Гідрогелеві мембрани на основі копілімерів 2-гідроксіетилметакрилату з полівінілпіролідоном, модифіковані монтморилонітом і наночастинками срібла
dc.citation.epage | 144 | |
dc.citation.issue | 2 | |
dc.citation.journalTitle | Chemistry, Technology and Application of Substances | |
dc.citation.spage | 139 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Університет Йоганна Кеплера | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.affiliation | Johannes Kepler University Linz | |
dc.contributor.author | Мельник, Ю. Я. | |
dc.contributor.author | Іванух, О. О. | |
dc.contributor.author | Семенюк, Н. Б. | |
dc.contributor.author | Костенко, М. Б. | |
dc.contributor.author | Скорохода, В. Й. | |
dc.contributor.author | Melnyk, Y. Y. | |
dc.contributor.author | Ivanukh, O. O. | |
dc.contributor.author | Semenyuk, N. B. | |
dc.contributor.author | Kostenko, M. B. | |
dc.contributor.author | Skorokhoda, V. Y. | |
dc.coverage.placename | Lviv | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-05T08:12:27Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Синтезовано гідрогелеві мембрани на основі кополімерів 2-гідроксіетилметакрилату з полівінілпіролідоном, модифіковані неорганічними додатками. Досліджено вплив монтморилоніту та наночастинок срібла на властивості композиційних гідрогелевих мембран. Встановлено, що монтморилоніт покращує механічні властивості мембран, але незначно зменшує їхню проникність. Запропоновано хімізм реакції відновлення срібла з його солей із використанням полівінілпіролідону як відновника та стабілізатора. Підтверджено перспективність використання синтезованих гідрогелевих мембран, які містять спеціальні додатки, для виготовлення матеріалів біомедичного призначення з антибактеріальними властивостями. | |
dc.description.abstract | Hydrogel membranes based on copolymers of 2-hydroxyethyl methacrylate with polyvinylpyrrolidone, modified with inorganic additives were synthesized. The influence of montmorillonite and silver on the properties of synthesized composite hydrogel membranes was studied. It was established that montmorillonite improves the mechanical properties of membranes, but slightly reduces their permeability. The chemistry of the recovery reaction of silver from its salts using polyvinylpyrrolidone as a reducing agent and stabilizer is proposed. The conducted studies confirmed the prospects of using synthesized hydrogels based on HEMA/PVP copolymers which contain special additives for the marking of biomedical materials with antibacterial properties. | |
dc.format.extent | 139-144 | |
dc.format.pages | 6 | |
dc.identifier.citation | Гідрогелеві мембрани на основі копілімерів 2-гідроксіетилметакрилату з полівінілпіролідоном, модифіковані монтморилонітом і наночастинками срібла / Ю. Я. Мельник, О. О. Іванух, Н. Б. Семенюк, М. Б. Костенко, В. Й. Скорохода // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Том 6. — № 2. — С. 139–144. | |
dc.identifier.citationen | Hydrogel membranes based on copolymers of 2-hydroxyethyl methacrylate with polyvinylpyrrolidone modified with montmorillonite and silver nanoparticles / Y. Y. Melnyk, O. O. Ivanukh, N. B. Semenyuk, M. B. Kostenko, V. Y. Skorokhoda // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 6. — No 2. — P. 139–144. | |
dc.identifier.doi | doi.org/10.23939/ctas2023.02.139 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/63675 | |
dc.language.iso | uk | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 2 (6), 2023 | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 2 (6), 2023 | |
dc.relation.references | 1. Can, V., Abdurrahmanoglu, S., Okay, O. (2007). Unusual swelling behavior of polymer-clay nanocomposite hydrogels. Polymer, 48(17), 5016-5023. doi: 10.1016/j.polymer.2007.06.066 https://doi.org/10.1016/j.polymer.2007.06.066 | |
dc.relation.references | 2. Rose, S., Dizeux, A., Narita, T., Hourdet, D., Marcellan, A. (2013). Time Dependence of Dissipative and Recovery Processes in Nanohybrid Hydrogels. Macromolecules, 46(10), 4095-4104. doi: 10.1021/ma400447j https://doi.org/10.1021/ma400447j | |
dc.relation.references | 3. Mohan, Y. M., Lee, K., Premkumar, T., Geckeler, K. E. (2007). Hydrogel networks as nanoreactors: A novel approach to silver nanoparticles for antibacterial applications. Polymer, 48(1), 158-164. doi: 10.1016/j.polymer.2006.10.045 https://doi.org/10.1016/j.polymer.2006.10.045 | |
dc.relation.references | 4. Haraguchi, K., Li, H., Matsuda, K., Takehisa T., Elliott, E. (2005). Mechanism of Forming Organic/Inorganic Network Structures during In-situ Free-Radical Polymerization in PNIPA−Clay Nanocomposite Hydrogels. Macromolecules, 38(8), 3482-3490. doi: 10.1021/ma047431c https://doi.org/10.1021/ma047431c | |
dc.relation.references | 5. Suberlyak, O., Melnyk, Y., Skorokhoda, V. (2015). Regularities of preparation and properties of hydrogel membranes. Materials Science, 50(6), 889-896. doi: 10.1007 / s11003-015-9798-8 https://doi.org/10.1007/s11003-015-9798-8 | |
dc.relation.references | 6. Melnyk, Y., Stetsyshyn, Y., Skorokhoda, V., Nastishin, Y. (2020). Polyvinylpyrrolidone-graft-poly(2-hydroxyethylmethacrylate) hydrogel membranes for encapsulated forms of drugs. Journal of Polymer Research, 27(11), 1-11, 354. doi: 10.1007/s10965-020-023335-7 https://doi.org/10.1007/s10965-020-02335-7 | |
dc.relation.references | 7. Yang, Q., Adrus, N., Tomicki, F., Ulbricht, M. (2011). Composites of functional polymeric hydrogels and porous membranes, Journal of Materials Chemistry, 21(9), 2783-2811. doi: 10.1039/c0jm02234a https://doi.org/10.1039/C0JM02234A | |
dc.relation.references | 8. Skorokhoda, V. Y., Melnyk, Y. Y., Shalata, V. Y., Skorokhoda, T. V., Suberliak, S. A. (2017). An investigation of obtaining patterns, structure and diffusion properties of biomedical purpose hydrogel membranes. Eastern-European Journal of Enterprise Technologies, 1, 6(85), 50-55. doi: 10.15587/1729-4061.2017.92368 https://doi.org/10.15587/1729-4061.2017.92368 | |
dc.relation.references | 9. Liu, p., Zhang, l. (2007). Adsorption of dyes from aqueous solutions or suspensions with clay nano-adsorbents, Separation and Purification Technology, 2007, 58(1): 32-39. doi: 10.1016/j.seppur.2007.07.007 https://doi.org/10.1016/j.seppur.2007.07.007 | |
dc.relation.references | 10. Meng, N., Zhou, N.-L., Zhang, S.-Q., Shen, J. (2009). Synthesis and antimicrobial activities of polymer/ montmorillonite-chlorhexidine acetate nanocomposite films, Applied Clay Science. 42(3-4), 667-670. doi: 10.1016/j.clay.2008.06.016 https://doi.org/10.1016/j.clay.2008.06.016 | |
dc.relation.references | 11. Fragal, V. H., Cellet, T. S., Pereira, G. M., Fragal, E. H., Costa, M. A., Nakamura, C. V., Asefa, T., Rubira, A. F., Silva, R. (2016). Covalently-layers of PVA and PAA and in situ formed Ag nanoparticles as versatile antimicrobial surfaces. Intern. Journal of Biol. Macromol, 91, 329-337. doi: 10.1016/j.ijbiomac.2016.05.056 https://doi.org/10.1016/j.ijbiomac.2016.05.056 | |
dc.relation.references | 12. Rai, M., Yadav, A., Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27(1), 76-83. doi: 10.1016/j.biotechadv.2008.09.002 https://doi.org/10.1016/j.biotechadv.2008.09.002 | |
dc.relation.references | 13. Zheng, Y., Cai, C., Zhang, F., Monty, J., Linhardt, R. J., Simmons, T. J. (2016). Can natural fibers be a silver bullet? Antibacterial cellulose fibers through the covalent bonding of silver nanoparticles to electrospun fibers. Nanotechnology, 27(5), 055102. doi: 10.1088/0957-4484/27/5/055102 https://doi.org/10.1088/0957-4484/27/5/055102 | |
dc.relation.references | 14. Tsai, T. T., Huang, T. H., Chang, C. J., Yi-Ju Ho, N., Tseng, Y. T., Chen, C. F. (2017). Antibacterial cellulose paper made with silver-coated gold nanoparticles, Scientific Reports. 7(1), 3155. doi: 10.1038/s41598-017-03357-w https://doi.org/10.1038/s41598-017-03357-w | |
dc.relation.references | 15. Dudok H. D., Semenyuk N. B., Skorokhoda V. Y., Melʹnyk YU. YA., Shalata V. YA. (2021). Doslidzhennya zakonomirnostey oderzhannya nanochastynok sribla z vykorystannyam polivinilpirolidonu ta yikh vplyv na funhibakterytsydni vlastyvosti kompozytiv. Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya, 4(1), 237-242. doi: 10.23939/ctas2021.01.237 https://doi.org/10.23939/ctas2021.01.237 | |
dc.relation.references | 16. Melʹnyk, YU. YA., Kos, P. O., Suberlyak, O. V. (2020). Doslidzhennya kinetyky pryshcheplenoyi polimeryzatsiyi u tonkomu shari 2-hidroksietylmet¬akrylatu z polivinilpirolidonom. Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya, 3(1), 209-213. doi: 10.23939/ctas2020.01.209 https://doi.org/10.23939/ctas2020.01.209 | |
dc.relation.references | 17. Dubyaga, V. P., Perepechkin, L. P., Katalevskiy, E. E. (1981). Polymer membranes. M.: Khimiya, 232. | |
dc.relation.references | 18. Dudok, H. D., Semenyuk, N. B., Skorokhoda, V. Y., Hubriy Z. V. (2022). Vykorystannya polivinilpirolidonu yak vysokoefek¬tyvnoho vidnovnyka ta stabilizatora v reaktsiyakh syntezu nanochastynok sribla. Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya, 5(2), 185-190. doi: 10.23939/ctas2022.02.185 https://doi.org/10.23939/ctas2022.01.185 | |
dc.relation.referencesen | 1. Can, V., Abdurrahmanoglu, S., Okay, O. (2007). Unusual swelling behavior of polymer-clay nanocomposite hydrogels. Polymer, 48(17), 5016-5023. doi: 10.1016/j.polymer.2007.06.066 https://doi.org/10.1016/j.polymer.2007.06.066 | |
dc.relation.referencesen | 2. Rose, S., Dizeux, A., Narita, T., Hourdet, D., Marcellan, A. (2013). Time Dependence of Dissipative and Recovery Processes in Nanohybrid Hydrogels. Macromolecules, 46(10), 4095-4104. doi: 10.1021/ma400447j https://doi.org/10.1021/ma400447j | |
dc.relation.referencesen | 3. Mohan, Y. M., Lee, K., Premkumar, T., Geckeler, K. E. (2007). Hydrogel networks as nanoreactors: A novel approach to silver nanoparticles for antibacterial applications. Polymer, 48(1), 158-164. doi: 10.1016/j.polymer.2006.10.045 https://doi.org/10.1016/j.polymer.2006.10.045 | |
dc.relation.referencesen | 4. Haraguchi, K., Li, H., Matsuda, K., Takehisa T., Elliott, E. (2005). Mechanism of Forming Organic/Inorganic Network Structures during In-situ Free-Radical Polymerization in PNIPA−Clay Nanocomposite Hydrogels. Macromolecules, 38(8), 3482-3490. doi: 10.1021/ma047431c https://doi.org/10.1021/ma047431c | |
dc.relation.referencesen | 5. Suberlyak, O., Melnyk, Y., Skorokhoda, V. (2015). Regularities of preparation and properties of hydrogel membranes. Materials Science, 50(6), 889-896. doi: 10.1007, s11003-015-9798-8 https://doi.org/10.1007/s11003-015-9798-8 | |
dc.relation.referencesen | 6. Melnyk, Y., Stetsyshyn, Y., Skorokhoda, V., Nastishin, Y. (2020). Polyvinylpyrrolidone-graft-poly(2-hydroxyethylmethacrylate) hydrogel membranes for encapsulated forms of drugs. Journal of Polymer Research, 27(11), 1-11, 354. doi: 10.1007/s10965-020-023335-7 https://doi.org/10.1007/s10965-020-02335-7 | |
dc.relation.referencesen | 7. Yang, Q., Adrus, N., Tomicki, F., Ulbricht, M. (2011). Composites of functional polymeric hydrogels and porous membranes, Journal of Materials Chemistry, 21(9), 2783-2811. doi: 10.1039/P.0jm02234a https://doi.org/10.1039/P.0JM02234A | |
dc.relation.referencesen | 8. Skorokhoda, V. Y., Melnyk, Y. Y., Shalata, V. Y., Skorokhoda, T. V., Suberliak, S. A. (2017). An investigation of obtaining patterns, structure and diffusion properties of biomedical purpose hydrogel membranes. Eastern-European Journal of Enterprise Technologies, 1, 6(85), 50-55. doi: 10.15587/1729-4061.2017.92368 https://doi.org/10.15587/1729-4061.2017.92368 | |
dc.relation.referencesen | 9. Liu, p., Zhang, l. (2007). Adsorption of dyes from aqueous solutions or suspensions with clay nano-adsorbents, Separation and Purification Technology, 2007, 58(1): 32-39. doi: 10.1016/j.seppur.2007.07.007 https://doi.org/10.1016/j.seppur.2007.07.007 | |
dc.relation.referencesen | 10. Meng, N., Zhou, N.-L., Zhang, S.-Q., Shen, J. (2009). Synthesis and antimicrobial activities of polymer/ montmorillonite-chlorhexidine acetate nanocomposite films, Applied Clay Science. 42(3-4), 667-670. doi: 10.1016/j.clay.2008.06.016 https://doi.org/10.1016/j.clay.2008.06.016 | |
dc.relation.referencesen | 11. Fragal, V. H., Cellet, T. S., Pereira, G. M., Fragal, E. H., Costa, M. A., Nakamura, C. V., Asefa, T., Rubira, A. F., Silva, R. (2016). Covalently-layers of PVA and PAA and in situ formed Ag nanoparticles as versatile antimicrobial surfaces. Intern. Journal of Biol. Macromol, 91, 329-337. doi: 10.1016/j.ijbiomac.2016.05.056 https://doi.org/10.1016/j.ijbiomac.2016.05.056 | |
dc.relation.referencesen | 12. Rai, M., Yadav, A., Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27(1), 76-83. doi: 10.1016/j.biotechadv.2008.09.002 https://doi.org/10.1016/j.biotechadv.2008.09.002 | |
dc.relation.referencesen | 13. Zheng, Y., Cai, C., Zhang, F., Monty, J., Linhardt, R. J., Simmons, T. J. (2016). Can natural fibers be a silver bullet? Antibacterial cellulose fibers through the covalent bonding of silver nanoparticles to electrospun fibers. Nanotechnology, 27(5), 055102. doi: 10.1088/0957-4484/27/5/055102 https://doi.org/10.1088/0957-4484/27/5/055102 | |
dc.relation.referencesen | 14. Tsai, T. T., Huang, T. H., Chang, C. J., Yi-Ju Ho, N., Tseng, Y. T., Chen, C. F. (2017). Antibacterial cellulose paper made with silver-coated gold nanoparticles, Scientific Reports. 7(1), 3155. doi: 10.1038/s41598-017-03357-w https://doi.org/10.1038/s41598-017-03357-w | |
dc.relation.referencesen | 15. Dudok H. D., Semenyuk N. B., Skorokhoda V. Y., Melʹnyk YU. YA., Shalata V. YA. (2021). Doslidzhennya zakonomirnostey oderzhannya nanochastynok sribla z vykorystannyam polivinilpirolidonu ta yikh vplyv na funhibakterytsydni vlastyvosti kompozytiv. Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya, 4(1), 237-242. doi: 10.23939/ctas2021.01.237 https://doi.org/10.23939/ctas2021.01.237 | |
dc.relation.referencesen | 16. Melʹnyk, YU. YA., Kos, P. O., Suberlyak, O. V. (2020). Doslidzhennya kinetyky pryshcheplenoyi polimeryzatsiyi u tonkomu shari 2-hidroksietylmet¬akrylatu z polivinilpirolidonom. Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya, 3(1), 209-213. doi: 10.23939/ctas2020.01.209 https://doi.org/10.23939/ctas2020.01.209 | |
dc.relation.referencesen | 17. Dubyaga, V. P., Perepechkin, L. P., Katalevskiy, E. E. (1981). Polymer membranes. M., Khimiya, 232. | |
dc.relation.referencesen | 18. Dudok, H. D., Semenyuk, N. B., Skorokhoda, V. Y., Hubriy Z. V. (2022). Vykorystannya polivinilpirolidonu yak vysokoefek¬tyvnoho vidnovnyka ta stabilizatora v reaktsiyakh syntezu nanochastynok sribla. Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya, 5(2), 185-190. doi: 10.23939/ctas2022.02.185 https://doi.org/10.23939/ctas2022.01.185 | |
dc.relation.uri | https://doi.org/10.1016/j.polymer.2007.06.066 | |
dc.relation.uri | https://doi.org/10.1021/ma400447j | |
dc.relation.uri | https://doi.org/10.1016/j.polymer.2006.10.045 | |
dc.relation.uri | https://doi.org/10.1021/ma047431c | |
dc.relation.uri | https://doi.org/10.1007/s11003-015-9798-8 | |
dc.relation.uri | https://doi.org/10.1007/s10965-020-02335-7 | |
dc.relation.uri | https://doi.org/10.1039/C0JM02234A | |
dc.relation.uri | https://doi.org/10.15587/1729-4061.2017.92368 | |
dc.relation.uri | https://doi.org/10.1016/j.seppur.2007.07.007 | |
dc.relation.uri | https://doi.org/10.1016/j.clay.2008.06.016 | |
dc.relation.uri | https://doi.org/10.1016/j.ijbiomac.2016.05.056 | |
dc.relation.uri | https://doi.org/10.1016/j.biotechadv.2008.09.002 | |
dc.relation.uri | https://doi.org/10.1088/0957-4484/27/5/055102 | |
dc.relation.uri | https://doi.org/10.1038/s41598-017-03357-w | |
dc.relation.uri | https://doi.org/10.23939/ctas2021.01.237 | |
dc.relation.uri | https://doi.org/10.23939/ctas2020.01.209 | |
dc.relation.uri | https://doi.org/10.23939/ctas2022.01.185 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.subject | гідрогелева мембрана | |
dc.subject | 2-гідроксіетилметакрилат | |
dc.subject | полівінілпіролідон | |
dc.subject | монтморилоніт | |
dc.subject | наночастинки срібла | |
dc.subject | hydrogel membrane | |
dc.subject | 2-hydroxyethyl methacrylate | |
dc.subject | polyvinylpyrrolidone | |
dc.subject | montmorillonite | |
dc.subject | silver nanoparticles | |
dc.title | Гідрогелеві мембрани на основі копілімерів 2-гідроксіетилметакрилату з полівінілпіролідоном, модифіковані монтморилонітом і наночастинками срібла | |
dc.title.alternative | Hydrogel membranes based on copolymers of 2-hydroxyethyl methacrylate with polyvinylpyrrolidone modified with montmorillonite and silver nanoparticles | |
dc.type | Article |
Files
License bundle
1 - 1 of 1