Cleaning of Gas Emissions By Biological Method

dc.citation.epage153
dc.citation.issue3
dc.citation.spage147
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorDyachok, Vasyl
dc.contributor.authorVenher, Liubov
dc.contributor.authorHuhlych, Serhiy
dc.contributor.authorSvjantko, Iryna
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-05-09T07:38:53Z
dc.date.available2023-05-09T07:38:53Z
dc.date.created2022-03-01
dc.date.issued2022-03-01
dc.description.abstractThe paper shows the possibility of using chlorophyllsynthesizing microalgae of Chlorella Vulgaris to purify biogas from carbon dioxide (CO2), hydrogen sulfide (H2S) and ammonia (NH3). Experimental dependences of the dynamics of CO2 uptake by microalgae under the action of H2S inhibitor and NH3 activator are presented. A mathematical description of the growth of biomass of microalgae Chlorella Vulgaris depending on the concentration of hydrogen sulfide and ammonia was obtained. The optimal values of hydrogen sulfide and ammonia concentration for the efficient process of carbon dioxide uptake by chlorophyll-synthesizing microalgae Chlorella Vulgaris from biomethanization gas have been established.
dc.format.extent147-153
dc.format.pages7
dc.identifier.citationCleaning of Gas Emissions By Biological Method / Vasyl Dyachok, Liubov Venher, Serhiy Huhlych, Iryna Svjantko // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 7. — No 3. — P. 147–153.
dc.identifier.citationenCleaning of Gas Emissions By Biological Method / Vasyl Dyachok, Liubov Venher, Serhiy Huhlych, Iryna Svjantko // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 7. — No 3. — P. 147–153.
dc.identifier.doidoi.org/10.23939/ep2022.03.147
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/59041
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofEnvironmental Problems, 3 (7), 2022
dc.relation.referencesAwe, O. W., Zhao, Y., Nzihou, A., Nzihou, A., Minh, D. P., &
dc.relation.referencesLyczko, N. (2017). A Review of Biogas Utilisation,
dc.relation.referencesPurification and Upgrading Technologies. Waste Biomass
dc.relation.referencesValor, 8. 267–283. doi: https://doi.org/10.1007/s12649-016-9826-4
dc.relation.referencesBailón Allegue, L., & Hinge, J. (2014). Biogas upgrading
dc.relation.referencesEvaluation of methods for H2S removal. Danish
dc.relation.referencesTechnological Centre. Copenhagen.
dc.relation.referencesDyachok, V., Huhlych, S., Katysheva, V., & Mandryk, S.
dc.relation.references(2021). About the Optimal Ratio Inhibitor and Activators of
dc.relation.referencesCarbon Dioxide Sorption Process by Using Chlorophyllsynthesizing
dc.relation.referencesChlorella microalgae. Journal of Ecological
dc.relation.referencesEngineering, 22(5), 26–31. doi: https://doi.org/10.12911/22998993/135900
dc.relation.referencesChlorella in sewage treatment. (2020). Retrieved from
dc.relation.referenceshttps://hlorella.jimdo.com/
dc.relation.referencesDyachok, V., Huhlych, S., Katysheva, V., & Mandryk, S.
dc.relation.references(2017). Absorption of carbon dioxide from a mixture of air
dc.relation.referenceswith sulfur dioxide (in Ukrainian). Naukovi Pratsi Onakht, 81(1), 59–65.
dc.relation.referencesRetrieved from http://journals.uran.ua/swonaft
dc.relation.referencesDyachok,V. V., Mandryk, S. T., Huhlych, S. I., & Slyvka, M. M.
dc.relation.references(2020). Study on the impact of activators in the presence of
dc.relation.referencesan inhibitor on the dynamics of carbon dioxide absorption
dc.relation.referencesby chlorophyll-synthesizing microalgae. Journal of
dc.relation.referencesEcological Engineering, 21(5), 189–196. doi:
dc.relation.referenceshttps://doi.org/10.12911/22998993/122674
dc.relation.referencesKaltschmitt, M., Hartmann, H., & Hofbauer, H. (2016). Energie
dc.relation.referencesaus Biomasse. Grundlagen, Techniken und Verfahren. 3rd ed.
dc.relation.referencesBerlin: Springer. Retrieved from https://www.openagrar.de/receive/openagrar_mods_00022991
dc.relation.referencesManakov, M. N., & Pobedimskiy, D. H. (1990). Theoretical
dc.relation.referencesbases technology of microbiological productions
dc.relation.referencestechnology. Ahropromisdat. 67 % of greenhouse gas emissions are caused by energy and
dc.relation.referencesburning of fossil fuels (in Ukrainian). (2020). Ofitsiyhyy
dc.relation.referencesportal Ministerstva zakhystu dovkilla i pryrodnykh resursiv
dc.relation.referencesUkrainy. Retrieved from: https://mepr.gov.ua/news/34553.htm.
dc.relation.referencesPoltorak, O. M., & Chukhray, O. S. (1972). Physicochemical
dc.relation.referencesbases of enzymatic catalysis.
dc.relation.referencesZolotaryova, O. K., Shnyukova, Ye. I., Syvash, O.O., &
dc.relation.referencesMykhaylenko, N. F. (2008). Prospects for the use of
dc.relation.referencesmicroalgae in biotechnology. In: O.K. Zolotaryovoa (Ed.)
dc.relation.referencesAlterpres, 234.
dc.relation.referencesenAwe, O. W., Zhao, Y., Nzihou, A., Nzihou, A., Minh, D. P., &
dc.relation.referencesenLyczko, N. (2017). A Review of Biogas Utilisation,
dc.relation.referencesenPurification and Upgrading Technologies. Waste Biomass
dc.relation.referencesenValor, 8. 267–283. doi: https://doi.org/10.1007/s12649-016-9826-4
dc.relation.referencesenBailón Allegue, L., & Hinge, J. (2014). Biogas upgrading
dc.relation.referencesenEvaluation of methods for H2S removal. Danish
dc.relation.referencesenTechnological Centre. Copenhagen.
dc.relation.referencesenDyachok, V., Huhlych, S., Katysheva, V., & Mandryk, S.
dc.relation.referencesen(2021). About the Optimal Ratio Inhibitor and Activators of
dc.relation.referencesenCarbon Dioxide Sorption Process by Using Chlorophyllsynthesizing
dc.relation.referencesenChlorella microalgae. Journal of Ecological
dc.relation.referencesenEngineering, 22(5), 26–31. doi: https://doi.org/10.12911/22998993/135900
dc.relation.referencesenChlorella in sewage treatment. (2020). Retrieved from
dc.relation.referencesenhttps://hlorella.jimdo.com/
dc.relation.referencesenDyachok, V., Huhlych, S., Katysheva, V., & Mandryk, S.
dc.relation.referencesen(2017). Absorption of carbon dioxide from a mixture of air
dc.relation.referencesenwith sulfur dioxide (in Ukrainian). Naukovi Pratsi Onakht, 81(1), 59–65.
dc.relation.referencesenRetrieved from http://journals.uran.ua/swonaft
dc.relation.referencesenDyachok,V. V., Mandryk, S. T., Huhlych, S. I., & Slyvka, M. M.
dc.relation.referencesen(2020). Study on the impact of activators in the presence of
dc.relation.referencesenan inhibitor on the dynamics of carbon dioxide absorption
dc.relation.referencesenby chlorophyll-synthesizing microalgae. Journal of
dc.relation.referencesenEcological Engineering, 21(5), 189–196. doi:
dc.relation.referencesenhttps://doi.org/10.12911/22998993/122674
dc.relation.referencesenKaltschmitt, M., Hartmann, H., & Hofbauer, H. (2016). Energie
dc.relation.referencesenaus Biomasse. Grundlagen, Techniken und Verfahren. 3rd ed.
dc.relation.referencesenBerlin: Springer. Retrieved from https://www.openagrar.de/receive/openagrar_mods_00022991
dc.relation.referencesenManakov, M. N., & Pobedimskiy, D. H. (1990). Theoretical
dc.relation.referencesenbases technology of microbiological productions
dc.relation.referencesentechnology. Ahropromisdat. 67 % of greenhouse gas emissions are caused by energy and
dc.relation.referencesenburning of fossil fuels (in Ukrainian). (2020). Ofitsiyhyy
dc.relation.referencesenportal Ministerstva zakhystu dovkilla i pryrodnykh resursiv
dc.relation.referencesenUkrainy. Retrieved from: https://mepr.gov.ua/news/34553.htm.
dc.relation.referencesenPoltorak, O. M., & Chukhray, O. S. (1972). Physicochemical
dc.relation.referencesenbases of enzymatic catalysis.
dc.relation.referencesenZolotaryova, O. K., Shnyukova, Ye. I., Syvash, O.O., &
dc.relation.referencesenMykhaylenko, N. F. (2008). Prospects for the use of
dc.relation.referencesenmicroalgae in biotechnology. In: O.K. Zolotaryovoa (Ed.)
dc.relation.referencesenAlterpres, 234.
dc.relation.urihttps://doi.org/10.1007/s12649-016-9826-4
dc.relation.urihttps://doi.org/10.12911/22998993/135900
dc.relation.urihttps://hlorella.jimdo.com/
dc.relation.urihttp://journals.uran.ua/swonaft
dc.relation.urihttps://doi.org/10.12911/22998993/122674
dc.relation.urihttps://www.openagrar.de/receive/openagrar_mods_00022991
dc.relation.urihttps://mepr.gov.ua/news/34553.htm
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.rights.holder© Dyachok V., Venher L., Huhlych S., Svjantko I., 2022
dc.subjectmicroalgae Chlorella Vulgaris
dc.subjectbiogas
dc.subjectcarbon dioxide (CO2)
dc.subjecthydrogen sulfide (H2S)
dc.subjectammonia (NH3)
dc.subjectnitrogen oxides (NxOy)
dc.subjectsulfur dioxide (SO2)
dc.titleCleaning of Gas Emissions By Biological Method
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2022v7n3_Dyachok_V-Cleaning_of_Gas_Emissions_147-153.pdf
Size:
262.4 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2022v7n3_Dyachok_V-Cleaning_of_Gas_Emissions_147-153__COVER.png
Size:
1.12 MB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.79 KB
Format:
Plain Text
Description: