yang, S., & Fang, Z. (2021). Surface modification and structure analysis of coated iron oxide yellow pigments to improve dispersion in organic solvents. Surface and Interface Analysis, 53(11), 933-945. https://doi.org/10.1002/sia.6995
dc.relation.referencesen5. Fiuza TER., Borges JFM., Cunha JBMd., et al. (2018). Iron-based inorganic pigments from residue: Preparation and application in ceramic, polymer, and paint. Dyes Pigments, 148, 319-328. https://doi.org/10.1016/j.dyepig.2017.09.025
dc.relation.referencesen6. Pfaff, G. The world of inorganic pigments. (2022). ChemTexts 8, 2-17. https://doi.org/10.1007/s40828-022-00166-1
dc.relation.referencesen7. Vasylenko, I. A., & Pivovarov, O.A. (2016). 217. Zalizooksydni pihmenty. Syntez, modyfikuvannya, vykorystannya u riznykh haluzyakh nauky i tekhniky: Monohrafiya. Dnipropetrovsʹk: Aktsent PP, 217 p.
dc.relation.referencesen8. Yavorsʹkyy, V. T., Helesh, A. B., Kalymon, YA. A., & Znak, Z. O. (2014). Ekolohichnyy monitorynh vyrobnytstva chervonoho ferumoksydnoho pihmenta. Enerhotekhnolohiyi ta resursozberezhennya, 3, 46-55. http://dspace.nbuv.gov.ua/handle/123456789/127293
dc.relation.referencesen9. Dos Santos, I. S. F., Edwards, H. G. M., & de Faria, D. L. A. (2023). Hematite colour revisited: Particle size and electronic transitions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 123810. https://doi.org/10.1016/j.saa.2023.123810
dc.relation.referencesen10. Iron Oxide Pigments Market Size, Share & Trends. (2020). Analysis Report By Product (Synthetic, Natural), By Color (Red, Yellow, Black, Blends), By Application (Construction, Coatings, Plastics, Paper), And Segment Forecasts, 2021 - 2028. https://www.grandviewresearch.com/industry-analysis/iron-oxide-pigment-market
dc.relation.referencesen11. Barsukova, H. V., Savchenko-Pererva, M. Y. (2020). Reducing the technogenic load on the environment due to the technical solution for the disposal of iron sulphate. Journal of Chemistry and Technologies, 28(2), 168-176. https://doi.org/10.15421/082018
dc.relation.referencesen12. Jiffin Sam, Kirankumar, P.S., Sanatha, K., Prathish, K.P. (2021). Development of saleable chloride free iron oxide from hazardous waste in titanium industries via layered double hydroxide formation. Journal of Environmental Management, 290, 112566. https://doi.org/10.1016/j.jenvman.2021.112566.
dc.relation.referencesen13. Kalymon, Y., Helesh, A., Yavorskyi, O. (2012). Hydrolytic sulphate acid evaporation by waste gases from burning furnaces of meta-titanic acid paste. Chemistry and Chemical Technology, 6(4), 423 - 429, https://doi.org/10.23939/chcht06.04.423.
dc.relation.referencesen14. Kindzera, D. P., Kochubey, V. V., Atamanyuk, V. M., Tsyura, N. YA., & Helesh, A. B. (2023). Doslidzhennya vplyvu rezhymnykh faktoriv na kinetyku protsesu dehidratatsiyi zaliza (II) sulʹfat heptahidratu filʹtratsiynym metodom. Chemistry, Technology and Application of Substances, 6(1), 110-117. https://doi.org/10.23939/ctas2023.01.110
dc.relation.referencesen15. Atamanyuk, V.M., Kochubei, V.V., Kindzera, D.P., Tsiura, N.Y. (2022). Doslidzhennya protsesu dehidratatsiyi zalizo(II) sulʹfat heptahidratu filʹtratsiynym metodom. Pytannya khimiyi ta khimichnoyi tekhnolohiyi, 5, 24-32. http://dx.doi.org/10.32434/0321-4095-2022-144-5-24-32
dc.relation.referencesen16. Kindzera, D., Hosovskyi, R., Atamanyuk, V., & Symak, D. (2021). Heat Transfer Process During Filtration Drying of Grinded Sunflower Biomass. Chemistry & Chemical Technology, 15(1), 118-124. https://doi.org/10.23939/chcht15.01.118
dc.relation.referencesen17. Atamanyuk, V. M., Khanyk Ya. M. (2007). Klasyfikatsiya dyspersnykh materialiv, yak obʺyektiv sushinnya filʹtratsiynym metodom. Khimichna promyslovistʹ Ukrayiny, 3, 37-45.
dc.relation.referencesen18. Tsiura, N., Kindzera, D., Huzova, I., Atamanyuk, V. (2021). Study of the kinetics of drying iron (II) sulfate heptahydrate by filtration method. ScienceRise, (1), 11-21. https://doi.org/10.21303/2313-8416.2021.001583
dc.relation.referencesen19. Mitin I., Kindzera D., Atamanyuk V. (2021). Application of slag from thermal power plant for the production of porous filler. Journal Environmental Problems, 6(2), 110-116. doi: https://doi.org/10.23939/ep2021.02.110
dc.relation.referencesen20.Atamanyuk V.M., Terlych A.I., Khalaniya O.M. (2016). Filʹtratsiyne sushinnya pyvnoyi drobyny - vidkhodiv pyvovarnoho vyrobnytstva. Naukovyy visnyk NLTU Ukrayiny, 26.8, 264-270. https://doi.org/10.15421/40260841
dc.relation.urihttps://doi.org/10.1520/acem20210075
dc.relation.urihttps://doi.org/10.1016/j.cscm.2022.e01709
dc.relation.urihttps://doi.org/10.1111/cote.12735
dc.relation.urihttps://doi.org/10.1002/sia.6995
dc.relation.urihttps://doi.org/10.1016/j.dyepig.2017.09.025
dc.relation.urihttps://doi.org/10.1007/s40828-022-00166-1
dc.relation.urihttp://dspace.nbuv.gov.ua/handle/123456789/127293
dc.relation.urihttps://doi.org/10.1016/j.saa.2023.123810
dc.relation.urihttps://www.grandviewresearch.com/industry-analysis/iron-oxide-pigment-market
dc.relation.urihttps://doi.org/10.15421/082018
dc.relation.urihttps://doi.org/10.1016/j.jenvman.2021.112566
dc.relation.urihttps://doi.org/10.23939/chcht06.04.423
dc.relation.urihttps://doi.org/10.23939/ctas2023.01.110
dc.relation.urihttp://dx.doi.org/10.32434/0321-4095-2022-144-5-24-32
dc.relation.urihttps://doi.org/10.23939/chcht15.01.118
dc.relation.urihttps://doi.org/10.21303/2313-8416.2021.001583
dc.relation.urihttps://doi.org/10.23939/ep2021.02.110
dc.relation.urihttps://doi.org/10.15421/40260841
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.subjectзалізооксидні пігменти
dc.subjectзаліза (ІІ) сульфат гептагідрат
dc.subjectгідродинаміка
dc.subjectкінетика процесу сушіння
dc.subjectенергетичні затрати
dc.subjectiron oxide pigments
dc.subjectiron (II) sulfate heptahydrate
dc.subjecthydrodynamics
dc.subjectkinetics of the drying process
dc.subjectenergy costs
dc.titleГідродинамічні та кінетичні закономірності фільтраційного сушіння жовтого залізооксидного пігменту
dc.title.alternativeHydrodynamic and kinetic patterns of yellow iron oxide pigment filtration drying
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v1n7_Kindzera_D_P-Hydrodynamic_and_kinetic_188-195.pdf
Size:
1.05 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v1n7_Kindzera_D_P-Hydrodynamic_and_kinetic_188-195__COVER.png
Size:
457.22 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.87 KB
Format:
Plain Text
Description: