Energy efficient solar heat supply systems for buildings and structures

dc.citation.epage142
dc.citation.issue1
dc.citation.spage137
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Politechnic National University
dc.contributor.authorЖелих, В. М.
dc.contributor.authorКасинець, М. Є.
dc.contributor.authorМиронюк, Х. В.
dc.contributor.authorМарущак, У. Д.
dc.contributor.authorГулай, Б. І.
dc.contributor.authorZhelykh, Vasyl
dc.contributor.authorKasynets, Mariana
dc.contributor.authorMyroniuk, Khrystyna
dc.contributor.authorMarushchak, Uliana
dc.contributor.authorGulai, Bogdan
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-04-05T10:31:16Z
dc.date.available2023-04-05T10:31:16Z
dc.date.created2021-06-06
dc.date.issued2021-06-06
dc.description.abstractСьогодні енергетика України потребує значного споживання традиційних джерел енергії (нафти, газу, вугілля, атомної енергії). Проте їх використання пов’язане із виникненням певних труднощів, серед яких теплове, хімічне, радіоактивне забруднення навколишнього середовища та вичерпність їх запасів. У праці вирішено актуальну проблему підвищення ефективності систем сонячного теплопостачання з плоскими сонячними колекторами. Проаналізовано потенціал сонячної енергетики та існуючих систем сонячного теплопостачання. Невідновні джерела енергії мають достатньо великий потенціал для забезпечення потрібного життєвого рівня людей. Встановлено, що для отримання необхідної кількості нетрадиційної енергії для енергозабезпечення жителів міст потрібно використати лише 5 % зайнятої ними площі. Проаналізовано переваги та недоліки різних конструкцій сонячних колекторів, методи їх досліджень. Актуальним дослідженням є вдосконалення наявних сонячних колекторів та систем сонячного теплопостачання для їх максимальної інтеграції в традиційні системи теплопостачання та широке застосування на практиці. Подано аналіз основних напрямів підвищення ефективності сонячних колекторів та систем сонячного теплопостачання загалом. Отримано удосконалену систему сонячного теплопостачання із запропонованою конструкцією сонячного колектора та встановлено його температурні характеристики залежно від інтенсивності надходження сонячної енрегії. Встановлено, що температура води на виході з експериментального сонячного колектора до обідньої пори дня була на ≈4–5 % вища, ніж температура води на вході в сонячну установку та температура води в баку-акумуляторі сонячного колектора. Тому запропоновану конструкцію можна використовувати для споживачів під час проектування басейнів, у системах з джерелом енергії, яке дублюється
dc.description.abstractToday, the energy sector of Ukraine requires significant consumption of traditional energy sources (oil, gas, coal, nuclear energy). However, their use is associated with a number of difficulties, including thermal, chemical, and radioactive contamination of the environment and the exhaustion of their reserves. The paper is devoted to solving the actual problem of improving the efficiency of solar heat supply systems with solar collectors. An analysis of the potential of solar energy and existing solar heat supply systems is presented. The advantages and disadvantages of various solar collector designs and methods of their research are analyzed. The analysis of the main directions for improving the efficiency of solar collectors and solar heat supply systems, in general, is presented. An improved solar heat supply system with the proposed design of a solar collector is obtained and its temperature characteristics are established depending on the intensity of solar energy intake.
dc.format.extent137-142
dc.format.pages6
dc.identifier.citationEnergy efficient solar heat supply systems for buildings and structures / Vasyl Zhelykh, Mariana Kasynets, Khrystyna Myroniuk, Uliana Marushchak, Bogdan Gulai // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 3. — No 1. — P. 137–142.
dc.identifier.citationenZhelykh V., Kasynets M., Myroniuk K., Marushchak U., Gulai B. (2021) Energy efficient solar heat supply systems for buildings and structures. Theory and Building Practice (Lviv), vol. 3, no 1, pp. 137-142.
dc.identifier.doihttps://doi.org/10.23939/jtbp2021.01.137
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/57921
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofTheory and Building Practice, 1 (3), 2021
dc.relation.referencesShapoval, S., Zhelykh, V., Spodyniuk, N., Dzeryn, O., Gulai, B. (2019). The effectiveness to use the
dc.relation.referencesdistribution manifold in the construction of the solar wall for the conditions of circulation. Pollack Periodica, 14(2), 143–154. doi:10.1556/606.2019.14.2.13 (in English)
dc.relation.referencesSolovei, O. I., Legа, Yu. G., Rosen, V. P., Sitnik, O. O., Chernyavsky, A. V., Kurbak, G. V. (2007).
dc.relation.referencesNontraditional and Renewable Energy Sources: Teaching. Manual. Cherkasy: ChTTU. (in Ukrainian)
dc.relation.referencesDudyuk, D. L., Mazepa, S. S. (2004). Unconventional (renewable) energy sources. Lviv: RVV Ukr DLTU.
dc.relation.references(in Ukrainian)
dc.relation.referencesBabych, M., Krygul, R., Shapoval, S., Tolstushko, N., Korobka, S., Tolstushko, M. (2019). Results of experimental
dc.relation.referencesresearches into process of oak veneer drying in the solar dryer. Eastern-European Journal of Enterprise
dc.relation.referencesTechnologies, 2 (8–98), 13–22. doi:10.15587/1729-4061.2019.162948 (in English)
dc.relation.referencesKudrya, S. O., Golovko, V. M. (2005). Basics of designing power plants with renewable sources. Nizhyn:
dc.relation.referencesAspect-Polygraph Publishing House. (in Ukrainian)
dc.relation.referencesZhelykh, V., Pona, O., Eltman, A., Shapoval, S. (2015) Perspectives of using heliosystems and their research in
dc.relation.referencessolar heating system, XV International Scientific Conference: Сurrent issues of civil and environmental engineering
dc.relation.referencesand architecture, September 2015. Rzeszów – Lviv – Kosice. (in English)
dc.relation.referencesMalkin, Ye. S. (Ed.). (2002). Method of presenting data on solar radiation for calculating the solar heating
dc.relation.referencessystem. Ventilation, lighting and heat and gas supply. К.: КNUBA. (in Ukrainian)
dc.relation.referencesHavrus, V., Shelevytsky, I. (2008). Forgot the right to the sun or warmth in your home. Electronic journal of
dc.relation.referencesthe energy service company “Ecological Systems”, 2. http://esco-ecosys.narod.ru/2008_2/art140.htm. (in English)
dc.relation.referencesZakhidov, R. A., Vainer, A. A., Umarov, G. Ya. (1977). Theory and Calculation of Heliotechnical
dc.relation.referencesConcentrating Systems. Tashkent: Fan. (in Russian)
dc.relation.referencesMalevsky Yu. N. (Ed.). (1977). Thermal processes based on solar energy utilization. M: Mir. (in Russian)
dc.relation.referencesAkimenko, O., Kostiuchenko, I. (2020). Prospects of the introduction of alternative energy sources as a step
dc.relation.referencesto the internation cooperation. Problems and Prospects of Economics and Management, 4 (24), 43–50. (in
dc.relation.referencesUkrainian)
dc.relation.referencesMoiseenko, V. V. (1992). System development of a solar collector for decentralized heat supply. (PhD
dc.relation.referencesdissertation). Odessa National Polytechnic University, Odessa. (in Ukrainian)
dc.relation.referencesDoroshenko, A. V., Khalak, V. F. (2018). Solar polymer liquid collectors. Analysis of existing results, new
dc.relation.referencessolutions. Refrigeration Engineering and Technology, 54 (5), 44–52. https://doi.org/10.15673/ret.v54i5.1250 (in
dc.relation.referencesUkrainian)
dc.relation.referencesPukhovyj, I. I., Bezrodny, M. K., Kudrya, T. S. (2007). Study of the passive solar heating system of the
dc.relation.references“glazed loggia” type in the absence of traditional heating. Renewable energy of the XXI century: materials of the
dc.relation.referencesVIII International conference, September 17–21, 2007. Crimea, 105–106. (in Ukrainian)
dc.relation.referencesCristofari, C., Notton, G., Poggi, P., Louche, A. (2002). Modelling and performance of a copolymer solar
dc.relation.referenceswater heating collector. Solar Energy, 72, 2, 99–112. Режим доступу до журн. : https://doi.org/10.1016/s0038-092x(01)00092-5 (in English)
dc.relation.referencesRaman, R., Mantell, S., Davidson, J., Wu, C., Jorgensen, G. (2000). A review of polymer materials for solar
dc.relation.referenceswater heating systems. Journal of Solar Energy Engineering, 122, 2, 92–100. Doi: https://doi.org/10.1115/ 1.1288214 (in English)
dc.relation.referencesFahrenbruch, A., Byub, R. (1987). Solar elements: theory and experiment. M .: Energo-atomizdat. (in Russian)
dc.relation.referencesFortuin, S., Hermann, M., Stryi-Hipp, G., Nitz, P., Platzer, W. (2014). Hybrid PV-thermal collector
dc.relation.referencesdevelopment: concepts, experiences, results and research needs. Energy Procedia, 48, 37–47. doi:
dc.relation.referenceshttps://doi.org/10.1016/j.egypro.2014.02.006 (in English)
dc.relation.referencesChen, G., Doroshenko, A., Koltun, P., Shestopalov, K. (2015). Comparative field experimental investigations
dc.relation.referencesof different flat plate solar collectors. Solar Energy, 115, 577–588. https://doi.org/10.1016/j.solener.2015.03.021 (in
dc.relation.referencesEnglish)
dc.relation.referencesMisak, Y. S., Voznyak, O. T., Datsko, O. S., Shapoval, S. P. (2014). Solar energy: theory and practice:
dc.relation.referencesmonograph. Lviv: Lviv Polytechnic Publishing House. (in Ukrainian)
dc.relation.referencesOdintsov, A. N. (2009). Feasibility of using vertical solar collectors for thermal regulation of premises.
dc.relation.referencesBulletin of SevDTU, 97, 204–209. (in Russian)
dc.relation.referencesGladen, A. C., Davidson, J. H., Mantell, S. C. (2014). The effect of a thermotropic material on the optical
dc.relation.referencesefficiency and stagnation temperature of a polymer flat plate solar collector. J. Sol. Energy Eng, 137 (2), 021003-021003. https://doi.org/10.1115/1.4028366 (in English)
dc.relation.referencesChorna, N. O. (2011). Method of calculation of optical-geometric parameters of “zonal” focclines. Lighting
dc.relation.referencesand Electronics, 2, 43–49. (in Ukrainian)
dc.relation.referencesShapoval, S. P. (2010). The efficiency of the “delta system” of flat solar collectors at different angles of their
dc.relation.referencesinstallation. Bulletin of the National University “Lviv Polytechnic”: Theory and Practice of Construction, 664, 331-335. (in Ukrainian)
dc.relation.referencesGershkovych, V. F. (2009). Heat pump in a multi-storey residential building. Is it for the future or today?
dc.relation.referencesInstallation Market, 1, 32–33. (in Ukrainian)
dc.relation.referencesNovakivskyj, E. V. (2004). Improving the efficiency of solar energy use in combined industrial heating
dc.relation.referencessystems. (PhD dissertation). Odessa National Polytechnic University, Odessa. (in Ukrainian)
dc.relation.referencesNovakovsky, E. V., Denisova, A. E., Mazurenko, A. S. (2003). Analysis of the efficiency of delta-system
dc.relation.referencessolar collectors for alternative heating systems. Ecotechnology and resource conservation: scientific and technical
dc.relation.referencesjournal, 6, 14–17. (in Ukrainian)
dc.relation.referencesenShapoval, S., Zhelykh, V., Spodyniuk, N., Dzeryn, O., Gulai, B. (2019). The effectiveness to use the
dc.relation.referencesendistribution manifold in the construction of the solar wall for the conditions of circulation. Pollack Periodica, 14(2), 143–154. doi:10.1556/606.2019.14.2.13 (in English)
dc.relation.referencesenSolovei, O. I., Lega, Yu. G., Rosen, V. P., Sitnik, O. O., Chernyavsky, A. V., Kurbak, G. V. (2007).
dc.relation.referencesenNontraditional and Renewable Energy Sources: Teaching. Manual. Cherkasy: ChTTU. (in Ukrainian)
dc.relation.referencesenDudyuk, D. L., Mazepa, S. S. (2004). Unconventional (renewable) energy sources. Lviv: RVV Ukr DLTU.
dc.relation.referencesen(in Ukrainian)
dc.relation.referencesenBabych, M., Krygul, R., Shapoval, S., Tolstushko, N., Korobka, S., Tolstushko, M. (2019). Results of experimental
dc.relation.referencesenresearches into process of oak veneer drying in the solar dryer. Eastern-European Journal of Enterprise
dc.relation.referencesenTechnologies, 2 (8–98), 13–22. doi:10.15587/1729-4061.2019.162948 (in English)
dc.relation.referencesenKudrya, S. O., Golovko, V. M. (2005). Basics of designing power plants with renewable sources. Nizhyn:
dc.relation.referencesenAspect-Polygraph Publishing House. (in Ukrainian)
dc.relation.referencesenZhelykh, V., Pona, O., Eltman, A., Shapoval, S. (2015) Perspectives of using heliosystems and their research in
dc.relation.referencesensolar heating system, XV International Scientific Conference: Surrent issues of civil and environmental engineering
dc.relation.referencesenand architecture, September 2015. Rzeszów – Lviv – Kosice. (in English)
dc.relation.referencesenMalkin, Ye. S. (Ed.). (2002). Method of presenting data on solar radiation for calculating the solar heating
dc.relation.referencesensystem. Ventilation, lighting and heat and gas supply. K., KNUBA. (in Ukrainian)
dc.relation.referencesenHavrus, V., Shelevytsky, I. (2008). Forgot the right to the sun or warmth in your home. Electronic journal of
dc.relation.referencesenthe energy service company "Ecological Systems", 2. http://esco-ecosys.narod.ru/2008_2/art140.htm. (in English)
dc.relation.referencesenZakhidov, R. A., Vainer, A. A., Umarov, G. Ya. (1977). Theory and Calculation of Heliotechnical
dc.relation.referencesenConcentrating Systems. Tashkent: Fan. (in Russian)
dc.relation.referencesenMalevsky Yu. N. (Ed.). (1977). Thermal processes based on solar energy utilization. M: Mir. (in Russian)
dc.relation.referencesenAkimenko, O., Kostiuchenko, I. (2020). Prospects of the introduction of alternative energy sources as a step
dc.relation.referencesento the internation cooperation. Problems and Prospects of Economics and Management, 4 (24), 43–50. (in
dc.relation.referencesenUkrainian)
dc.relation.referencesenMoiseenko, V. V. (1992). System development of a solar collector for decentralized heat supply. (PhD
dc.relation.referencesendissertation). Odessa National Polytechnic University, Odessa. (in Ukrainian)
dc.relation.referencesenDoroshenko, A. V., Khalak, V. F. (2018). Solar polymer liquid collectors. Analysis of existing results, new
dc.relation.referencesensolutions. Refrigeration Engineering and Technology, 54 (5), 44–52. https://doi.org/10.15673/ret.v54i5.1250 (in
dc.relation.referencesenUkrainian)
dc.relation.referencesenPukhovyj, I. I., Bezrodny, M. K., Kudrya, T. S. (2007). Study of the passive solar heating system of the
dc.relation.referencesen"glazed loggia" type in the absence of traditional heating. Renewable energy of the XXI century: materials of the
dc.relation.referencesenVIII International conference, September 17–21, 2007. Crimea, 105–106. (in Ukrainian)
dc.relation.referencesenCristofari, C., Notton, G., Poggi, P., Louche, A. (2002). Modelling and performance of a copolymer solar
dc.relation.referencesenwater heating collector. Solar Energy, 72, 2, 99–112. Rezhim dostupu do zhurn. : https://doi.org/10.1016/s0038-092x(01)00092-5 (in English)
dc.relation.referencesenRaman, R., Mantell, S., Davidson, J., Wu, C., Jorgensen, G. (2000). A review of polymer materials for solar
dc.relation.referencesenwater heating systems. Journal of Solar Energy Engineering, 122, 2, 92–100. Doi: https://doi.org/10.1115/ 1.1288214 (in English)
dc.relation.referencesenFahrenbruch, A., Byub, R. (1987). Solar elements: theory and experiment. M ., Energo-atomizdat. (in Russian)
dc.relation.referencesenFortuin, S., Hermann, M., Stryi-Hipp, G., Nitz, P., Platzer, W. (2014). Hybrid PV-thermal collector
dc.relation.referencesendevelopment: concepts, experiences, results and research needs. Energy Procedia, 48, 37–47. doi:
dc.relation.referencesenhttps://doi.org/10.1016/j.egypro.2014.02.006 (in English)
dc.relation.referencesenChen, G., Doroshenko, A., Koltun, P., Shestopalov, K. (2015). Comparative field experimental investigations
dc.relation.referencesenof different flat plate solar collectors. Solar Energy, 115, 577–588. https://doi.org/10.1016/j.solener.2015.03.021 (in
dc.relation.referencesenEnglish)
dc.relation.referencesenMisak, Y. S., Voznyak, O. T., Datsko, O. S., Shapoval, S. P. (2014). Solar energy: theory and practice:
dc.relation.referencesenmonograph. Lviv: Lviv Polytechnic Publishing House. (in Ukrainian)
dc.relation.referencesenOdintsov, A. N. (2009). Feasibility of using vertical solar collectors for thermal regulation of premises.
dc.relation.referencesenBulletin of SevDTU, 97, 204–209. (in Russian)
dc.relation.referencesenGladen, A. C., Davidson, J. H., Mantell, S. C. (2014). The effect of a thermotropic material on the optical
dc.relation.referencesenefficiency and stagnation temperature of a polymer flat plate solar collector. J. Sol. Energy Eng, 137 (2), 021003-021003. https://doi.org/10.1115/1.4028366 (in English)
dc.relation.referencesenChorna, N. O. (2011). Method of calculation of optical-geometric parameters of "zonal" focclines. Lighting
dc.relation.referencesenand Electronics, 2, 43–49. (in Ukrainian)
dc.relation.referencesenShapoval, S. P. (2010). The efficiency of the "delta system" of flat solar collectors at different angles of their
dc.relation.referenceseninstallation. Bulletin of the National University "Lviv Polytechnic": Theory and Practice of Construction, 664, 331-335. (in Ukrainian)
dc.relation.referencesenGershkovych, V. F. (2009). Heat pump in a multi-storey residential building. Is it for the future or today?
dc.relation.referencesenInstallation Market, 1, 32–33. (in Ukrainian)
dc.relation.referencesenNovakivskyj, E. V. (2004). Improving the efficiency of solar energy use in combined industrial heating
dc.relation.referencesensystems. (PhD dissertation). Odessa National Polytechnic University, Odessa. (in Ukrainian)
dc.relation.referencesenNovakovsky, E. V., Denisova, A. E., Mazurenko, A. S. (2003). Analysis of the efficiency of delta-system
dc.relation.referencesensolar collectors for alternative heating systems. Ecotechnology and resource conservation: scientific and technical
dc.relation.referencesenjournal, 6, 14–17. (in Ukrainian)
dc.relation.urihttp://esco-ecosys.narod.ru/2008_2/art140.htm
dc.relation.urihttps://doi.org/10.15673/ret.v54i5.1250
dc.relation.urihttps://doi.org/10.1016/s0038-092x(01)00092-5
dc.relation.urihttps://doi.org/10.1115/
dc.relation.urihttps://doi.org/10.1016/j.egypro.2014.02.006
dc.relation.urihttps://doi.org/10.1016/j.solener.2015.03.021
dc.relation.urihttps://doi.org/10.1115/1.4028366
dc.rights.holder© Національний університет „Львівська політехніка“, 2021
dc.rights.holder© Zhelykh V., Kasynets M., Myroniuk Kh., Marushchak U., Gulai B., 2021
dc.subjectнетрадиційні джерела енергії
dc.subjectсонячна енергія
dc.subjectсонячний колектор
dc.subjectсистема сонячного теплопостачання
dc.subjectтемпература теплоносія
dc.subjectінтенсивність сонячної енергії
dc.subjectnon-traditional energy sources
dc.subjectsolar energy
dc.subjectsolar collector
dc.subjectsolar heat supply system
dc.subjectheat carrier temperature
dc.subjectsolar energy intensity
dc.titleEnergy efficient solar heat supply systems for buildings and structures
dc.title.alternativeЕнергоефективні системи сонячного теплопостачання будівель та споруд
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
2021v3n1_Zhelykh_V-Energy_efficient_solar_137-142.pdf
Size:
667.7 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.91 KB
Format:
Plain Text
Description: