The connection of chemical composition and physical properties in mountain rocks of the Earth's crust and mantle and their dynamic changes under different thermobaric conditions

dc.citation.epage98
dc.citation.issue1(32)
dc.citation.journalTitleГеодинаміка
dc.citation.spage92
dc.contributor.affiliationІнститут геології і геофізики Національної академії наук Азербайджану
dc.contributor.affiliationGeology and Geophysics Institute of Azerbaijan National Academy of Sciences
dc.contributor.authorСафаров, Ібрагім
dc.contributor.authorSafarov, Ibragim
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-07-03T08:11:48Z
dc.date.available2023-07-03T08:11:48Z
dc.date.created2028-02-22
dc.date.issued2028-02-22
dc.description.abstractВизначати фізичні параметри геоматеріалів у високих термобаричних умовах необхідно в зв’язку з фундаментальними проблемами геології і геофізики, а також для вирішення прикладних завдань, де особливо важливим є встановлення зв’язків між фізичними параметрами і хімічними компонентами гірських порід у термобаричних умовах, близьких до умов в надрах Землі. Метою роботи є вивчення особливостей впливу хімічних компонентів на пружні й густинні властивості магматичних і метаморфічних порід континентальної та океанічної літосфери за високих термобаричних умов. Пружні й густинні характеристики порід континентальної та океанічної літосфери визначено ультразвуковим імпульсним методом. Експерименти проводилися в твердофазній установці високого тиску типу циліндрпоршень за методикою, яка передбачає одночасне визначення швидкостей поздовжніх і поперечних хвиль, а також густини під час одного досліду на одному зразку гірських порід у високих термобаричних режимах до 1,5–2,0 ГПа. На підставі експериментального дослідження пружних і густинних властивостей порід континентальної й океанічної літосфери виявлено якісний зв’язок між цими параметрами і хімічним складом зразків в умовах високих термобаричних режимів. Вперше встановлено, що в досліджених гірських породах вплив оксидів на швидкості пружних хвиль, а також на густини залежить від регіонів, тому з підвищенням тиску в одних районах вони збільшуються, а в інших – знижуються. Таке явище пояснюється відмінністю в атомній будові речовини. Виявлено, що в розрізі літосфери швидкості пружних хвиль і густина з глибиною зростають зі зміною хімічного складу гірських порід: від кислого складу до середнього, до основного, і нарешті, ультраосновного складу. Взаємозв’язок хімічного складу гірських порід і мінералів з пружними і густинними властивостями уможливлює прямий пошук твердих корисних копалин.
dc.description.abstractDetermining the physical parameters of geomaterials under high temperature and pressure conditions is necessary in connection with the fundamental issues of geology and geophysics. It is also aimed at solving applied problems, such as establishing relationships between physical parameters and chemical components of rocks under the earthly conditions of temperature and pressure. The purpose of the paper is to study the peculiarities of the influence of chemical components on the elastic and density properties of igneous and metamorphic rocks of the continental and oceanic lithosphere under high temperature and pressure conditions. The elastic and density characteristics of the rocks of the continental and oceanic lithosphere were determined by the ultrasonic pulse method. The experiments were carried out in a high-pressure solid-phase installation of a cylinder-piston type. The technique provides for the simultaneous determination of the longitudinal and transverse waves velocity and density in the course of one experiment on one rock sample at high temperature and pressure conditions up to 1.5–2.0 GPa. Based on an experimental study of the elastic and density properties of the rocks of the continental and oceanic lithosphere, the research revealed a qualitative connection between these parameters and chemical composition of the samples under high temperature and pressure conditions. It is first established that the studied rocks demonstrate regional dependence in the influence of oxides on the elastic wave velocity and density magnitude. Therefore they increase with the growing pressure in some areas, and decrease in others. This phenomenon is explained by the difference in the atomic structure of matter. It was revealed that in the section of the lithosphere, the speed and density of elastic waves increase with depth. Moreover, chemical composition of rocks changes from acid to medium, basic, and, finally, ultrabasic composition. The relationship of the chemical composition of rocks and minerals with elastic and density properties makes it possible to directly search for solid minerals.
dc.format.extent92-98
dc.format.pages7
dc.identifier.citationSafarov I. The connection of chemical composition and physical properties in mountain rocks of the Earth's crust and mantle and their dynamic changes under different thermobaric conditions / Ibragim Safarov // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2022. — No 1(32). — P. 92–98.
dc.identifier.citationenSafarov I. The connection of chemical composition and physical properties in mountain rocks of the Earth's crust and mantle and their dynamic changes under different thermobaric conditions / Ibragim Safarov // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2022. — No 1(32). — P. 92–98.
dc.identifier.doidoi.org/10.23939/jgd2022.02.092
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/59374
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofГеодинаміка, 1(32), 2022
dc.relation.ispartofGeodynamics, 1(32), 2022
dc.relation.referencesAzizbekov, Sh. R., Bagirov, A. R.,Veliev, M. M.,
dc.relation.referencesIsmail-zade, A. D., Yemelyanova, E. N., &
dc.relation.referencesMamedov. M. N. (1979). Geology and volcanism
dc.relation.referencesof Talysh. Baku, Elm, 246 p. (in Russian).
dc.relation.referencesBirch, F. (1960). The velocity of compressional
dc.relation.referenceswaves in rocks to 10 kilobars: 1. Journal of
dc.relation.referencesGeophysical Research, 65(4), 1083-1102.
dc.relation.referenceshttps://doi.org/10.1029/JZ065i004p01083
dc.relation.referencesBoadu, F. K. (2000). Predicting the transport
dc.relation.referencesproperties of fractured rocks from seismic
dc.relation.referencesinformation: numerical experiments. Journal of
dc.relation.referencesapplied geophysics, 44(2-3), 103–113.
dc.relation.referenceshttps://doi.org/10.1016/S0926-9851(99)00020-8
dc.relation.referencesFreund, D. (1992). Ultrasonic compressional and
dc.relation.referencesshear velocities in dry clastic rocks as a function
dc.relation.referencesof porosity, clay content, and confining
dc.relation.referencespressure. Geophysical Journal International, 108(1), 125–135. https://doi.org/10.1111/j.1365-246X.1992.tb00843.x
dc.relation.referencesKahraman, S., & Yeken, T. (2008). Determination of
dc.relation.referencesphysical properties of carbonate rocks from Pwave velocity. Bulletin of Engineering Geology
dc.relation.referencesand the Environment, 67(2), 277–281.
dc.relation.referenceshttps://doi.org/10.1007/s10064-008-0139-0
dc.relation.referencesKhandelwal, M., & Ranjith, P. G. (2010). Correlating
dc.relation.referencesindex properties of rocks with P-wave
dc.relation.referencesmeasurements. Journal of applied geophysics, 71(1), 1–5. https://doi.org/10.1016/j.jappgeo.b2010.01.007
dc.relation.referencesKireenkova, S. M., & Safarov, I. B. (1979). Simultaneous determination of the velocities of longitudinal and transverse waves in rocks at high
dc.relation.referencespressures. Izv. AN SSSR, Physics of the Earth,
dc.relation.referencesNo. 12, 93–98 (in Russian).
dc.relation.referencesKurtuluş, C., Sertçelik, F. A. D. İ. M. E., & Sertçelik, I.
dc.relation.references(2016). Correlating physico-mechanical properties
dc.relation.referencesof intact rocks with P-wave velocity. Acta
dc.relation.referencesGeodaetica et Geophysica, 51(3), 571–582.
dc.relation.referenceshttps://doi.org/10.1007/s40328-015-0145-1.
dc.relation.referencesLutz, B. G. (1975), The chemical composition of the
dc.relation.referencescontinental crust and the upper mantle of the
dc.relation.referencesEarth. Moscow: Science, 167 p.
dc.relation.referencesLutz, B. G. (1980). Geochemistry of oceanic and
dc.relation.referencescontinental magmatism. Moscow, Nedra, 247 p.
dc.relation.referencesMoradian, Z. A., & Behnia, M. (2009). Predicting the
dc.relation.referencesuniaxial compressive strength and static Young’s
dc.relation.referencesmodulus of intact sedimentary rocks using the
dc.relation.referencesultrasonic test. International Journal of Geomechanics, 9(1), 14–19. https://doi.org/10.1061/
dc.relation.references(ASCE)1532-3641(2009)9:1(14)
dc.relation.referencesMushkin, I. V. (1979). Petrology of the upper mantle
dc.relation.referencesof the Southern Tien Shan. Tashkent, Fan, 136 p.
dc.relation.references(in Russian).
dc.relation.referencesDortman, N. B. (1992). Petrophysics. Directory. (In
dc.relation.referencesthree books. The first book. Rocks and useful
dc.relation.referencesminerals (edited by NB Dortman). Moscow,
dc.relation.referencesNedra, 391 p. (in Russian).
dc.relation.referencesPhysicochemical and petrophysical studies in the
dc.relation.referencesEarth sciences (1999). II Int. Conf. Moscow:
dc.relation.referencesScience, 55 p. (in Russian).
dc.relation.referencesSafarov, I. B. (1984). Investigation of the elastic and
dc.relation.referencesdensity properties of rocks and minerals of the
dc.relation.referencesdeep layers of the earth's crust and upper mantle at
dc.relation.referenceshigh thermodynamic conditions. Author's abstract.
dc.relation.referencesCand. diss. M., IFZ AS USSR, 20 p. (in Russian).
dc.relation.referencesSafarov, I. B. (2011). Petrophysical models of
dc.relation.referenceslithospheric plates of continents and oceans. Baku,
dc.relation.referencesElm, 306 p. (in Russian).
dc.relation.referencesSafarov, I. B. ( 2006). Petrophysical characteristics of
dc.relation.referencescrustal and mantle eclogites under high
dc.relation.referencesthermodynamic conditions and their position in
dc.relation.referencesthe Earth's lithosphere. Izv. ANAS, series of Earth
dc.relation.referencesSciences, No. 4, 31–43 (in Russian).
dc.relation.referencesSafarov, I. B. (2003). Anisotropy of elastic properties
dc.relation.referencesat high thermodynamic conditions and petrophysical models of the lithosphere. Author's abstract.
dc.relation.referencesDoct. diss. Baku, IG NANA, 47 p. (in Russian).
dc.relation.referencesSafarov, I. B., & Levykin, A. I. (1992). Device for
dc.relation.referencesdetermining elastic characteristics materials. A.S. 1742710 (USSR), Bull. No. 223 (in Russian).
dc.relation.referencesSafarov, I. B., & Kireenkova, S. M. (1985). Device
dc.relation.referencesfor determining the elastic characteristics of
dc.relation.referencesmaterials – А.С. No. 1183885 (USSR), Bull.
dc.relation.referencesNo 37 (in Russian).
dc.relation.referencesSmorodinov, M. I., Motovilov, E. A., & Volvov, V. A.
dc.relation.references(1970). Determinations of correlation relationships
dc.relation.referencesbetween strength and some physical characteristics
dc.relation.referencesof rocks. In: Proceedings of the second congress
dc.relation.referencesof the international society for rock mechanics,
dc.relation.referencesVol. 2. Belgrade, 35–37.
dc.relation.referencesSmorodinov, M. I. (1966). Determinations of correlation relationships between strength and some
dc.relation.referencesphysical characteristics of rocks. In Proc. of 1st
dc.relation.referencesInt. Congress of ISRM, Lisvbon.
dc.relation.referencesSobolev, V. S., Sobolev, N. V. (1964), Xenoliths in
dc.relation.referencesthe kimberlites of Northern Yakutia and the
dc.relation.referencesstructure of the Earth's mantle. Dokl. AN SSSR,
dc.relation.referencesvol. 158, No. 1 (in Russian).
dc.relation.referencesUdovkina, N. G. (1985), Eclogites of the USSR. M.:
dc.relation.referencesScience, 285 p. (in Russian).
dc.relation.referencesVolarovich, M. P., Bayuk, E. I., Levykin, A. I., &
dc.relation.referencesTomashevskaya, I. S. (1974). Physical properties
dc.relation.referencesof rocks and minerals at high pressures and
dc.relation.referencestemperatures. M.: Science, 223 p. (in Russian).
dc.relation.referencesYasar, E., & Erdogan, Y. (2004). Correlating sound
dc.relation.referencesvelocity with the density, compressive strength
dc.relation.referencesand Young’s modulus of carbonate rocks.
dc.relation.referencesInternational Journal of Rock Mechanics and
dc.relation.referencesMining Sciences, 41(5), 871–875.
dc.relation.referenceshttps://doi.org/10.1016/j.ijrmms.2004.01.012
dc.relation.referencesenAzizbekov, Sh. R., Bagirov, A. R.,Veliev, M. M.,
dc.relation.referencesenIsmail-zade, A. D., Yemelyanova, E. N., &
dc.relation.referencesenMamedov. M. N. (1979). Geology and volcanism
dc.relation.referencesenof Talysh. Baku, Elm, 246 p. (in Russian).
dc.relation.referencesenBirch, F. (1960). The velocity of compressional
dc.relation.referencesenwaves in rocks to 10 kilobars: 1. Journal of
dc.relation.referencesenGeophysical Research, 65(4), 1083-1102.
dc.relation.referencesenhttps://doi.org/10.1029/JZ065i004p01083
dc.relation.referencesenBoadu, F. K. (2000). Predicting the transport
dc.relation.referencesenproperties of fractured rocks from seismic
dc.relation.referenceseninformation: numerical experiments. Journal of
dc.relation.referencesenapplied geophysics, 44(2-3), 103–113.
dc.relation.referencesenhttps://doi.org/10.1016/S0926-9851(99)00020-8
dc.relation.referencesenFreund, D. (1992). Ultrasonic compressional and
dc.relation.referencesenshear velocities in dry clastic rocks as a function
dc.relation.referencesenof porosity, clay content, and confining
dc.relation.referencesenpressure. Geophysical Journal International, 108(1), 125–135. https://doi.org/10.1111/j.1365-246X.1992.tb00843.x
dc.relation.referencesenKahraman, S., & Yeken, T. (2008). Determination of
dc.relation.referencesenphysical properties of carbonate rocks from Pwave velocity. Bulletin of Engineering Geology
dc.relation.referencesenand the Environment, 67(2), 277–281.
dc.relation.referencesenhttps://doi.org/10.1007/s10064-008-0139-0
dc.relation.referencesenKhandelwal, M., & Ranjith, P. G. (2010). Correlating
dc.relation.referencesenindex properties of rocks with P-wave
dc.relation.referencesenmeasurements. Journal of applied geophysics, 71(1), 1–5. https://doi.org/10.1016/j.jappgeo.b2010.01.007
dc.relation.referencesenKireenkova, S. M., & Safarov, I. B. (1979). Simultaneous determination of the velocities of longitudinal and transverse waves in rocks at high
dc.relation.referencesenpressures. Izv. AN SSSR, Physics of the Earth,
dc.relation.referencesenNo. 12, 93–98 (in Russian).
dc.relation.referencesenKurtuluş, C., Sertçelik, F. A. D. İ. M. E., & Sertçelik, I.
dc.relation.referencesen(2016). Correlating physico-mechanical properties
dc.relation.referencesenof intact rocks with P-wave velocity. Acta
dc.relation.referencesenGeodaetica et Geophysica, 51(3), 571–582.
dc.relation.referencesenhttps://doi.org/10.1007/s40328-015-0145-1.
dc.relation.referencesenLutz, B. G. (1975), The chemical composition of the
dc.relation.referencesencontinental crust and the upper mantle of the
dc.relation.referencesenEarth. Moscow: Science, 167 p.
dc.relation.referencesenLutz, B. G. (1980). Geochemistry of oceanic and
dc.relation.referencesencontinental magmatism. Moscow, Nedra, 247 p.
dc.relation.referencesenMoradian, Z. A., & Behnia, M. (2009). Predicting the
dc.relation.referencesenuniaxial compressive strength and static Young’s
dc.relation.referencesenmodulus of intact sedimentary rocks using the
dc.relation.referencesenultrasonic test. International Journal of Geomechanics, 9(1), 14–19. https://doi.org/10.1061/
dc.relation.referencesen(ASCE)1532-3641(2009)9:1(14)
dc.relation.referencesenMushkin, I. V. (1979). Petrology of the upper mantle
dc.relation.referencesenof the Southern Tien Shan. Tashkent, Fan, 136 p.
dc.relation.referencesen(in Russian).
dc.relation.referencesenDortman, N. B. (1992). Petrophysics. Directory. (In
dc.relation.referencesenthree books. The first book. Rocks and useful
dc.relation.referencesenminerals (edited by NB Dortman). Moscow,
dc.relation.referencesenNedra, 391 p. (in Russian).
dc.relation.referencesenPhysicochemical and petrophysical studies in the
dc.relation.referencesenEarth sciences (1999). II Int. Conf. Moscow:
dc.relation.referencesenScience, 55 p. (in Russian).
dc.relation.referencesenSafarov, I. B. (1984). Investigation of the elastic and
dc.relation.referencesendensity properties of rocks and minerals of the
dc.relation.referencesendeep layers of the earth's crust and upper mantle at
dc.relation.referencesenhigh thermodynamic conditions. Author's abstract.
dc.relation.referencesenCand. diss. M., IFZ AS USSR, 20 p. (in Russian).
dc.relation.referencesenSafarov, I. B. (2011). Petrophysical models of
dc.relation.referencesenlithospheric plates of continents and oceans. Baku,
dc.relation.referencesenElm, 306 p. (in Russian).
dc.relation.referencesenSafarov, I. B. ( 2006). Petrophysical characteristics of
dc.relation.referencesencrustal and mantle eclogites under high
dc.relation.referencesenthermodynamic conditions and their position in
dc.relation.referencesenthe Earth's lithosphere. Izv. ANAS, series of Earth
dc.relation.referencesenSciences, No. 4, 31–43 (in Russian).
dc.relation.referencesenSafarov, I. B. (2003). Anisotropy of elastic properties
dc.relation.referencesenat high thermodynamic conditions and petrophysical models of the lithosphere. Author's abstract.
dc.relation.referencesenDoct. diss. Baku, IG NANA, 47 p. (in Russian).
dc.relation.referencesenSafarov, I. B., & Levykin, A. I. (1992). Device for
dc.relation.referencesendetermining elastic characteristics materials. A.S. 1742710 (USSR), Bull. No. 223 (in Russian).
dc.relation.referencesenSafarov, I. B., & Kireenkova, S. M. (1985). Device
dc.relation.referencesenfor determining the elastic characteristics of
dc.relation.referencesenmaterials – A.S. No. 1183885 (USSR), Bull.
dc.relation.referencesenNo 37 (in Russian).
dc.relation.referencesenSmorodinov, M. I., Motovilov, E. A., & Volvov, V. A.
dc.relation.referencesen(1970). Determinations of correlation relationships
dc.relation.referencesenbetween strength and some physical characteristics
dc.relation.referencesenof rocks. In: Proceedings of the second congress
dc.relation.referencesenof the international society for rock mechanics,
dc.relation.referencesenVol. 2. Belgrade, 35–37.
dc.relation.referencesenSmorodinov, M. I. (1966). Determinations of correlation relationships between strength and some
dc.relation.referencesenphysical characteristics of rocks. In Proc. of 1st
dc.relation.referencesenInt. Congress of ISRM, Lisvbon.
dc.relation.referencesenSobolev, V. S., Sobolev, N. V. (1964), Xenoliths in
dc.relation.referencesenthe kimberlites of Northern Yakutia and the
dc.relation.referencesenstructure of the Earth's mantle. Dokl. AN SSSR,
dc.relation.referencesenvol. 158, No. 1 (in Russian).
dc.relation.referencesenUdovkina, N. G. (1985), Eclogites of the USSR. M.:
dc.relation.referencesenScience, 285 p. (in Russian).
dc.relation.referencesenVolarovich, M. P., Bayuk, E. I., Levykin, A. I., &
dc.relation.referencesenTomashevskaya, I. S. (1974). Physical properties
dc.relation.referencesenof rocks and minerals at high pressures and
dc.relation.referencesentemperatures. M., Science, 223 p. (in Russian).
dc.relation.referencesenYasar, E., & Erdogan, Y. (2004). Correlating sound
dc.relation.referencesenvelocity with the density, compressive strength
dc.relation.referencesenand Young’s modulus of carbonate rocks.
dc.relation.referencesenInternational Journal of Rock Mechanics and
dc.relation.referencesenMining Sciences, 41(5), 871–875.
dc.relation.referencesenhttps://doi.org/10.1016/j.ijrmms.2004.01.012
dc.relation.urihttps://doi.org/10.1029/JZ065i004p01083
dc.relation.urihttps://doi.org/10.1016/S0926-9851(99)00020-8
dc.relation.urihttps://doi.org/10.1111/j.1365-246X.1992.tb00843.x
dc.relation.urihttps://doi.org/10.1007/s10064-008-0139-0
dc.relation.urihttps://doi.org/10.1016/j.jappgeo.b2010.01.007
dc.relation.urihttps://doi.org/10.1007/s40328-015-0145-1
dc.relation.urihttps://doi.org/10.1061/
dc.relation.urihttps://doi.org/10.1016/j.ijrmms.2004.01.012
dc.rights.holder© Інститут геології і геохімії горючих копалин Національної академії наук України, 2022
dc.rights.holder© Інститут геофізики ім. С. І. Субботіна Національної академії наук України, 2022
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.rights.holder© Safarov Ibragim
dc.subjectультразвуковий імпульсний метод
dc.subjectхімічні компоненти
dc.subjectшвидкість
dc.subjectпоздовжні хвилі
dc.subjectпоперечні хвилі
dc.subjectтвердофазна установка
dc.subjectгустина
dc.subjectultrasonic pulse method
dc.subjectchemical components
dc.subjectvelocity
dc.subjectlongitudinal waves
dc.subjecttransverse waves
dc.subjectsolid-phase installation
dc.subjectdensity
dc.subject.udc551.14/16
dc.titleThe connection of chemical composition and physical properties in mountain rocks of the Earth's crust and mantle and their dynamic changes under different thermobaric conditions
dc.title.alternativeЗв'язок хімічного складу і фізичних властивостей гірських порід кори і мантії Землі та їх динамічні зміни в різних термобаричних умовах
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2022n1_32__Safarov_I-The_connection_of_chemical_92-98.pdf
Size:
686.52 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2022n1_32__Safarov_I-The_connection_of_chemical_92-98__COVER.png
Size:
483.82 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.77 KB
Format:
Plain Text
Description: