Modern technologies in archaeology and their application in architectural object restoration
dc.citation.epage | 91 | |
dc.citation.issue | 1 | |
dc.citation.journalTitle | Архітектурні дослідження | |
dc.citation.spage | 79 | |
dc.citation.volume | 10 | |
dc.contributor.affiliation | Університет «Ісмаїл Кемалі» Вльора | |
dc.contributor.affiliation | University “Ismail Qemali” Vlore | |
dc.contributor.author | Трушай, Алекс | |
dc.contributor.author | Джелай, Блеріна | |
dc.contributor.author | Trushaj, Aleks | |
dc.contributor.author | Xhelaj, Blerina | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-05-14T07:15:28Z | |
dc.date.created | 2024-02-27 | |
dc.date.issued | 2024-02-27 | |
dc.description.abstract | Вивчення сучасних технологій в археології та реставрації архітектурних об’єктів є надзвичайно важливим через можливість їх використання для збереження культурної спадщини, відкриття нових артефактів та вдосконалення методів наукових досліджень. Метою цього дослідження було проаналізувати можливості використання сучасних технологій для реабілітації та візуалізації об’єктів культурної спадщини. У ході дослідження були використані такі методи, як фотограмметрія, порівняльний метод та аналіз. Результати дослідження показали значний потенціал сучасних технологій фотограмметрії у збереженні та візуалізації культурної спадщини. Зокрема, використання повітряної фотограмметрії за допомогою дрона та наземної фотограмметрії за допомогою цифрової камери дозволило створити тривимірні моделі архітектурних об’єктів з високою точністю та деталізацією. Наприклад, за допомогою дрона було зібрано та оброблено 267 знімків медресе Марінід, медресе Аль-Марінія та ромського поселення. Ці дані дозволили створити детальні тривимірні моделі, які були використані для створення ортофотопланів і візуального огляду місця. Крім того, експорт 2D-даних і моделей виявився ефективним для подальшого моделювання та аналізу. Це дозволило розробити тривимірну цифрову модель, яку можна візуалізувати, модифікувати та адаптувати в будь-який час, що стало цінним інструментом для архітектурних досліджень та документації. Результати дослідження підтвердили практичну ефективність фотограмметричних методів у збереженні та документуванні історичної спадщини. Використання цифрових моделей та ортофотопланів може полегшити візуальний аналіз об’єктів, подальші дослідження та архівування культурних цінностей. Такий підхід має потенціал для освітніх та туристичних ініціатив, залучення широкої аудиторії до вивчення та поцінування історичної спадщини. | |
dc.description.abstract | The study of modern technologies in archaeology and the restoration of architectural objects is extremely important because of the possibility of using them to preserve cultural heritage, discover new artefacts and improve scientific research methods. The aim of this study was to analyse the possibilities of using modern technologies for the rehabilitation and visualization of cultural heritage. The methods used in the course of the study included photogrammetry, comparative method, and analysis. The results of the study showed the significant potential of modern photogrammetry technologies in the preservation and visualization of cultural heritage. In particular, the use of aerial photogrammetry using a drone and ground photogrammetry using a digital camera made it possible to create three-dimensional models of architectural objects with high accuracy and detail. For example, 267 images were collected and processed using a drone for the Marinid Madrasa, Al-Mariniya Madrasa, and the Roma settlement. This data allowed for the creation of detailed three-dimensional models that were used to generate orthophotomaps and a visual inspection of the site. In addition, the export of 2D data and models proved to be effective for further modelling and analysis. This allowed for the development of a three-dimensional digital model that can be visualized, modified, and adapted at any time, which has become a valuable tool for architectural research and documentation. The results of the study confirmed the practical effectiveness of photogrammetric methods in the preservation and documentation of historical heritage. The use of digital models and orthophotomaps can facilitate visual analysis of objects, further research and archiving of cultural property. This approach has the potential for educational and tourism initiatives, engaging a wide audience in the study and appreciation of historical heritage. | |
dc.format.extent | 79-91 | |
dc.format.pages | 13 | |
dc.identifier.citation | Trushaj A. Modern technologies in archaeology and their application in architectural object restoration / Aleks Trushaj, Blerina Xhelaj // Architectural Studies. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 10. — No 1. — P. 79–91. | |
dc.identifier.citationen | Trushaj A. Modern technologies in archaeology and their application in architectural object restoration / Aleks Trushaj, Blerina Xhelaj // Architectural Studies. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 10. — No 1. — P. 79–91. | |
dc.identifier.doi | doi.org/10.56318/as/1.2024.79 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/64551 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Архітектурні дослідження, 1 (10), 2024 | |
dc.relation.ispartof | Architectural Studies, 1 (10), 2024 | |
dc.relation.references | [1] Acke, L., De Vis, K., Verwulgen, S., & Verlinden, J. (2021). Survey and literature study to provide insights on the application of 3D technologies in objects conservation and restoration. Journal of Cultural Heritage, 49, 272-288. doi: 10.1016/j.culher.2020.12.003. | |
dc.relation.references | [2] Atik, M.E., Duran, Z., Yanalak, M., Seker, D.Z., & Ak, A. (2023). 3D modeling of historical measurement instruments using photogrammetric and laser scanning techniques. Digital Applications in Archaeology and Cultural Heritage, 30, article number e00286. doi: 10.1016/j.daach.2023.e00286. | |
dc.relation.references | [3] Barrile, V., Bernardo, E., Fotia, A., & Bilotta, G. (2022). Integration of laser scanner, ground-penetrating radar, 3D models and mixed reality for artistic, archaeological and cultural heritage dissemination. Heritage, 5(3), 1529-1550. doi: 10.3390/heritage5030080. | |
dc.relation.references | [4] Bercigli, M., Miho, E., & Lamaj, J. (2022). Digital survey for the valorization and conservation of the church of St. Mary in Leusë. In R. Volzone & J.L. Fontes (Eds.), Architecture of soul. Diachronic and multidisciplinary readings (pp. 363-378). Lisbon: Institute of Medieval Studies. | |
dc.relation.references | [5] Cilek, A., Berberoglu, S., Donmez, C., & Cilek, M.Ü. (2020). Generation of high-resolution 3-D maps for landscape planning and design using UAV technologies. Journal of Digital Landscape Architecture, 5(1), 275-284. doi: 10.14627/537690029. | |
dc.relation.references | [6] Dokolova, A. (2023). Features of digital public art of the twenty-first century: Art of Physical and virtual space. Notes on Art Criticism, 43, 3-8. doi: 10.32461/2226-2180.43.2023.286827. | |
dc.relation.references | [7] Fazio, L., Lo Brutto, M., Barsanti, S.G., & Malatesta, S.G. (2022). The virtual reconstruction of the Aesculapius and Hygeia statues from the sanctuary of Isis in Lilybaeum: Methods and tools for ancient sculptures’ enhancement. Applied Science, 12(7), article number 3569. doi: 10.3390/app12073569. | |
dc.relation.references | [8] Ferdani, D., Demetrescu, E., Cavalieri, M., Pace, G., & Lenzi, S. (2020). 3D modelling and visualization in field archaeology. From survey to interpretation of the past using digital technologies. Groma. Documenting Archaeology, 4, 1-21. doi: 10.12977/groma26. | |
dc.relation.references | [9] Fiz, J.I., Martín, P.M., Cuesta, R., Subías, E., Codina, D., & Cartes, A. (2022). Examples and results of aerial photogrammetry in archeology with UAV: Geometric documentation, high resolution multispectral analysis, models and 3D printing. Drones, 6(3), article number 59. doi: 10.3390/drones6030059. | |
dc.relation.references | [10] Gryglewski, P., Ivashko, Yu., Chernyshev, D., Chang, P., & Dmytrenko, A. (2020). Art as a message realized through various means of artistic expression. Art Inquiry, 22, 57-88. doi: 10.26485/AI/2020/22/4. | |
dc.relation.references | [11] Jones, C.A., & Church, E. (2020). Photogrammetry is for everyone: Structure-from-motion software user experiences in archaeology. Journal of Archaeological Science: Reports, 30, article number 102261. doi: 10.1016/j.jasrep.2020.102261. | |
dc.relation.references | [12] Kaimaris, D., et al. (2022). Use of archaeological archives: 3D visualization of old two-dimensional drawings. In Proceedings of the 16th ICA conference “Digital approaches to cartographic heritage” (pp. 230-243). Thessaloniki: Aristotle University of Thessaloniki. | |
dc.relation.references | [13] Karpov, V. (2023). Restoration of monumental painting in Ukraine in the 1950-1960s. Social aspirations and ideological collisions. Culture and Contemporaneity, 2, 88-94. doi: 10.32461/2226-0285.2.2023.293868. | |
dc.relation.references | [14] Karwel, A.K., & Markiewicz, J. (2022). The methodology of the archival aerial image orientation based on the SfM method. Sensors and Machine Learning Applications, 1(2). doi: 10.55627/smla.001.02.0015. | |
dc.relation.references | [15] Mandor, A.F., & Mostafa, K.S. (2022). The role of the UNESCO in protecting the background archeological global heritage in Egypt for achieving sustainable development a comparative study with Marocco. Journal of Environmental Science, 51(7), 119-152. doi: 10.21608/jes.2022.140434.1240. | |
dc.relation.references | [16] Mantovan, L., & Nanni, L. (2020). The computerization of archaeology: Survey on artificial intelligence techniques. SN Computer Science, 1, article number 267. doi: 10.1007/s42979-020-00286-w. | |
dc.relation.references | [17] Mustafaraj, E., Luga, E., Corradi, M., Borri, A., Muceku, Y., & Zharkalli, A. (2021). Physical-mechanical properties of stone masonry of Gjirokastër, Albania. Materials, 14(5), article number 1127. doi: 10.3390/ma14051127. | |
dc.relation.references | [18] Nesterov, V. (2023). Integration of artificial intelligence technologies in data engineering: Challenges and prospects in the modern information environment. Bulletin of Cherkasy State Technological University, 28(4), 82-92. doi: 10.62660/2306-4412.4.2023.82-90. | |
dc.relation.references | [19] Pagliano, A. (2022). Digital technologies for the knowledge and valorisation of inaccessible archeological sites in Phlagraean Fields. In ICAUD 2021 – international conference on architecture and urban design. Tirana: Epoka University. | |
dc.relation.references | [20] Petërçi, E. (2022). The virtual representation of converted sacred spaces. The case of Saint Nicholas Church in Albania. In ICAUD 2021 – international conference on architecture and urban design. Tirana: Epoka University. | |
dc.relation.references | [21] Pietroni, E., & Ferdani, D. (2021). Virtual restoration and virtual reconstruction in cultural heritage: Terminology, methodologies, visual representation techniques and cognitive models. Information, 12(4), article number 167. doi: 10.3390/info12040167. | |
dc.relation.references | [22] Prychepii, Ye. (2022). Structures of the cosmos and sacred sets on the artefact of the paleolithic. Interdisciplinary Cultural and Humanities Review, 1(1), 30-39. | |
dc.relation.references | [23] Putch, A. (2017). Linear measurement accuracy of DJI drone platforms and photogrammetry. San Francisco: DroneDeploy. | |
dc.relation.references | [24] Rodríguez-Martín, M., & Rodríguez-Gonzálvez, P. (2020). Suitability of automatic photogrammetric reconstruction configurations for small archaeological remains. Sensors, 20(10), article number 2936. doi: 10.3390/s20102936. | |
dc.relation.references | [25] Shumka, L. (2022). Particularities of wooden carved iconostases in selected post-Byzantine churches of Albania. Muzeologia a Kulturne Dedicstvo, 10(4), 79-88. doi: 10.46284/mkd.2022.10.4.6. | |
dc.relation.references | [26] Škrabić Perić, B., Šimundić, B., Muštra, V., & Vugdelija, M. (2021). The role of UNESCO cultural heritage and cultural sector in tourism development: The case of EU countries. Sustainability, 13(10), article number 5473. doi: 10.3390/su13105473. | |
dc.relation.references | [27] Zaragoza, I.M.E., Caroti, G., & Piemonte, A. (2021). The use of image and laser scanner survey archives for cultural heritage 3D modelling and change analysis. ACTA IMEKO, 10(1), 114-121. doi: 10.21014/acta_imeko.v10i1.847. | |
dc.relation.references | [28] Zhong, B., & Li, Y. (2019). Image feature point matching based on improved SIFT algorithm. In 2019 IEEE 4th international conference on image, vision and computing (ICIVC) (pp. 489-493). Xiamen: Institute of Electrical and Electronics Engineers. doi: 10.1109/ICIVC47709.2019.8981329. | |
dc.relation.referencesen | [1] Acke, L., De Vis, K., Verwulgen, S., & Verlinden, J. (2021). Survey and literature study to provide insights on the application of 3D technologies in objects conservation and restoration. Journal of Cultural Heritage, 49, 272-288. doi: 10.1016/j.culher.2020.12.003. | |
dc.relation.referencesen | [2] Atik, M.E., Duran, Z., Yanalak, M., Seker, D.Z., & Ak, A. (2023). 3D modeling of historical measurement instruments using photogrammetric and laser scanning techniques. Digital Applications in Archaeology and Cultural Heritage, 30, article number e00286. doi: 10.1016/j.daach.2023.e00286. | |
dc.relation.referencesen | [3] Barrile, V., Bernardo, E., Fotia, A., & Bilotta, G. (2022). Integration of laser scanner, ground-penetrating radar, 3D models and mixed reality for artistic, archaeological and cultural heritage dissemination. Heritage, 5(3), 1529-1550. doi: 10.3390/heritage5030080. | |
dc.relation.referencesen | [4] Bercigli, M., Miho, E., & Lamaj, J. (2022). Digital survey for the valorization and conservation of the church of St. Mary in Leusë. In R. Volzone & J.L. Fontes (Eds.), Architecture of soul. Diachronic and multidisciplinary readings (pp. 363-378). Lisbon: Institute of Medieval Studies. | |
dc.relation.referencesen | [5] Cilek, A., Berberoglu, S., Donmez, C., & Cilek, M.Ü. (2020). Generation of high-resolution 3-D maps for landscape planning and design using UAV technologies. Journal of Digital Landscape Architecture, 5(1), 275-284. doi: 10.14627/537690029. | |
dc.relation.referencesen | [6] Dokolova, A. (2023). Features of digital public art of the twenty-first century: Art of Physical and virtual space. Notes on Art Criticism, 43, 3-8. doi: 10.32461/2226-2180.43.2023.286827. | |
dc.relation.referencesen | [7] Fazio, L., Lo Brutto, M., Barsanti, S.G., & Malatesta, S.G. (2022). The virtual reconstruction of the Aesculapius and Hygeia statues from the sanctuary of Isis in Lilybaeum: Methods and tools for ancient sculptures’ enhancement. Applied Science, 12(7), article number 3569. doi: 10.3390/app12073569. | |
dc.relation.referencesen | [8] Ferdani, D., Demetrescu, E., Cavalieri, M., Pace, G., & Lenzi, S. (2020). 3D modelling and visualization in field archaeology. From survey to interpretation of the past using digital technologies. Groma. Documenting Archaeology, 4, 1-21. doi: 10.12977/groma26. | |
dc.relation.referencesen | [9] Fiz, J.I., Martín, P.M., Cuesta, R., Subías, E., Codina, D., & Cartes, A. (2022). Examples and results of aerial photogrammetry in archeology with UAV: Geometric documentation, high resolution multispectral analysis, models and 3D printing. Drones, 6(3), article number 59. doi: 10.3390/drones6030059. | |
dc.relation.referencesen | [10] Gryglewski, P., Ivashko, Yu., Chernyshev, D., Chang, P., & Dmytrenko, A. (2020). Art as a message realized through various means of artistic expression. Art Inquiry, 22, 57-88. doi: 10.26485/AI/2020/22/4. | |
dc.relation.referencesen | [11] Jones, C.A., & Church, E. (2020). Photogrammetry is for everyone: Structure-from-motion software user experiences in archaeology. Journal of Archaeological Science: Reports, 30, article number 102261. doi: 10.1016/j.jasrep.2020.102261. | |
dc.relation.referencesen | [12] Kaimaris, D., et al. (2022). Use of archaeological archives: 3D visualization of old two-dimensional drawings. In Proceedings of the 16th ICA conference "Digital approaches to cartographic heritage" (pp. 230-243). Thessaloniki: Aristotle University of Thessaloniki. | |
dc.relation.referencesen | [13] Karpov, V. (2023). Restoration of monumental painting in Ukraine in the 1950-1960s. Social aspirations and ideological collisions. Culture and Contemporaneity, 2, 88-94. doi: 10.32461/2226-0285.2.2023.293868. | |
dc.relation.referencesen | [14] Karwel, A.K., & Markiewicz, J. (2022). The methodology of the archival aerial image orientation based on the SfM method. Sensors and Machine Learning Applications, 1(2). doi: 10.55627/smla.001.02.0015. | |
dc.relation.referencesen | [15] Mandor, A.F., & Mostafa, K.S. (2022). The role of the UNESCO in protecting the background archeological global heritage in Egypt for achieving sustainable development a comparative study with Marocco. Journal of Environmental Science, 51(7), 119-152. doi: 10.21608/jes.2022.140434.1240. | |
dc.relation.referencesen | [16] Mantovan, L., & Nanni, L. (2020). The computerization of archaeology: Survey on artificial intelligence techniques. SN Computer Science, 1, article number 267. doi: 10.1007/s42979-020-00286-w. | |
dc.relation.referencesen | [17] Mustafaraj, E., Luga, E., Corradi, M., Borri, A., Muceku, Y., & Zharkalli, A. (2021). Physical-mechanical properties of stone masonry of Gjirokastër, Albania. Materials, 14(5), article number 1127. doi: 10.3390/ma14051127. | |
dc.relation.referencesen | [18] Nesterov, V. (2023). Integration of artificial intelligence technologies in data engineering: Challenges and prospects in the modern information environment. Bulletin of Cherkasy State Technological University, 28(4), 82-92. doi: 10.62660/2306-4412.4.2023.82-90. | |
dc.relation.referencesen | [19] Pagliano, A. (2022). Digital technologies for the knowledge and valorisation of inaccessible archeological sites in Phlagraean Fields. In ICAUD 2021 – international conference on architecture and urban design. Tirana: Epoka University. | |
dc.relation.referencesen | [20] Petërçi, E. (2022). The virtual representation of converted sacred spaces. The case of Saint Nicholas Church in Albania. In ICAUD 2021 – international conference on architecture and urban design. Tirana: Epoka University. | |
dc.relation.referencesen | [21] Pietroni, E., & Ferdani, D. (2021). Virtual restoration and virtual reconstruction in cultural heritage: Terminology, methodologies, visual representation techniques and cognitive models. Information, 12(4), article number 167. doi: 10.3390/info12040167. | |
dc.relation.referencesen | [22] Prychepii, Ye. (2022). Structures of the cosmos and sacred sets on the artefact of the paleolithic. Interdisciplinary Cultural and Humanities Review, 1(1), 30-39. | |
dc.relation.referencesen | [23] Putch, A. (2017). Linear measurement accuracy of DJI drone platforms and photogrammetry. San Francisco: DroneDeploy. | |
dc.relation.referencesen | [24] Rodríguez-Martín, M., & Rodríguez-Gonzálvez, P. (2020). Suitability of automatic photogrammetric reconstruction configurations for small archaeological remains. Sensors, 20(10), article number 2936. doi: 10.3390/s20102936. | |
dc.relation.referencesen | [25] Shumka, L. (2022). Particularities of wooden carved iconostases in selected post-Byzantine churches of Albania. Muzeologia a Kulturne Dedicstvo, 10(4), 79-88. doi: 10.46284/mkd.2022.10.4.6. | |
dc.relation.referencesen | [26] Škrabić Perić, B., Šimundić, B., Muštra, V., & Vugdelija, M. (2021). The role of UNESCO cultural heritage and cultural sector in tourism development: The case of EU countries. Sustainability, 13(10), article number 5473. doi: 10.3390/su13105473. | |
dc.relation.referencesen | [27] Zaragoza, I.M.E., Caroti, G., & Piemonte, A. (2021). The use of image and laser scanner survey archives for cultural heritage 3D modelling and change analysis. ACTA IMEKO, 10(1), 114-121. doi: 10.21014/acta_imeko.v10i1.847. | |
dc.relation.referencesen | [28] Zhong, B., & Li, Y. (2019). Image feature point matching based on improved SIFT algorithm. In 2019 IEEE 4th international conference on image, vision and computing (ICIVC) (pp. 489-493). Xiamen: Institute of Electrical and Electronics Engineers. doi: 10.1109/ICIVC47709.2019.8981329. | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
dc.subject | фотограмметрія | |
dc.subject | культурна спадщина | |
dc.subject | 3D-візуалізація | |
dc.subject | реставрація історичних цінностей | |
dc.subject | деталізація моделей | |
dc.subject | photogrammetry | |
dc.subject | cultural heritage | |
dc.subject | 3D visualization | |
dc.subject | restoration of historical values | |
dc.subject | model detailing | |
dc.subject.udc | 902 | |
dc.subject.udc | 72.02 | |
dc.title | Modern technologies in archaeology and their application in architectural object restoration | |
dc.title.alternative | Сучасні технології в археології та їх застосування у реставрації архітектурних об’єктів | |
dc.type | Article |
Files
Original bundle
License bundle
1 - 1 of 1