Confusing problem of green architecture and false green architecture in mena region

dc.citation.epage58
dc.citation.issue6
dc.citation.spage48
dc.contributor.affiliationAmirkabir university of technology
dc.contributor.affiliationIslamic Azad university
dc.contributor.authorNorouzi, Nima
dc.contributor.authorNasiri, Zahra
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-04-25T06:44:53Z
dc.date.available2023-04-25T06:44:53Z
dc.date.created2021-03-03
dc.date.issued2021-03-03
dc.description.abstractAchieving sustainable and environmentally friendly architecture is one of the main goals people have made to better life as the final model for their professional activities. Thus, moving towards greener architecture is considered the primary goal of the architecture of our time. The purpose of this study is to analyze architectural projects that have already been implemented in Middle Eastern countries in terms of their compatibility with the objective concepts of sustainability and the green standards they require. Therefore, for review and study, the purpose of this article is to discover the level of sustainability classification system such as LEED (Leadership in Energy and Environmental Design) that can be effective in classifying current architectural projects. Studies show three concepts for analyzing contemporary architecture: 1. green, 2. false green, and 3. energy-seller. Besides, these studies have shown that some projects, although attempting to convey sustainable architecture concepts in appearance, are not sustainable. In recent stages, this paper intends to evaluate the effectiveness of the LEED classification system. In evaluating the LEED classification system, the results show that the system’s purpose is more for planning purposes than objective design goals and practical tools for analyzing the architectural design process. The analysis based on this study shows that it is necessary to use design-based patterns to move false green architecture to green architecture.
dc.format.extent48-58
dc.format.pages11
dc.identifier.citationNorouzi N. Confusing problem of green architecture and false green architecture in mena region / Nima Norouzi, Zahra Nasiri // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 1. — No 6. — P. 48–58.
dc.identifier.citationenNorouzi N. Confusing problem of green architecture and false green architecture in mena region / Nima Norouzi, Zahra Nasiri // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 1. — No 6. — P. 48–58.
dc.identifier.doidoi.org/10.23939/ep2021.01.048
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/58005
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofEnvironmental Problems, 6 (1), 2021
dc.relation.referencesAgyekum, K., Kissi, E., & Danku, J. C. (2020). Professionals’
dc.relation.referencesviews of vernacular building materials and techniques for
dc.relation.referencesgreen building delivery in Ghana. Scientific African, 8, 00424, doi: https://doi.org/10.1016/j.sciaf.2020.e00424
dc.relation.referencesAl-Habaibeh, A., Sen, A., & Chilton, J. (2020). Evaluation Tool
dc.relation.referencesFor The Thermal Performance of Retrofitted Buildings
dc.relation.referencesUsing An Integrated Approach of Deep Learning Artificial
dc.relation.referencesNeural Networks and Infrared Thermography. Energy
dc.relation.referencesand Built Environment. doi: https://doi.org/10.1016/j.enbenv.2020.06.004
dc.relation.referencesAmiri Fard, F., & Nasiri, F. (2020). A bi-objective optimization
dc.relation.referencesapproach for selection of passive energy alternatives in
dc.relation.referencesretrofit projects under cost uncertainty. Energy and Built
dc.relation.referencesEnvironment, (1), 77–86. doi: https://doi.org/10.1016/j.enbenv.2019.11.005
dc.relation.referencesChen, G., Rong, L., Zhang, G. (2020). Numerical simulations
dc.relation.referenceson atmospheric stability conditions and urban airflow at five
dc.relation.referencesclimate zones in China. Energy and Built Environment,
dc.relation.references(2020). doi: https://doi.org/10.1016/j.enbenv.2020.07.006
dc.relation.referencesChi, B., Lu, W., Ye, M., Bao, Z., & Zhang, X. (2020).
dc.relation.referencesConstruction waste minimization in green building: A
dc.relation.referencescomparative analysis of LEED-NC 2009 certified projects
dc.relation.referencesin the US and China. Journal of Cleaner Production, (256),120749. doi: https://doi.org/10.1016/j.jclepro.2020.120749.
dc.relation.referencesCryer, B., Felder, J., Matthews, R., Pettigrew, M., & Okrent, B.
dc.relation.references(2006). Evaluating the Diffusion of Green Building
dc.relation.referencesProjects. Retrieved from http://personal.anderson.ucla.edu/charles.corbett/papers/diffusion_green_building.pdf
dc.relation.referencesElmualim, A., Valle, R., & Kwawu, W. (2012). Discerning
dc.relation.referencespolicy and drivers for sustainable facilities management
dc.relation.referencespractice. Int. J. Sust. Built Environ. 1, 16–25.
dc.relation.referencesFan, K., Chan, E.H.W., & Chau, C.K. (2018a). Costs and
dc.relation.referencesBenefits of Implementing Green Building Economic
dc.relation.referencesIncentives: Case Study of a Gross Floor Area Concession
dc.relation.referencesScheme in Hong Kong. Sustainability, 10, 2814.
dc.relation.referencesFan, K., Chan, E.H.W., & Qian, Q.K. (2018b). Transaction costs
dc.relation.references(TCs) in green building (GB) incentive schemes: Gross
dc.relation.referencesFloor Area (GFA) Concession Scheme in Hong Kong.
dc.relation.referencesEnergy Policy, (119), 563–573. https://doi.org/10.1016/j.enpol.2018.04.054
dc.relation.referencesFeng, Q., Chen, H., Shi, X., & Wei, J. (2020). Stakeholder
dc.relation.referencesgames in the evolution and development of green buildings
dc.relation.referencesin China: Government-led perspective. Journal of Cleaner
dc.relation.referencesProduction, (275), 122895. doi: https://doi.org/10.1016/j.jclepro.2020.122895
dc.relation.referencesFu, Y., Dong, N., Ge, Q., Xiong, F., & Gong, C. (2020).
dc.relation.referencesDriving-paths of green buildings industry (GBI) from
dc.relation.referencesstakeholders’ green behavior based on the network analysis.
dc.relation.referencesJournal of Cleaner Production, (273), 122883. doi:
dc.relation.referenceshttps://doi.org/10.1016/j.jclepro.2020.122883.
dc.relation.referencesHe, L., & Chen, L. (2020). The incentive effects of different
dc.relation.referencesgovernment subsidy policies on green buildings. Renewable
dc.relation.referencesand Sustainable Energy Reviews, 135 (2021), 110123, doi:
dc.relation.referenceshttps://doi.org/10.1016/j.rser.2020.110123
dc.relation.referencesHu, M., Suhendri, Zhao, B., Ao, X., Cao, J., Wang, Q., Riffat,
dc.relation.referencesS., Su, Y., & Pei, G. (2020). Effect of the spectrally selective
dc.relation.referencesfeatures of the cover and emitter combination on radiative
dc.relation.referencescooling performance. Energy and Built Environment. doi:
dc.relation.referenceshttps://doi.org/10.1016/j.enbenv.2020.06.008
dc.relation.referencesKong, X., Qiao, X., & Yuan, G., (2020). Investigation
dc.relation.referencesof thermal environment and the associated energy
dc.relation.referencesconsumption of transportation buildings along the
dc.relation.referencesexpressways in the cold region of China: A case study.
dc.relation.referencesEnergy and Built Environment, (1), 278–287. doi:
dc.relation.referenceshttps://doi.org/10.1016/j.enbenv.2020.03.004
dc.relation.referencesLi, B., You, L., Zheng, M., Wang, Y., & Wang, Z. (2020).
dc.relation.referencesEnergy consumption pattern and indoor thermal
dc.relation.referencesenvironment of residential building in rural China. Energy
dc.relation.referencesand Built Environment, (1), 327–336. doi: https://doi.org/10.1016/j.enbenv.2020.04.004
dc.relation.referencesMurga, A., Long, Z., Yoo, S.-J., Sumiyoshi, E., & Ito, K.
dc.relation.references(2020). Decreasing inhaled contaminant dose of a factory
dc.relation.referencesworker through a hybrid Emergency Ventilation System:
dc.relation.referencesPerformance evaluation in worst-case scenario. Energy and
dc.relation.referencesBuilt Environment, (1), 319–326. doi: https://doi.org/10.1016/j.enbenv.2020.04.007
dc.relation.referencesNorouzi, N., & Kalantari, G. (2020). The sun food-water-energy
dc.relation.referencesnexus governance model a case study for Iran. Water-
dc.relation.referencesEnergy Nexus, (3), 72–80. doi: https://doi.org/10.1016/j.wen.2020.05.005
dc.relation.referencesNorouzi, N., Fani, M., & Nasiri, Z. (2021). The development of
dc.relation.referencesa Nexus based green architecture ranking system in Iran.
dc.relation.referencesCivil Engineering Beyond Limits (CEBEL), 2(2).
dc.relation.referencesNorouzi, N., & Soori, M. (2020). Energy, environment, water,
dc.relation.referencesand land-use nexus based evaluation of the global green
dc.relation.referencesbuilding standards. Water-Energy Nexus, (3), 209–224.
dc.relation.referencesPorumb, V.-A., Maier, G., & Anghel, I. (2020). The impact of
dc.relation.referencesbuilding location on green certification price premiums:
dc.relation.referencesEvidence from three European countries, Journal of
dc.relation.referencesCleaner Production, (2720), 122080. doi: https://doi.org/10.1016/j.jclepro.2020.122080
dc.relation.referencesReed, R., Bilos, A., Wilkinson, S., & Schulte, K. W. (2009).
dc.relation.referencesInternational comparison of sustainable rating tools. JOSRE
dc.relation.referencesJ. 1, 1–22.
dc.relation.referencesSussman, E. (2008). Reshaping Municipal and County Laws to
dc.relation.referencesFoster Green Building, Energy Efficiency and Renewable
dc.relation.referencesEnergy. 16 NY U. ENVTL. LJ 1, 8.
dc.relation.referencesWang, L., & Zheng, D. (2020). Integrated analysis of energy,
dc.relation.referencesindoor environment, and occupant satisfaction in green
dc.relation.referencesbuildings using real-time monitoring data and on-site
dc.relation.referencesinvestigation. Building and Environment, 182, 107014. doi:
dc.relation.referenceshttps://doi.org/10.1016/j.buildenv.2020.107014.
dc.relation.referencesWu, X., Lin, B., Papachristos, G., Liu, P., & Zimmermann, N.
dc.relation.references(2020). A holistic approach to evaluate building
dc.relation.referencesperformance gap of green office buildings: A case study in
dc.relation.referencesChina. Building and Environment, (175), 106819. doi:
dc.relation.referenceshttps://doi.org/10.1016/j.buildenv.2020.106819
dc.relation.referencesYadegaridehkordi, E., Hourmand, M., Nilashi, M., Alsolami, E.,
dc.relation.referencesSamad, S., Mahmoud, M., Alarood, A. A., Zainol, A.,
dc.relation.referencesMajeed, H. D., & Shuib, L. (2020). Assessment of
dc.relation.referencesSustainability Indicators for Green Building Manufacturing
dc.relation.referencesUsing Fuzzy Multi-Criteria Decision Making Approach.
dc.relation.referencesJournal of Cleaner Production, 122905. doi: https://doi.org/10.1016/j.jclepro.2020.122905.
dc.relation.referencesZhilei, L., Chow, D. H. C., De, D., Jia, Y., Yingjian, H., Hong,
dc.relation.referencesC., & Wei, Z. (2020). The Development and Realisation of
dc.relation.referencesa Multi-Faceted System for Green Building Planning: A
dc.relation.referencesCase in Ningbo Using the Fuzzy Analytical Hierarchy
dc.relation.referencesProcess. Energy and Buildings, 110371. doi: https://doi.org/10.1016/j.enbuild.2020.110371
dc.relation.referencesenAgyekum, K., Kissi, E., & Danku, J. C. (2020). Professionals’
dc.relation.referencesenviews of vernacular building materials and techniques for
dc.relation.referencesengreen building delivery in Ghana. Scientific African, 8, 00424, doi: https://doi.org/10.1016/j.sciaf.2020.e00424
dc.relation.referencesenAl-Habaibeh, A., Sen, A., & Chilton, J. (2020). Evaluation Tool
dc.relation.referencesenFor The Thermal Performance of Retrofitted Buildings
dc.relation.referencesenUsing An Integrated Approach of Deep Learning Artificial
dc.relation.referencesenNeural Networks and Infrared Thermography. Energy
dc.relation.referencesenand Built Environment. doi: https://doi.org/10.1016/j.enbenv.2020.06.004
dc.relation.referencesenAmiri Fard, F., & Nasiri, F. (2020). A bi-objective optimization
dc.relation.referencesenapproach for selection of passive energy alternatives in
dc.relation.referencesenretrofit projects under cost uncertainty. Energy and Built
dc.relation.referencesenEnvironment, (1), 77–86. doi: https://doi.org/10.1016/j.enbenv.2019.11.005
dc.relation.referencesenChen, G., Rong, L., Zhang, G. (2020). Numerical simulations
dc.relation.referencesenon atmospheric stability conditions and urban airflow at five
dc.relation.referencesenclimate zones in China. Energy and Built Environment,
dc.relation.referencesen(2020). doi: https://doi.org/10.1016/j.enbenv.2020.07.006
dc.relation.referencesenChi, B., Lu, W., Ye, M., Bao, Z., & Zhang, X. (2020).
dc.relation.referencesenConstruction waste minimization in green building: A
dc.relation.referencesencomparative analysis of LEED-NC 2009 certified projects
dc.relation.referencesenin the US and China. Journal of Cleaner Production, (256),120749. doi: https://doi.org/10.1016/j.jclepro.2020.120749.
dc.relation.referencesenCryer, B., Felder, J., Matthews, R., Pettigrew, M., & Okrent, B.
dc.relation.referencesen(2006). Evaluating the Diffusion of Green Building
dc.relation.referencesenProjects. Retrieved from http://personal.anderson.ucla.edu/charles.corbett/papers/diffusion_green_building.pdf
dc.relation.referencesenElmualim, A., Valle, R., & Kwawu, W. (2012). Discerning
dc.relation.referencesenpolicy and drivers for sustainable facilities management
dc.relation.referencesenpractice. Int. J. Sust. Built Environ. 1, 16–25.
dc.relation.referencesenFan, K., Chan, E.H.W., & Chau, C.K. (2018a). Costs and
dc.relation.referencesenBenefits of Implementing Green Building Economic
dc.relation.referencesenIncentives: Case Study of a Gross Floor Area Concession
dc.relation.referencesenScheme in Hong Kong. Sustainability, 10, 2814.
dc.relation.referencesenFan, K., Chan, E.H.W., & Qian, Q.K. (2018b). Transaction costs
dc.relation.referencesen(TCs) in green building (GB) incentive schemes: Gross
dc.relation.referencesenFloor Area (GFA) Concession Scheme in Hong Kong.
dc.relation.referencesenEnergy Policy, (119), 563–573. https://doi.org/10.1016/j.enpol.2018.04.054
dc.relation.referencesenFeng, Q., Chen, H., Shi, X., & Wei, J. (2020). Stakeholder
dc.relation.referencesengames in the evolution and development of green buildings
dc.relation.referencesenin China: Government-led perspective. Journal of Cleaner
dc.relation.referencesenProduction, (275), 122895. doi: https://doi.org/10.1016/j.jclepro.2020.122895
dc.relation.referencesenFu, Y., Dong, N., Ge, Q., Xiong, F., & Gong, C. (2020).
dc.relation.referencesenDriving-paths of green buildings industry (GBI) from
dc.relation.referencesenstakeholders’ green behavior based on the network analysis.
dc.relation.referencesenJournal of Cleaner Production, (273), 122883. doi:
dc.relation.referencesenhttps://doi.org/10.1016/j.jclepro.2020.122883.
dc.relation.referencesenHe, L., & Chen, L. (2020). The incentive effects of different
dc.relation.referencesengovernment subsidy policies on green buildings. Renewable
dc.relation.referencesenand Sustainable Energy Reviews, 135 (2021), 110123, doi:
dc.relation.referencesenhttps://doi.org/10.1016/j.rser.2020.110123
dc.relation.referencesenHu, M., Suhendri, Zhao, B., Ao, X., Cao, J., Wang, Q., Riffat,
dc.relation.referencesenS., Su, Y., & Pei, G. (2020). Effect of the spectrally selective
dc.relation.referencesenfeatures of the cover and emitter combination on radiative
dc.relation.referencesencooling performance. Energy and Built Environment. doi:
dc.relation.referencesenhttps://doi.org/10.1016/j.enbenv.2020.06.008
dc.relation.referencesenKong, X., Qiao, X., & Yuan, G., (2020). Investigation
dc.relation.referencesenof thermal environment and the associated energy
dc.relation.referencesenconsumption of transportation buildings along the
dc.relation.referencesenexpressways in the cold region of China: A case study.
dc.relation.referencesenEnergy and Built Environment, (1), 278–287. doi:
dc.relation.referencesenhttps://doi.org/10.1016/j.enbenv.2020.03.004
dc.relation.referencesenLi, B., You, L., Zheng, M., Wang, Y., & Wang, Z. (2020).
dc.relation.referencesenEnergy consumption pattern and indoor thermal
dc.relation.referencesenenvironment of residential building in rural China. Energy
dc.relation.referencesenand Built Environment, (1), 327–336. doi: https://doi.org/10.1016/j.enbenv.2020.04.004
dc.relation.referencesenMurga, A., Long, Z., Yoo, S.-J., Sumiyoshi, E., & Ito, K.
dc.relation.referencesen(2020). Decreasing inhaled contaminant dose of a factory
dc.relation.referencesenworker through a hybrid Emergency Ventilation System:
dc.relation.referencesenPerformance evaluation in worst-case scenario. Energy and
dc.relation.referencesenBuilt Environment, (1), 319–326. doi: https://doi.org/10.1016/j.enbenv.2020.04.007
dc.relation.referencesenNorouzi, N., & Kalantari, G. (2020). The sun food-water-energy
dc.relation.referencesennexus governance model a case study for Iran. Water-
dc.relation.referencesenEnergy Nexus, (3), 72–80. doi: https://doi.org/10.1016/j.wen.2020.05.005
dc.relation.referencesenNorouzi, N., Fani, M., & Nasiri, Z. (2021). The development of
dc.relation.referencesena Nexus based green architecture ranking system in Iran.
dc.relation.referencesenCivil Engineering Beyond Limits (CEBEL), 2(2).
dc.relation.referencesenNorouzi, N., & Soori, M. (2020). Energy, environment, water,
dc.relation.referencesenand land-use nexus based evaluation of the global green
dc.relation.referencesenbuilding standards. Water-Energy Nexus, (3), 209–224.
dc.relation.referencesenPorumb, V.-A., Maier, G., & Anghel, I. (2020). The impact of
dc.relation.referencesenbuilding location on green certification price premiums:
dc.relation.referencesenEvidence from three European countries, Journal of
dc.relation.referencesenCleaner Production, (2720), 122080. doi: https://doi.org/10.1016/j.jclepro.2020.122080
dc.relation.referencesenReed, R., Bilos, A., Wilkinson, S., & Schulte, K. W. (2009).
dc.relation.referencesenInternational comparison of sustainable rating tools. JOSRE
dc.relation.referencesenJ. 1, 1–22.
dc.relation.referencesenSussman, E. (2008). Reshaping Municipal and County Laws to
dc.relation.referencesenFoster Green Building, Energy Efficiency and Renewable
dc.relation.referencesenEnergy. 16 NY U. ENVTL. LJ 1, 8.
dc.relation.referencesenWang, L., & Zheng, D. (2020). Integrated analysis of energy,
dc.relation.referencesenindoor environment, and occupant satisfaction in green
dc.relation.referencesenbuildings using real-time monitoring data and on-site
dc.relation.referenceseninvestigation. Building and Environment, 182, 107014. doi:
dc.relation.referencesenhttps://doi.org/10.1016/j.buildenv.2020.107014.
dc.relation.referencesenWu, X., Lin, B., Papachristos, G., Liu, P., & Zimmermann, N.
dc.relation.referencesen(2020). A holistic approach to evaluate building
dc.relation.referencesenperformance gap of green office buildings: A case study in
dc.relation.referencesenChina. Building and Environment, (175), 106819. doi:
dc.relation.referencesenhttps://doi.org/10.1016/j.buildenv.2020.106819
dc.relation.referencesenYadegaridehkordi, E., Hourmand, M., Nilashi, M., Alsolami, E.,
dc.relation.referencesenSamad, S., Mahmoud, M., Alarood, A. A., Zainol, A.,
dc.relation.referencesenMajeed, H. D., & Shuib, L. (2020). Assessment of
dc.relation.referencesenSustainability Indicators for Green Building Manufacturing
dc.relation.referencesenUsing Fuzzy Multi-Criteria Decision Making Approach.
dc.relation.referencesenJournal of Cleaner Production, 122905. doi: https://doi.org/10.1016/j.jclepro.2020.122905.
dc.relation.referencesenZhilei, L., Chow, D. H. C., De, D., Jia, Y., Yingjian, H., Hong,
dc.relation.referencesenC., & Wei, Z. (2020). The Development and Realisation of
dc.relation.referencesena Multi-Faceted System for Green Building Planning: A
dc.relation.referencesenCase in Ningbo Using the Fuzzy Analytical Hierarchy
dc.relation.referencesenProcess. Energy and Buildings, 110371. doi: https://doi.org/10.1016/j.enbuild.2020.110371
dc.relation.urihttps://doi.org/10.1016/j.sciaf.2020.e00424
dc.relation.urihttps://doi.org/10.1016/j.enbenv.2020.06.004
dc.relation.urihttps://doi.org/10.1016/j.enbenv.2019.11.005
dc.relation.urihttps://doi.org/10.1016/j.enbenv.2020.07.006
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2020.120749
dc.relation.urihttp://personal.anderson.ucla.edu/charles.corbett/papers/diffusion_green_building.pdf
dc.relation.urihttps://doi.org/10.1016/j.enpol.2018.04.054
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2020.122895
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2020.122883
dc.relation.urihttps://doi.org/10.1016/j.rser.2020.110123
dc.relation.urihttps://doi.org/10.1016/j.enbenv.2020.06.008
dc.relation.urihttps://doi.org/10.1016/j.enbenv.2020.03.004
dc.relation.urihttps://doi.org/10.1016/j.enbenv.2020.04.004
dc.relation.urihttps://doi.org/10.1016/j.enbenv.2020.04.007
dc.relation.urihttps://doi.org/10.1016/j.wen.2020.05.005
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2020.122080
dc.relation.urihttps://doi.org/10.1016/j.buildenv.2020.107014
dc.relation.urihttps://doi.org/10.1016/j.buildenv.2020.106819
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2020.122905
dc.relation.urihttps://doi.org/10.1016/j.enbuild.2020.110371
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.rights.holder© Norouzi N., Nasiri Z., 2021
dc.subjectsustainable built environment
dc.subjectgreen architecture
dc.subjectgreen building
dc.subjectgreen standards
dc.titleConfusing problem of green architecture and false green architecture in mena region
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2021v1n6_Norouzi_N-Confusing_problem_of_green_48-58.pdf
Size:
326.25 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2021v1n6_Norouzi_N-Confusing_problem_of_green_48-58__COVER.png
Size:
390.27 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Plain Text
Description: