Гідрогелеві мембрани на основі копілімерів 2-гідроксіетилметакрилату з полівінілпіролідоном, модифіковані монтморилонітом і наночастинками срібла

dc.citation.epage144
dc.citation.issue2
dc.citation.journalTitleChemistry, Technology and Application of Substances
dc.citation.spage139
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationУніверситет Йоганна Кеплера
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationJohannes Kepler University Linz
dc.contributor.authorМельник, Ю. Я.
dc.contributor.authorІванух, О. О.
dc.contributor.authorСеменюк, Н. Б.
dc.contributor.authorКостенко, М. Б.
dc.contributor.authorСкорохода, В. Й.
dc.contributor.authorMelnyk, Y. Y.
dc.contributor.authorIvanukh, O. O.
dc.contributor.authorSemenyuk, N. B.
dc.contributor.authorKostenko, M. B.
dc.contributor.authorSkorokhoda, V. Y.
dc.coverage.placenameLviv
dc.coverage.placenameLviv
dc.date.accessioned2025-03-05T08:12:27Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractСинтезовано гідрогелеві мембрани на основі кополімерів 2-гідроксіетилметакрилату з полівінілпіролідоном, модифіковані неорганічними додатками. Досліджено вплив монтморилоніту та наночастинок срібла на властивості композиційних гідрогелевих мембран. Встановлено, що монтморилоніт покращує механічні властивості мембран, але незначно зменшує їхню проникність. Запропоновано хімізм реакції відновлення срібла з його солей із використанням полівінілпіролідону як відновника та стабілізатора. Підтверджено перспективність використання синтезованих гідрогелевих мембран, які містять спеціальні додатки, для виготовлення матеріалів біомедичного призначення з антибактеріальними властивостями.
dc.description.abstractHydrogel membranes based on copolymers of 2-hydroxyethyl methacrylate with polyvinylpyrrolidone, modified with inorganic additives were synthesized. The influence of montmorillonite and silver on the properties of synthesized composite hydrogel membranes was studied. It was established that montmorillonite improves the mechanical properties of membranes, but slightly reduces their permeability. The chemistry of the recovery reaction of silver from its salts using polyvinylpyrrolidone as a reducing agent and stabilizer is proposed. The conducted studies confirmed the prospects of using synthesized hydrogels based on HEMA/PVP copolymers which contain special additives for the marking of biomedical materials with antibacterial properties.
dc.format.extent139-144
dc.format.pages6
dc.identifier.citationГідрогелеві мембрани на основі копілімерів 2-гідроксіетилметакрилату з полівінілпіролідоном, модифіковані монтморилонітом і наночастинками срібла / Ю. Я. Мельник, О. О. Іванух, Н. Б. Семенюк, М. Б. Костенко, В. Й. Скорохода // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Том 6. — № 2. — С. 139–144.
dc.identifier.citationenHydrogel membranes based on copolymers of 2-hydroxyethyl methacrylate with polyvinylpyrrolidone modified with montmorillonite and silver nanoparticles / Y. Y. Melnyk, O. O. Ivanukh, N. B. Semenyuk, M. B. Kostenko, V. Y. Skorokhoda // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 6. — No 2. — P. 139–144.
dc.identifier.doidoi.org/10.23939/ctas2023.02.139
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63675
dc.language.isouk
dc.publisherLviv Politechnic Publishing House
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (6), 2023
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (6), 2023
dc.relation.references1. Can, V., Abdurrahmanoglu, S., Okay, O. (2007). Unusual swelling behavior of polymer-clay nanocomposite hydrogels. Polymer, 48(17), 5016-5023. doi: 10.1016/j.polymer.2007.06.066 https://doi.org/10.1016/j.polymer.2007.06.066
dc.relation.references2. Rose, S., Dizeux, A., Narita, T., Hourdet, D., Marcellan, A. (2013). Time Dependence of Dissipative and Recovery Processes in Nanohybrid Hydrogels. Macromolecules, 46(10), 4095-4104. doi: 10.1021/ma400447j https://doi.org/10.1021/ma400447j
dc.relation.references3. Mohan, Y. M., Lee, K., Premkumar, T., Geckeler, K. E. (2007). Hydrogel networks as nanoreactors: A novel approach to silver nanoparticles for antibacterial applications. Polymer, 48(1), 158-164. doi: 10.1016/j.polymer.2006.10.045 https://doi.org/10.1016/j.polymer.2006.10.045
dc.relation.references4. Haraguchi, K., Li, H., Matsuda, K., Takehisa T., Elliott, E. (2005). Mechanism of Forming Organic/Inorganic Network Structures during In-situ Free-Radical Polymerization in PNIPA−Clay Nanocomposite Hydrogels. Macromolecules, 38(8), 3482-3490. doi: 10.1021/ma047431c https://doi.org/10.1021/ma047431c
dc.relation.references5. Suberlyak, O., Melnyk, Y., Skorokhoda, V. (2015). Regularities of preparation and properties of hydrogel membranes. Materials Science, 50(6), 889-896. doi: 10.1007 / s11003-015-9798-8 https://doi.org/10.1007/s11003-015-9798-8
dc.relation.references6. Melnyk, Y., Stetsyshyn, Y., Skorokhoda, V., Nastishin, Y. (2020). Polyvinylpyrrolidone-graft-poly(2-hydroxyethylmethacrylate) hydrogel membranes for encapsulated forms of drugs. Journal of Polymer Research, 27(11), 1-11, 354. doi: 10.1007/s10965-020-023335-7 https://doi.org/10.1007/s10965-020-02335-7
dc.relation.references7. Yang, Q., Adrus, N., Tomicki, F., Ulbricht, M. (2011). Composites of functional polymeric hydrogels and porous membranes, Journal of Materials Chemistry, 21(9), 2783-2811. doi: 10.1039/c0jm02234a https://doi.org/10.1039/C0JM02234A
dc.relation.references8. Skorokhoda, V. Y., Melnyk, Y. Y., Shalata, V. Y., Skorokhoda, T. V., Suberliak, S. A. (2017). An investigation of obtaining patterns, structure and diffusion properties of biomedical purpose hydrogel membranes. Eastern-European Journal of Enterprise Technologies, 1, 6(85), 50-55. doi: 10.15587/1729-4061.2017.92368 https://doi.org/10.15587/1729-4061.2017.92368
dc.relation.references9. Liu, p., Zhang, l. (2007). Adsorption of dyes from aqueous solutions or suspensions with clay nano-adsorbents, Separation and Purification Technology, 2007, 58(1): 32-39. doi: 10.1016/j.seppur.2007.07.007 https://doi.org/10.1016/j.seppur.2007.07.007
dc.relation.references10. Meng, N., Zhou, N.-L., Zhang, S.-Q., Shen, J. (2009). Synthesis and antimicrobial activities of polymer/ montmorillonite-chlorhexidine acetate nanocomposite films, Applied Clay Science. 42(3-4), 667-670. doi: 10.1016/j.clay.2008.06.016 https://doi.org/10.1016/j.clay.2008.06.016
dc.relation.references11. Fragal, V. H., Cellet, T. S., Pereira, G. M., Fragal, E. H., Costa, M. A., Nakamura, C. V., Asefa, T., Rubira, A. F., Silva, R. (2016). Covalently-layers of PVA and PAA and in situ formed Ag nanoparticles as versatile antimicrobial surfaces. Intern. Journal of Biol. Macromol, 91, 329-337. doi: 10.1016/j.ijbiomac.2016.05.056 https://doi.org/10.1016/j.ijbiomac.2016.05.056
dc.relation.references12. Rai, M., Yadav, A., Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27(1), 76-83. doi: 10.1016/j.biotechadv.2008.09.002 https://doi.org/10.1016/j.biotechadv.2008.09.002
dc.relation.references13. Zheng, Y., Cai, C., Zhang, F., Monty, J., Linhardt, R. J., Simmons, T. J. (2016). Can natural fibers be a silver bullet? Antibacterial cellulose fibers through the covalent bonding of silver nanoparticles to electrospun fibers. Nanotechnology, 27(5), 055102. doi: 10.1088/0957-4484/27/5/055102 https://doi.org/10.1088/0957-4484/27/5/055102
dc.relation.references14. Tsai, T. T., Huang, T. H., Chang, C. J., Yi-Ju Ho, N., Tseng, Y. T., Chen, C. F. (2017). Antibacterial cellulose paper made with silver-coated gold nanoparticles, Scientific Reports. 7(1), 3155. doi: 10.1038/s41598-017-03357-w https://doi.org/10.1038/s41598-017-03357-w
dc.relation.references15. Dudok H. D., Semenyuk N. B., Skorokhoda V. Y., Melʹnyk YU. YA., Shalata V. YA. (2021). Doslidzhennya zakonomirnostey oderzhannya nanochastynok sribla z vykorystannyam polivinilpirolidonu ta yikh vplyv na funhibakterytsydni vlastyvosti kompozytiv. Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya, 4(1), 237-242. doi: 10.23939/ctas2021.01.237 https://doi.org/10.23939/ctas2021.01.237
dc.relation.references16. Melʹnyk, YU. YA., Kos, P. O., Suberlyak, O. V. (2020). Doslidzhennya kinetyky pryshcheplenoyi polimeryzatsiyi u tonkomu shari 2-hidroksietylmet¬akrylatu z polivinilpirolidonom. Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya, 3(1), 209-213. doi: 10.23939/ctas2020.01.209 https://doi.org/10.23939/ctas2020.01.209
dc.relation.references17. Dubyaga, V. P., Perepechkin, L. P., Katalevskiy, E. E. (1981). Polymer membranes. M.: Khimiya, 232.
dc.relation.references18. Dudok, H. D., Semenyuk, N. B., Skorokhoda, V. Y., Hubriy Z. V. (2022). Vykorystannya polivinilpirolidonu yak vysokoefek¬tyvnoho vidnovnyka ta stabilizatora v reaktsiyakh syntezu nanochastynok sribla. Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya, 5(2), 185-190. doi: 10.23939/ctas2022.02.185 https://doi.org/10.23939/ctas2022.01.185
dc.relation.referencesen1. Can, V., Abdurrahmanoglu, S., Okay, O. (2007). Unusual swelling behavior of polymer-clay nanocomposite hydrogels. Polymer, 48(17), 5016-5023. doi: 10.1016/j.polymer.2007.06.066 https://doi.org/10.1016/j.polymer.2007.06.066
dc.relation.referencesen2. Rose, S., Dizeux, A., Narita, T., Hourdet, D., Marcellan, A. (2013). Time Dependence of Dissipative and Recovery Processes in Nanohybrid Hydrogels. Macromolecules, 46(10), 4095-4104. doi: 10.1021/ma400447j https://doi.org/10.1021/ma400447j
dc.relation.referencesen3. Mohan, Y. M., Lee, K., Premkumar, T., Geckeler, K. E. (2007). Hydrogel networks as nanoreactors: A novel approach to silver nanoparticles for antibacterial applications. Polymer, 48(1), 158-164. doi: 10.1016/j.polymer.2006.10.045 https://doi.org/10.1016/j.polymer.2006.10.045
dc.relation.referencesen4. Haraguchi, K., Li, H., Matsuda, K., Takehisa T., Elliott, E. (2005). Mechanism of Forming Organic/Inorganic Network Structures during In-situ Free-Radical Polymerization in PNIPA−Clay Nanocomposite Hydrogels. Macromolecules, 38(8), 3482-3490. doi: 10.1021/ma047431c https://doi.org/10.1021/ma047431c
dc.relation.referencesen5. Suberlyak, O., Melnyk, Y., Skorokhoda, V. (2015). Regularities of preparation and properties of hydrogel membranes. Materials Science, 50(6), 889-896. doi: 10.1007, s11003-015-9798-8 https://doi.org/10.1007/s11003-015-9798-8
dc.relation.referencesen6. Melnyk, Y., Stetsyshyn, Y., Skorokhoda, V., Nastishin, Y. (2020). Polyvinylpyrrolidone-graft-poly(2-hydroxyethylmethacrylate) hydrogel membranes for encapsulated forms of drugs. Journal of Polymer Research, 27(11), 1-11, 354. doi: 10.1007/s10965-020-023335-7 https://doi.org/10.1007/s10965-020-02335-7
dc.relation.referencesen7. Yang, Q., Adrus, N., Tomicki, F., Ulbricht, M. (2011). Composites of functional polymeric hydrogels and porous membranes, Journal of Materials Chemistry, 21(9), 2783-2811. doi: 10.1039/P.0jm02234a https://doi.org/10.1039/P.0JM02234A
dc.relation.referencesen8. Skorokhoda, V. Y., Melnyk, Y. Y., Shalata, V. Y., Skorokhoda, T. V., Suberliak, S. A. (2017). An investigation of obtaining patterns, structure and diffusion properties of biomedical purpose hydrogel membranes. Eastern-European Journal of Enterprise Technologies, 1, 6(85), 50-55. doi: 10.15587/1729-4061.2017.92368 https://doi.org/10.15587/1729-4061.2017.92368
dc.relation.referencesen9. Liu, p., Zhang, l. (2007). Adsorption of dyes from aqueous solutions or suspensions with clay nano-adsorbents, Separation and Purification Technology, 2007, 58(1): 32-39. doi: 10.1016/j.seppur.2007.07.007 https://doi.org/10.1016/j.seppur.2007.07.007
dc.relation.referencesen10. Meng, N., Zhou, N.-L., Zhang, S.-Q., Shen, J. (2009). Synthesis and antimicrobial activities of polymer/ montmorillonite-chlorhexidine acetate nanocomposite films, Applied Clay Science. 42(3-4), 667-670. doi: 10.1016/j.clay.2008.06.016 https://doi.org/10.1016/j.clay.2008.06.016
dc.relation.referencesen11. Fragal, V. H., Cellet, T. S., Pereira, G. M., Fragal, E. H., Costa, M. A., Nakamura, C. V., Asefa, T., Rubira, A. F., Silva, R. (2016). Covalently-layers of PVA and PAA and in situ formed Ag nanoparticles as versatile antimicrobial surfaces. Intern. Journal of Biol. Macromol, 91, 329-337. doi: 10.1016/j.ijbiomac.2016.05.056 https://doi.org/10.1016/j.ijbiomac.2016.05.056
dc.relation.referencesen12. Rai, M., Yadav, A., Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27(1), 76-83. doi: 10.1016/j.biotechadv.2008.09.002 https://doi.org/10.1016/j.biotechadv.2008.09.002
dc.relation.referencesen13. Zheng, Y., Cai, C., Zhang, F., Monty, J., Linhardt, R. J., Simmons, T. J. (2016). Can natural fibers be a silver bullet? Antibacterial cellulose fibers through the covalent bonding of silver nanoparticles to electrospun fibers. Nanotechnology, 27(5), 055102. doi: 10.1088/0957-4484/27/5/055102 https://doi.org/10.1088/0957-4484/27/5/055102
dc.relation.referencesen14. Tsai, T. T., Huang, T. H., Chang, C. J., Yi-Ju Ho, N., Tseng, Y. T., Chen, C. F. (2017). Antibacterial cellulose paper made with silver-coated gold nanoparticles, Scientific Reports. 7(1), 3155. doi: 10.1038/s41598-017-03357-w https://doi.org/10.1038/s41598-017-03357-w
dc.relation.referencesen15. Dudok H. D., Semenyuk N. B., Skorokhoda V. Y., Melʹnyk YU. YA., Shalata V. YA. (2021). Doslidzhennya zakonomirnostey oderzhannya nanochastynok sribla z vykorystannyam polivinilpirolidonu ta yikh vplyv na funhibakterytsydni vlastyvosti kompozytiv. Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya, 4(1), 237-242. doi: 10.23939/ctas2021.01.237 https://doi.org/10.23939/ctas2021.01.237
dc.relation.referencesen16. Melʹnyk, YU. YA., Kos, P. O., Suberlyak, O. V. (2020). Doslidzhennya kinetyky pryshcheplenoyi polimeryzatsiyi u tonkomu shari 2-hidroksietylmet¬akrylatu z polivinilpirolidonom. Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya, 3(1), 209-213. doi: 10.23939/ctas2020.01.209 https://doi.org/10.23939/ctas2020.01.209
dc.relation.referencesen17. Dubyaga, V. P., Perepechkin, L. P., Katalevskiy, E. E. (1981). Polymer membranes. M., Khimiya, 232.
dc.relation.referencesen18. Dudok, H. D., Semenyuk, N. B., Skorokhoda, V. Y., Hubriy Z. V. (2022). Vykorystannya polivinilpirolidonu yak vysokoefek¬tyvnoho vidnovnyka ta stabilizatora v reaktsiyakh syntezu nanochastynok sribla. Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya, 5(2), 185-190. doi: 10.23939/ctas2022.02.185 https://doi.org/10.23939/ctas2022.01.185
dc.relation.urihttps://doi.org/10.1016/j.polymer.2007.06.066
dc.relation.urihttps://doi.org/10.1021/ma400447j
dc.relation.urihttps://doi.org/10.1016/j.polymer.2006.10.045
dc.relation.urihttps://doi.org/10.1021/ma047431c
dc.relation.urihttps://doi.org/10.1007/s11003-015-9798-8
dc.relation.urihttps://doi.org/10.1007/s10965-020-02335-7
dc.relation.urihttps://doi.org/10.1039/C0JM02234A
dc.relation.urihttps://doi.org/10.15587/1729-4061.2017.92368
dc.relation.urihttps://doi.org/10.1016/j.seppur.2007.07.007
dc.relation.urihttps://doi.org/10.1016/j.clay.2008.06.016
dc.relation.urihttps://doi.org/10.1016/j.ijbiomac.2016.05.056
dc.relation.urihttps://doi.org/10.1016/j.biotechadv.2008.09.002
dc.relation.urihttps://doi.org/10.1088/0957-4484/27/5/055102
dc.relation.urihttps://doi.org/10.1038/s41598-017-03357-w
dc.relation.urihttps://doi.org/10.23939/ctas2021.01.237
dc.relation.urihttps://doi.org/10.23939/ctas2020.01.209
dc.relation.urihttps://doi.org/10.23939/ctas2022.01.185
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectгідрогелева мембрана
dc.subject2-гідроксіетилметакрилат
dc.subjectполівінілпіролідон
dc.subjectмонтморилоніт
dc.subjectнаночастинки срібла
dc.subjecthydrogel membrane
dc.subject2-hydroxyethyl methacrylate
dc.subjectpolyvinylpyrrolidone
dc.subjectmontmorillonite
dc.subjectsilver nanoparticles
dc.titleГідрогелеві мембрани на основі копілімерів 2-гідроксіетилметакрилату з полівінілпіролідоном, модифіковані монтморилонітом і наночастинками срібла
dc.title.alternativeHydrogel membranes based on copolymers of 2-hydroxyethyl methacrylate with polyvinylpyrrolidone modified with montmorillonite and silver nanoparticles
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v6n2_Melnyk_Y_Y-Hydrogel_membranes_based_139-144.pdf
Size:
752.11 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v6n2_Melnyk_Y_Y-Hydrogel_membranes_based_139-144__COVER.png
Size:
464.07 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.92 KB
Format:
Plain Text
Description: