Use of microwave radiation for effective purification of wastewater from organic compounds

dc.citation.epage100
dc.citation.issue2
dc.citation.journalTitleЕкологічні проблеми
dc.citation.spage96
dc.citation.volume9
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationJan Dlugosz University in Czestochowa
dc.contributor.authorSabadash, Vira
dc.contributor.authorNowik-Zajaç, Anna
dc.contributor.authorKonovalov, Oleh
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-05-13T08:57:06Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractThis article is devoted to the problem of using microwave radiation as a potentially effective method of cleaning wastewater from organic compounds. The problem of cleaning wastewater from organic contaminants in the food industry requires highly effective methods since protein compounds in wastewater can cause environmental hazards and complicate the cleaning process. The purpose of the work was to investigate the effectiveness of using microwave radiation to purify wastewater from organic compounds, particularly protein impurities, and to establish the possibilities of this method for improving the process of water purification in the food industry. The article mainly examines the use of microwave radiation for this purpose and analyses its effect on proteins usually present in wastewater from the food industry. Experimental studies have shown the possibility of adequate wastewater treatment using microwave radiation. The advantages of using microwave heating, as well as its speed and regulation accuracy, are analysed, making this method attractive for use in wastewater treatment and other industrial production processes. The study includes an analysis of microwave radiation's effect on proteins commonly present in wastewater from the food industry. The research methodology involves modelling the composition of wastewater and using a microwave oven to process protein solutions. The results of the experiments demonstrate the possibility of adequate wastewater treatment using microwave radiation, which opens up prospects for further use of this method in industry and environmental protection. The results indicate the success of using microwave radiation to purify wastewater from organic compounds, notably protein pollution.
dc.format.extent96-100
dc.format.pages5
dc.identifier.citationSabadash V. Use of microwave radiation for effective purification of wastewater from organic compounds / Vira Sabadash, Anna Nowik-Zajaç, Oleh Konovalov // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 9. — No 2. — P. 96–100.
dc.identifier.citationenSabadash V. Use of microwave radiation for effective purification of wastewater from organic compounds / Vira Sabadash, Anna Nowik-Zajaç, Oleh Konovalov // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 9. — No 2. — P. 96–100.
dc.identifier.doidoi.org/10.23939/ep2024.02.096
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/64521
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofЕкологічні проблеми, 2 (9), 2024
dc.relation.ispartofEnvironmental Problems, 2 (9), 2024
dc.relation.referencesBarham, J. P., Koyama, E., Norikane , Y., & Yoshimura, T. (2020). Microwave Flow Chemistry. In RF Power Semiconductor Generator Application in Heating and Energy Utilization (pp. 91–117). Springer Singapore. doi: https://doi.org/10.1007/978-981-15-3548-2_4
dc.relation.referencesChen, Z., Afzal, M. T., & Salema , A. A. (2014). Microwave Drying of Wastewater Sewage Sludge. Journal of Clean Energy Technologies, 282–286. doi: https://doi.org/10.7763/jocet.2014.v2.140
dc.relation.referencesKorablev , R. A., Belocurov , V. P., & Busarin , E. N. (2021). Effect mechanisms of ultrahigh-frequency radiation on biological objects. IOP Conference Series: Earth and Environmental Science, 875 (1), 012017. doi: https://doi.org/10.1088/1755-1315/875/1/012017
dc.relation.referencesKovacova , M., Lovas , M., Jakabsky , S., Romero, M., & Rincon, J. M. (2009). Microwave Vitrification of Model Heavy Metals Carriers From Wastewater Treatment. MRS Proceedings, 1193. doi: https://doi.org/10.1557/proc-1193-323
dc.relation.referencesLai, K.-L., & Lai, G. (2006). Effects of Microwave on Backside Grinder Wastewater Treatment [Thesis]. Retrieved from http://ndltd.ncl.edu.tw/handle/39116388857525025350
dc.relation.referencesMudhoo, A. (2012). Microwave-Assisted Organic Pollutants Degradation. In Advances in Water Treatment and Pollution Prevention (pp. 177–200). Springer Netherlands. doi: https://doi.org/10.1007/978-94-007-4204-8_7
dc.relation.referencesSabadash, V. (2023). Adsorption of Oil Products by Natural Sorbents. In Studies in Systems, Decision and Control (pp. 137–158). Springer Nature Switzerland. doi: https://doi.org/10.1007/978-3-031-44351-0_7
dc.relation.referencesSabadash, V. V., & Gumnytsky , J . M. (2018). Extraction of proteins from wastewater of food industries using UHF radiation. Scientific Works, 82 (1). doi: https://doi.org/10.15673/swonaft.v82i1.1011
dc.relation.referencesSabadash, V., & Lysko , V. (2023). Studies on Adsorption of Petroleum Products in Static Conditions. Journal of Ecological Engineering, 24 (10), 40–46. doi: https://doi.org/10.12911/22998993/169997
dc.relation.referencesWong, W.T. (2006). Applications of microwave technology to wastewater treatment [Thesis]. Retrieved from http://hdl.handle.net/2429/18361.
dc.relation.referencesenBarham, J. P., Koyama, E., Norikane , Y., & Yoshimura, T. (2020). Microwave Flow Chemistry. In RF Power Semiconductor Generator Application in Heating and Energy Utilization (pp. 91–117). Springer Singapore. doi: https://doi.org/10.1007/978-981-15-3548-2_4
dc.relation.referencesenChen, Z., Afzal, M. T., & Salema , A. A. (2014). Microwave Drying of Wastewater Sewage Sludge. Journal of Clean Energy Technologies, 282–286. doi: https://doi.org/10.7763/jocet.2014.v2.140
dc.relation.referencesenKorablev , R. A., Belocurov , V. P., & Busarin , E. N. (2021). Effect mechanisms of ultrahigh-frequency radiation on biological objects. IOP Conference Series: Earth and Environmental Science, 875 (1), 012017. doi: https://doi.org/10.1088/1755-1315/875/1/012017
dc.relation.referencesenKovacova , M., Lovas , M., Jakabsky , S., Romero, M., & Rincon, J. M. (2009). Microwave Vitrification of Model Heavy Metals Carriers From Wastewater Treatment. MRS Proceedings, 1193. doi: https://doi.org/10.1557/proc-1193-323
dc.relation.referencesenLai, K.-L., & Lai, G. (2006). Effects of Microwave on Backside Grinder Wastewater Treatment [Thesis]. Retrieved from http://ndltd.ncl.edu.tw/handle/39116388857525025350
dc.relation.referencesenMudhoo, A. (2012). Microwave-Assisted Organic Pollutants Degradation. In Advances in Water Treatment and Pollution Prevention (pp. 177–200). Springer Netherlands. doi: https://doi.org/10.1007/978-94-007-4204-8_7
dc.relation.referencesenSabadash, V. (2023). Adsorption of Oil Products by Natural Sorbents. In Studies in Systems, Decision and Control (pp. 137–158). Springer Nature Switzerland. doi: https://doi.org/10.1007/978-3-031-44351-0_7
dc.relation.referencesenSabadash, V. V., & Gumnytsky , J . M. (2018). Extraction of proteins from wastewater of food industries using UHF radiation. Scientific Works, 82 (1). doi: https://doi.org/10.15673/swonaft.v82i1.1011
dc.relation.referencesenSabadash, V., & Lysko , V. (2023). Studies on Adsorption of Petroleum Products in Static Conditions. Journal of Ecological Engineering, 24 (10), 40–46. doi: https://doi.org/10.12911/22998993/169997
dc.relation.referencesenWong, W.T. (2006). Applications of microwave technology to wastewater treatment [Thesis]. Retrieved from http://hdl.handle.net/2429/18361.
dc.relation.urihttps://doi.org/10.1007/978-981-15-3548-2_4
dc.relation.urihttps://doi.org/10.7763/jocet.2014.v2.140
dc.relation.urihttps://doi.org/10.1088/1755-1315/875/1/012017
dc.relation.urihttps://doi.org/10.1557/proc-1193-323
dc.relation.urihttp://ndltd.ncl.edu.tw/handle/39116388857525025350
dc.relation.urihttps://doi.org/10.1007/978-94-007-4204-8_7
dc.relation.urihttps://doi.org/10.1007/978-3-031-44351-0_7
dc.relation.urihttps://doi.org/10.15673/swonaft.v82i1.1011
dc.relation.urihttps://doi.org/10.12911/22998993/169997
dc.relation.urihttp://hdl.handle.net/2429/18361
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Sabadash V., Nowik-Zając A., Konovalov O., 2024
dc.subjectwastewater
dc.subjectfood industry
dc.subjectdenaturation
dc.subjectmicrowave radiation
dc.subjectheat exchange
dc.subjectmathematical model
dc.titleUse of microwave radiation for effective purification of wastewater from organic compounds
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v9n2_Sabadash_V-Use_of_microwave_radiation_96-100.pdf
Size:
437.99 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v9n2_Sabadash_V-Use_of_microwave_radiation_96-100__COVER.png
Size:
1.11 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.78 KB
Format:
Plain Text
Description: