Wavelet-based RPPg signal analysis: cwt for spectral peak localization and identification with pulse oximeter validation

dc.citation.epage11
dc.citation.issue2
dc.citation.journalTitleВимірювальна техніка та метрологія
dc.citation.spage5
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorBerezhnyi, Ihor
dc.contributor.authorNakonechnyi, Andrian
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-11-25T13:14:02Z
dc.date.created2025-06-20
dc.date.issued2025-06-20
dc.description.abstractRemote photoplethysmography (rPPG) has become a promising non-contact technology for cardiovascular monitoring, but the accuracy of spectral peak detection remains unpredictable due to motion artifacts, noise, and camera signal quality. Traditional methods often fail to localize and identify heart rate peaks in the presence of such disturbances. The aim of the study is to develop a wavelet approach to improve the reliability of rPPG spectral peak analysis by using a continuous wavelet transform (CWT) for accurate frequency-time localization, followed by systematic peak identification and verification using a medical-grade pulse oximeter. The rPPG signals were acquired under controlled conditions, processed using CWT to improve spectral characteristics, and subjected to a peak detection algorithm optimized for heart rate estimation. Wavelet coherence was used to evaluate the agreement between the peaks obtained with rPPG and the reference pulse oximeter data. The experimental results demonstrated that CWT-based peak localization achieved an average absolute error of 2.1 BPM compared to the pulse oximeter, with a coherence of 0.53 under steady-state conditions. The proposed method demonstrated improved robustness to motion artifacts compared to conventional Fourier-based approaches, especially in low-light or low signal quality scenarios. The proposed wavelet transform structure improves the accuracy and reliability of rPPG spectral peak detection, bridging the gap between non-contact measurements and clinical pulse oximetry. This research extends the potential of rPPG for real-world applications, such as remote health monitoring and wearable devices.
dc.format.extent5-11
dc.format.pages7
dc.identifier.citationBerezhnyi I. Wavelet-based RPPg signal analysis: cwt for spectral peak localization and identification with pulse oximeter validation / Ihor Berezhnyi, Andrian Nakonechnyi // Measuring Equipment and Metrology. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 86. — No 2. — P. 5–11.
dc.identifier.citation2015Berezhnyi I., Nakonechnyi A. Wavelet-based RPPg signal analysis: cwt for spectral peak localization and identification with pulse oximeter validation // Measuring Equipment and Metrology, Lviv. 2025. Vol 86. No 2. P. 5–11.
dc.identifier.citationenAPABerezhnyi, I., & Nakonechnyi, A. (2025). Wavelet-based RPPg signal analysis: cwt for spectral peak localization and identification with pulse oximeter validation. Measuring Equipment and Metrology, 86(2), 5-11. Lviv Politechnic Publishing House..
dc.identifier.citationenCHICAGOBerezhnyi I., Nakonechnyi A. (2025) Wavelet-based RPPg signal analysis: cwt for spectral peak localization and identification with pulse oximeter validation. Measuring Equipment and Metrology (Lviv), vol. 86, no 2, pp. 5-11.
dc.identifier.doihttps://doi.org/10.23939/istcmtm2025.02.005
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/121875
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofВимірювальна техніка та метрологія, 2 (86), 2025
dc.relation.ispartofMeasuring Equipment and Metrology, 2 (86), 2025
dc.relation.referencesen[1] J. Wang, C. Shan, L. Liu, and Z. Hou, “Camera-based physiological measurement: Recent advances and future prospects”, Neurocomputing, vol. 575, p. 127282, Mar.2024. DOI: 10.1016/j.neucom.2024.127282.
dc.relation.referencesen[2] E. Allado et al., “Remote Photoplethysmography Is an Accurate Method to RemotelyMeasure Respiratory Rate: A Hospital-Based Trial”, JCM, vol. 11, No. 13, p. 3647, Jun.2022. DOI: 10.3390/jcm11133647.
dc.relation.referencesen[3] J. Allen, “Photoplethysmography and its application in clinical physiological measurement”, Physiol. Meas., vol. 28, No. 3, pp. R1–R39, Mar. 2007. DOI: 10.1088/0967-3334/28/3/R01.
dc.relation.referencesen[4] M. L. Buja and J. Butany, Eds., Cardiovascular pathology, Fifth edition. London: Academic Press, 2022.
dc.relation.referencesen[5] International Workshop on Mathematical Methods in Scattering Theory and Biomedical Engineering, Advanced topics in scattering and biomedical engineering: proceedings of the Eighth International Workshop on Mathematical Methods in Scattering Theory and Biomedical Engineering, Lefkada, Greece, 27–29 September 2007. Singapore, SG: World Scientific, 2008.
dc.relation.referencesen[6] X. Liu, J. Fromm, S. Patel, and D. McDuff, “Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement”, 2020, arXiv. DOI:10.48550/ARXIV.2006.03790.
dc.relation.referencesen[7] T. Tamura, “Progress of Home Healthcare Sensor in Our Experience: Development of Wearable and Unobtrusive Monitoring”, ABE, vol. 9, No. 0, pp. 189–196, 2020. DOI:10.14326/abe.9.189.
dc.relation.referencesen[8] S. Thupakula, S. S. R. Nimmala, H. Ravula, S. Chekuri, and R. Padiya, “Emerging biomarkers for the detection of cardiovascular diseases”, Egypt Heart J, vol. 74, No. 1,p. 77, Oct. 2022. DOI: 10.1186/s43044-022-00317-2.
dc.relation.referencesen[9] L. Tian et al., “Deep Learning in Biomedical Optics”, Lasers Surg Med, vol. 53, No. 6, pp. 748–775, Aug. 2021.DOI: 10.1002/lsm.23414.
dc.relation.referencesen[10] W. Liao, C. Zhang, M. Rosenberger, and G. Notni, “Evaluation of contactless respiratory rate measurement: Thermography vs. rPPG”, Measurement: Sensors, p. 101647, Jan. 2025, DOI: 10.1016/j.measen.2024.101647.
dc.relation.referencesen[11] A. Pai, A. Veeraraghavan, and A. Sabharwal, “HRVCam: robust camera-based measurement of heart rate variability”, J. Biomed. Opt., vol. 26, No. 02, Feb. 2021, DOI:10.1117/1.JBO.26.2.022707.
dc.relation.referencesen[12] H.-W. Chow and C.-C. Yang, “Accuracy of Optical Heart Rate Sensing Technology in Wearable Fitness Trackers for Young and Older Adults: Validation and Comparison Study”, JMIR Mhealth Uhealth, vol. 8, No. 4, p. e14707, Apr. 2020. DOI: 10.2196/14707.
dc.relation.referencesen[13] H. Rahman, M. U. Ahmed, and S. Begum, “Non-Contact Physiological Parameters Extraction Using Facial Video Considering Illumination, Motion, Movement and Vibration”, IEEE Trans. Biomed. Eng., vol. 67, No. 1, pp. 88–98, Jan. 2020. DOI: 10.1109/TBME.2019.2908349.
dc.relation.referencesen[14] R. Meziati, Y. Benezeth, P. De Oliveira, J. Chappé, and F. Yang, “UBFC-Phys.”. IEEE DataPort, Mar. 03, 2021. DOI:10.21227/5DA0-7344.
dc.relation.referencesen[15] A. Nakonechnyi and I. Berezhnyi, “Estimation of Heart Rate and its VariabilityBased onWavelet Analysis of 12th Photoplethysmographic Signals in Real Time”, in 2023 IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), Dortmund, Germany: IEEE, Sep. 2023, pp. 765–769. DOI: 10.1109/IDAACS58523.2023.10348785.
dc.relation.referencesen[16] P. Du, W. A. Kibbe, and S. M. Lin, “Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching”, Bioinformatics, vol. 22, No. 17, pp. 2059–2065, Sep. 2006. DOI:10.1093/bioinformatics/btl355.
dc.relation.referencesen[17] I. Berezhnyi and A. Nakonechnyi, “Multiresolution analysis of poor remote photoplethysmography signal using wavelet transform”, in CEUR Workshop Proc., CEUR-WS, 2024, pp. 57–72 [Online]. Available: https://www.scopus.com/ inward/record.uri?eid=2-s2.0-85215781423&partnerID=40&md5=7a324b3194e1ff39b679b3a4efb7aa98
dc.relation.referencesen[18] J. Allen, “Photoplethysmography and its application in clinical physiological measurement”, Physiol. Meas., vol. 28, No. 3, pp. R1–R39, Mar. 2007, DOI: 10.1088/0967-3334/28/3/R01.
dc.relation.referencesen[19] P. A. Kyriacou and J. Allen, Eds., Photoplethysmography: technology, signal analysis and applications. London: Elsevier Academic Press, 2022.
dc.relation.urihttps://www.scopus.com/
dc.rights.holder© Національний університет „Львівська політехніка“, 2025
dc.subjectContinuous Wavelet Transform (CWT)
dc.subjectpeak identification
dc.subjectpeak localization
dc.subjectpulse oximeter
dc.subjectRemote Photoplethysmography (rPPG)
dc.subjectsignal processing
dc.subjectspectral analysis
dc.subjectwavelet transform
dc.titleWavelet-based RPPg signal analysis: cwt for spectral peak localization and identification with pulse oximeter validation
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2025v86n2_Berezhnyi_I-Wavelet_based_RPPg_signal_5-11.pdf
Size:
424.37 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Plain Text
Description: