Investigation of Changes in Natural Gas Parameters along a Damaged Gas Pipeline
dc.citation.epage | 71 | |
dc.citation.issue | 1 | |
dc.citation.journalTitle | Енергетика та системи керування | |
dc.citation.spage | 64 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Джигирей, Віктор | |
dc.contributor.author | Матіко, Федір | |
dc.contributor.author | Dzhyhyrei, Victor | |
dc.contributor.author | Matiko, Fedir | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-10T08:12:27Z | |
dc.date.created | 2024-02-28 | |
dc.date.issued | 2024-02-28 | |
dc.description.abstract | У роботі представлено математичну модель стаціонарного руху природного газу у похилому газопроводі, яка дає можливість обчислити значення параметрів газу (тиску, температури, фактора стисливості) у довільному перерізі газопроводу. Представлено також удосконалену авторами математичну модель, яка враховує зміну швидкості потоку газу вздовж газопроводу. Для підтвердження необхідності застосування удосконаленої математичної моделі виділено Комплекс 1, який характеризує вплив сил тертя та втрат тиску, та Комплекс 2, який визначає вплив швидкості потоку. На основі співвідношення цих комплексів сформовано кількісний критерій застосування удосконаленої математичної моделі. Представлено приклад порівняння комплексів для довгого газопроводу та короткого газопроводу з великою витратою газу. Показано, що за умови коли значення комплексів є одного порядку, відносне відхилення значень тиску в кінці газопроводу отриманих за відомою та удосконаленою моделлю можуть відрізнятися на 8 – 10%. Отже у такому випадку потрібно застосовувати удосконалену авторами математичну модель. Представлено приклад застосування математичних моделей для аналізу розподілу тиску та температури газу вздовж газопроводу зі значними пошкодженнями. Отримано профіль зміни тиску вздовж цього газопроводу для режиму його експлуатації з обмеженням витрати газу на вході та без обмеження. Показано, що при збільшенні площі пошкодження зміна профілю тиску для цих режимів експлуатації має характерні особливості, які можуть бути використані під час розроблення системи визначення об’єму газу, втраченого внаслідок раптових пошкоджень газопроводів. | |
dc.description.abstract | The paper presents a mathematical model of the stationary flow of natural gas in an inclined gas pipeline, which makes it possible to calculate the gas parameters (pressure, temperature, compressibility factor) in every cross-section of gas pipeline. An improved mathematical model is also proposed by the authors, which considers the change in the gas flowrate along the gas pipeline. Complex 1 characterizing the effect of frictional forces and pressure losses and Complex 2 determining the effect of flow velocity were proposed to confirm the need to use an improved mathematical model. Based on the ratio of these complexes, a quantitative criterion was formed for the application of the improved mathematical model. An example of a comparison of complexes for a long pipeline and a short pipeline with a large gas flowrate is presented. Provided that the complexes are of the same order, the relative deviation of the pressures at the end of the gas pipeline obtained by the known and improved model can differ by 8 – 10%. Therefore, in such a case, it is necessary to apply the mathematical model improved by the authors. An example of the application of mathematical models is presented for the analysis of gas pressure and temperature distribution along a gas pipeline with significant damage. The pressure profile along this gas pipeline was obtained for its operating mode with gas flowrate limitation at the inlet and without limitation. It is shown that when the area of damage increases, the change in the pressure profile for these operating modes has features that can be used during the development of a system for determining the volume of gas lost because of sudden damage to gas pipelines. | |
dc.format.extent | 64-71 | |
dc.format.pages | 8 | |
dc.identifier.citation | Dzhyhyrei V. Investigation of Changes in Natural Gas Parameters along a Damaged Gas Pipeline / Victor Dzhyhyrei, Fedir Matiko // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 10. — No 1. — P. 64–71. | |
dc.identifier.citationen | Dzhyhyrei V. Investigation of Changes in Natural Gas Parameters along a Damaged Gas Pipeline / Victor Dzhyhyrei, Fedir Matiko // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 10. — No 1. — P. 64–71. | |
dc.identifier.doi | doi.org/10.23939/jeecs2024.01.064 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/64047 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Енергетика та системи керування, 1 (10), 2024 | |
dc.relation.ispartof | Energy Engineering and Control Systems, 1 (10), 2024 | |
dc.relation.references | [1] Non-CO2 Greenhouse Gas Emission Projections & Mitigation. United States Environmental Protection Agency. https://www.epa.gov/global-mitigation-non-co2-greenhouse-gases. (accessed on April 14, 2024) | |
dc.relation.references | [2] Shapoval, S., Mysak, S., Shapoval, P., Matiko, H. (2024). Analysis of Current Use of Renewable and Alternative Energy Sources by European Countries. Lecture Notes in Civil Engineering, (438), 381–391. | |
dc.relation.references | [3] Kuntjoro Adji Sidarto, Adhe Kania, Leksono Mucharam, Darmadi, R. Arman Widhymarmanto (2017). Determination of Gas Pressure Distribution in a Pipeline Network using the Broyden Method. Journal of Engineering and Technological Sciences,· 49(6), 750–769. | |
dc.relation.references | [4] L. V. Lesovoy, L. V. Blyzniak (2004). Determination of natural gas pressure at the points of its removals in a gas pipeline with branches. Quality control methods and devices, No. 12, 88–91 | |
dc.relation.references | [5] Stoica D. B., Eparu C., Neacsa A., Prundurel, A., Simescu, B. N. (2022). Investigation of the gas losses in transmission networks. Journal of Petroleum Exploration and Production Technology, 12, 1665–1676. | |
dc.relation.references | [6] Arpino, F., Dell'Isola, M., Ficco, G. et al.: Unaccounted for gas in natural gas transmission networks: Prediction model and analysis of the solutions. Journal of Natural Gas Science and Engineering (17), 58–70 (2014). | |
dc.relation.references | [7] Y. V. Doroshenko (2020), Modeling of gas leaks from gas pipelines in emergency situations, Visnyk VPI, Vol. 3, pp. 22–28, . | |
dc.relation.references | [8] Dong, Y., Gao, H., Zhou, J., Feng Y. (2003). Mathematical modeling of gas release through holes in pipelines. Chemical Engineering Journal (92), 237–241. | |
dc.relation.references | [9] Matiko, F., Lesovoy, L., Dzhigirei, V. (2016). Improvement of mathematical models of natural gas flow during its outflow from a damaged gas pipeline. Bulletin of the Engineering Academy of Ukraine, (1), 224–230. | |
dc.relation.references | [10] Igbojionu, A. C., Obibuike, U. J., Udechukwu, M., Mbakaogu, C. D., Ekwueme, S. T. (2020). Hydrocarbon Spill Management Through Leak Localization in Natural Gas Pipeline. International Journal of Oil, Gas and Coal Engineering, 137–142. | |
dc.relation.references | [11] Obibuike, U. J., Kerunwa, Udechukwu, A.M., Eluagu, R. C., Igbojionu, A. C., Ekwueme, S. T. (2020). Mathematical Approach to Determination of the Pressure at the Point of Leak in Natural Gas Pipeline. Int. Journal of Oil, Gas and Coal Engineering, 8(1), 22–27. | |
dc.relation.references | [12] Peralta, J., Verde, C., Delgado F. (2020). Wave propagation patterns in gas pipelines for fault location. 21st IFAC World Congress, Berlin, Germany, 198–203. | |
dc.relation.references | [13] Matiko, F. (2014). Determination of the amount of natural gas in sections of gas pipelines of complex configuration. Quality control methods and devices, 1(32), 54–63. | |
dc.relation.references | [14] Mujtaba, S. M., Lemma, T. A., Taqvi, S. A. A., Ofei, T. N. and Vandrangi, S. K. (2020). Leak Detection in Gas Mixture Pipelines under Transient Conditions Using Hammerstein Model and Adaptive Thresholds, Processes, 8(474), 1–21. | |
dc.relation.references | [15] Kwestarz, M. A., Osiadacz, A. J., Kotyński, Ł.: (2019). Method for leak detection and location for gas networks. Archives of Mining Sciences, (64), 1, 131–150. | |
dc.relation.references | [16] DSTU ISO 12213-3:2009. Natural gas. Calculation of the compressibility factor. Part 3. Calculation based on physical properties (ISO 12213-3:2006, IDT) | |
dc.relation.references | [17] Natural gas. Methodology for calculating the compressibility coefficient in the pressure range of 12 ... 25 MPa: DSSDD 4-2002. [Valid from 2002-07-01] / E. P. Pistun, F. D. Matiko. K.: State Standard of Ukraine, 2002. 5 p. (Methodology of DSSDD). | |
dc.relation.referencesen | [1] Non-CO2 Greenhouse Gas Emission Projections & Mitigation. United States Environmental Protection Agency. https://www.epa.gov/global-mitigation-non-co2-greenhouse-gases. (accessed on April 14, 2024) | |
dc.relation.referencesen | [2] Shapoval, S., Mysak, S., Shapoval, P., Matiko, H. (2024). Analysis of Current Use of Renewable and Alternative Energy Sources by European Countries. Lecture Notes in Civil Engineering, (438), 381–391. | |
dc.relation.referencesen | [3] Kuntjoro Adji Sidarto, Adhe Kania, Leksono Mucharam, Darmadi, R. Arman Widhymarmanto (2017). Determination of Gas Pressure Distribution in a Pipeline Network using the Broyden Method. Journal of Engineering and Technological Sciences,· 49(6), 750–769. | |
dc.relation.referencesen | [4] L. V. Lesovoy, L. V. Blyzniak (2004). Determination of natural gas pressure at the points of its removals in a gas pipeline with branches. Quality control methods and devices, No. 12, 88–91 | |
dc.relation.referencesen | [5] Stoica D. B., Eparu C., Neacsa A., Prundurel, A., Simescu, B. N. (2022). Investigation of the gas losses in transmission networks. Journal of Petroleum Exploration and Production Technology, 12, 1665–1676. | |
dc.relation.referencesen | [6] Arpino, F., Dell'Isola, M., Ficco, G. et al., Unaccounted for gas in natural gas transmission networks: Prediction model and analysis of the solutions. Journal of Natural Gas Science and Engineering (17), 58–70 (2014). | |
dc.relation.referencesen | [7] Y. V. Doroshenko (2020), Modeling of gas leaks from gas pipelines in emergency situations, Visnyk VPI, Vol. 3, pp. 22–28, . | |
dc.relation.referencesen | [8] Dong, Y., Gao, H., Zhou, J., Feng Y. (2003). Mathematical modeling of gas release through holes in pipelines. Chemical Engineering Journal (92), 237–241. | |
dc.relation.referencesen | [9] Matiko, F., Lesovoy, L., Dzhigirei, V. (2016). Improvement of mathematical models of natural gas flow during its outflow from a damaged gas pipeline. Bulletin of the Engineering Academy of Ukraine, (1), 224–230. | |
dc.relation.referencesen | [10] Igbojionu, A. C., Obibuike, U. J., Udechukwu, M., Mbakaogu, C. D., Ekwueme, S. T. (2020). Hydrocarbon Spill Management Through Leak Localization in Natural Gas Pipeline. International Journal of Oil, Gas and Coal Engineering, 137–142. | |
dc.relation.referencesen | [11] Obibuike, U. J., Kerunwa, Udechukwu, A.M., Eluagu, R. C., Igbojionu, A. C., Ekwueme, S. T. (2020). Mathematical Approach to Determination of the Pressure at the Point of Leak in Natural Gas Pipeline. Int. Journal of Oil, Gas and Coal Engineering, 8(1), 22–27. | |
dc.relation.referencesen | [12] Peralta, J., Verde, C., Delgado F. (2020). Wave propagation patterns in gas pipelines for fault location. 21st IFAC World Congress, Berlin, Germany, 198–203. | |
dc.relation.referencesen | [13] Matiko, F. (2014). Determination of the amount of natural gas in sections of gas pipelines of complex configuration. Quality control methods and devices, 1(32), 54–63. | |
dc.relation.referencesen | [14] Mujtaba, S. M., Lemma, T. A., Taqvi, S. A. A., Ofei, T. N. and Vandrangi, S. K. (2020). Leak Detection in Gas Mixture Pipelines under Transient Conditions Using Hammerstein Model and Adaptive Thresholds, Processes, 8(474), 1–21. | |
dc.relation.referencesen | [15] Kwestarz, M. A., Osiadacz, A. J., Kotyński, Ł., (2019). Method for leak detection and location for gas networks. Archives of Mining Sciences, (64), 1, 131–150. | |
dc.relation.referencesen | [16] DSTU ISO 12213-3:2009. Natural gas. Calculation of the compressibility factor. Part 3. Calculation based on physical properties (ISO 12213-3:2006, IDT) | |
dc.relation.referencesen | [17] Natural gas. Methodology for calculating the compressibility coefficient in the pressure range of 12 ... 25 MPa: DSSDD 4-2002. [Valid from 2002-07-01], E. P. Pistun, F. D. Matiko. K., State Standard of Ukraine, 2002. 5 p. (Methodology of DSSDD). | |
dc.relation.uri | https://www.epa.gov/global-mitigation-non-co2-greenhouse-gases | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
dc.subject | пошкодження газопроводу | |
dc.subject | математична модель | |
dc.subject | профіль тиску | |
dc.subject | вимірювання параметрів газу | |
dc.subject | об’єм втраченого газу | |
dc.subject | gas pipeline damage | |
dc.subject | mathematical model | |
dc.subject | pressure profile | |
dc.subject | measurement of gas parameters | |
dc.subject | lost gas volume | |
dc.title | Investigation of Changes in Natural Gas Parameters along a Damaged Gas Pipeline | |
dc.title.alternative | Дослідження зміни параметрів природного газу вздовж газопроводу з пошкодженнями | |
dc.type | Article |
Files
License bundle
1 - 1 of 1