Комплексні гідрогелі на основі аквазолу та поліакриламіду

dc.citation.epage201
dc.citation.issue2
dc.citation.journalTitleChemistry, Technology and Application of Substances
dc.citation.spage196
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorЧобіт, М. Р.
dc.contributor.authorТокарев, В. С.
dc.contributor.authorВасильєв, В. П.
dc.contributor.authorПанченко, Ю. В.
dc.contributor.authorChobit, M.
dc.contributor.authorTokarev, V.
dc.contributor.authorVasylyev, V.
dc.contributor.authorPanchenko, Yu.
dc.coverage.placenameLviv
dc.coverage.placenameLviv
dc.date.accessioned2025-03-05T07:39:15Z
dc.date.created2005-03-01
dc.date.issued2005-03-01
dc.description.abstractУ роботі описано одержання гідрогелевих композитів, що являють собою зшиті структури на основі поліакриламіду та полі-2-етил-2-оксазоліну (аквазолу); подано криві кінетики набрякання синтезованих комплексних гідрогелів із дослідженням термомеханічних властивостей матеріалів, одержаних за цією методикою. Описано процедуру синтезу гідрогелевих композитів із подальшим аналізом їх фізико-хімічних властивостей, наведено графічне зображення цих закономірностей. У дослідженнях продемонстровано низку зразків, синтезованих із різним співвідношенням вихідних реагентів, та залежність їхніх властивостей від будови.
dc.description.abstractThe paper describes the production of hydrogel composites, which are crosslinked structures based on polyacrylamide and poly-2-ethyl-2-oxazoline (aquazole); study of the kinetics of swelling of the obtained hydrogels and study of the thermomechanical properties of the obtained material. The method of synthesis of hydrogel composites and their physicochemical and thermomechanical properties and graphic representation of these laws considered was present. A number of samples with different ratios of starting materials synthesized and the dependence of their properties on the structure was established.
dc.format.extent196-201
dc.format.pages6
dc.identifier.citationКомплексні гідрогелі на основі аквазолу та поліакриламіду / М. Р. Чобіт, В. С. Токарев, В. П. Васильєв, Ю. В. Панченко // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Том 5. — № 2. — С. 196–201.
dc.identifier.citationenComplex hydrogels based on aquasol and polyacrylamide / M. Chobit, V. Tokarev, V. Vasylyev, Yu. Panchenko // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 5. — No 2. — P. 196–201.
dc.identifier.doidoi.org/10.23939/ctas2022.01.196
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63655
dc.language.isouk
dc.publisherLviv Politechnic Publishing House
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (5), 2022
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (5), 2022
dc.relation.references1. Daniele M. A., Adams A. A., Naciri J., S North. H. & Ligler F. S. (2014). Interpenetrating networks based on gelatin methacrylamide and PEG formed using concurrent thiol click chemistries for hydrogel tissue engineering scaffolds, Biomaterials, 35, 1845-1856. https://doi.org/10.1016/j.biomaterials.2013.11.009
dc.relation.references2. Azami M., Moosavifar M. J., Baheiraei N., Moztarzadeh F. & Ai J. (2012). Preparation of a biomimetic nanocomposite scaffold for bone tissue engineering via mineralization of gelatin hydrogel and study of mineral transformation in simulated body fluid, J. Biomed. Mater. Res. A., 100, 1347-1355. https://doi.org/10.1002/jbm.a.34074
dc.relation.references3. Emami, Z., Ehsani, M., Zandi, M., Foudazi, R. (OCT 15 2018). Controlling alginate oxidation conditions for making alginate-gelatin hydrogels, Carbohydrate Polymers, 198, 509-517. https://doi.org/10.1016/j.carbpol.2018.06.080
dc.relation.references4. Lowman A. M. & Peppas N. A. (1999). Hydro- gels. Encyclopedia Controlled Release., 1, (397-418.
dc.relation.references5. Peppas N. A., Bures P., Leobandung W. & Ichikawa H. (2000, July). Hydrogels in pharmaceutical formulations. Eur J. Pharm Biopharm, 50(1), 27-46. https://doi.org/10.1016/S0939-6411(00)00090-4
dc.relation.references6. Suvarna Kurhade, Munira Momin, Pallavi Khanekar & Supriya Mhatre (2013). Novel Biocompatible Honey Hydrogel Wound Healing Sponge for Chronic Ulcers, International Journal of Drug Delivery, 5, 353-361.
dc.relation.references7. Habiboallah G., Nasroallah S. & Mahdi Z. (2008). Histological evaluation of Curcuma longa-ghee formulation and hyaluronic acid on gingival healing in dog. Journal of Ethnopharmacology, 120, 335-341. https://doi.org/10.1016/j.jep.2008.09.011
dc.relation.references8. Kim G. H., Kang Y. M. & Kang K. N. (2011). Wound. Dressings for Wound Healing and Drug, Delivery, Tissue Engineering and Regenerative Medicine, 8(1), 1-7.
dc.relation.references9. Orsini S., Nasa J. La, Modugno F., Colombini M. P. (2013). Characterization of Aquazol polymers using techniques based on pyrolysis and mass spectrometry. J. Anal. Appl. Pyrolysis, 104, 218-225. https://doi.org/10.1016/j.jaap.2013.07.012
dc.relation.references10. Colombo A., Tassone F., Mauri M., Salerno D., Delaney J. K., Palmer M R., Ried R. De La, Simonutti R. (2012). Highly transparent nanocomposite films from water-based poly(2-ethyl-2-oxazoline)/TiO2 dispersions. RSC Adv. 2, 6628-6636. https://doi.org/10.1039/c2ra20571h
dc.relation.references11. Ebert B., Singer B., Grimaldi N. (2012). Aquazol as a Consolidant for matte paint on Vietnamese paintings. Journal of the institute of conservation. J. Inst. Conserv., 35, 62-76. https://doi.org/10.1080/19455224.2012.672813
dc.relation.references12. Dworak A., Utrata-Wesołek A., Oleszko N., Wałach W., Trzebicka B., Anioł J., Sieron A. L., Klama- Baryła A., Kawecki M. (2014). Poly(2-substituted-2- oxazoline) surfaces for dermal fibroblasts adhesion and detachment. J. Mater. Sci. Mater. Med., 25, 1149-1163. https://doi.org/10.1007/s10856-013-5135-7
dc.relation.references13. Viegas T. X., Bentley M. D., Milton Harris J., Fang Z., Yoon K., Dizman B., Weimer R., Mero A., Pasut G., Veronese F. M. (2011). Polyoxazoline: chemistry, properties, and applications in drug delivery. Bioconjug. Chem., 22, 976-986. https://doi.org/10.1021/bc200049d
dc.relation.references14. Konradi R., Pidhatika B., Mühlebach A., Textor M. (2008). Poly-2-methyl-2-oxazoline: a peptide-like poly- mer for protein-repellent surfaces. Langmuir, 24, 613-616. https://doi.org/10.1021/la702917z
dc.relation.references15. Pidhatika B., Rodenstein M., Chen Y., Rakhmatullina E., Mühlebach A., Acikgöz C., Textor M., Konradi R. (2012). Comparative stability studies of poly(2- methyl-2-oxazoline) and poly(ethylene glycol) brush coatings. Biointerphases, 7, 1. https://doi.org/10.1007/s13758-011-0001-y
dc.relation.references16. Chen Y., Pidhatika B., T. von Erlach, Konradi R., Textor M., Hall H., Lühmann T. (2014). Comparative assessment of the stability of Nonfouling poly(2-methyl-2- oxazoline) and poly(ethylene glycol) surface films: an in vitro cell culture study. Biointerphases, 9, 031003. https://doi.org/10.1116/1.4878461
dc.relation.references17. Luxenhofer R., Schulz A., Roques C., Li S., Bronich T. K., Batrakova E. V. et al. (2010). Doubly amphiphilic poly (2-oxazoline) s as high-capacity delivery systems for hydrophobic drugs. Biomaterials, 31, 4972-9. https://doi.org/10.1016/j.biomaterials.2010.02.057
dc.relation.referencesen1. Daniele M. A., Adams A. A., Naciri J., S North. H. & Ligler F. S. (2014). Interpenetrating networks based on gelatin methacrylamide and PEG formed using concurrent thiol click chemistries for hydrogel tissue engineering scaffolds, Biomaterials, 35, 1845-1856. https://doi.org/10.1016/j.biomaterials.2013.11.009
dc.relation.referencesen2. Azami M., Moosavifar M. J., Baheiraei N., Moztarzadeh F. & Ai J. (2012). Preparation of a biomimetic nanocomposite scaffold for bone tissue engineering via mineralization of gelatin hydrogel and study of mineral transformation in simulated body fluid, J. Biomed. Mater. Res. A., 100, 1347-1355. https://doi.org/10.1002/jbm.a.34074
dc.relation.referencesen3. Emami, Z., Ehsani, M., Zandi, M., Foudazi, R. (OCT 15 2018). Controlling alginate oxidation conditions for making alginate-gelatin hydrogels, Carbohydrate Polymers, 198, 509-517. https://doi.org/10.1016/j.carbpol.2018.06.080
dc.relation.referencesen4. Lowman A. M. & Peppas N. A. (1999). Hydro- gels. Encyclopedia Controlled Release., 1, (397-418.
dc.relation.referencesen5. Peppas N. A., Bures P., Leobandung W. & Ichikawa H. (2000, July). Hydrogels in pharmaceutical formulations. Eur J. Pharm Biopharm, 50(1), 27-46. https://doi.org/10.1016/S0939-6411(00)00090-4
dc.relation.referencesen6. Suvarna Kurhade, Munira Momin, Pallavi Khanekar & Supriya Mhatre (2013). Novel Biocompatible Honey Hydrogel Wound Healing Sponge for Chronic Ulcers, International Journal of Drug Delivery, 5, 353-361.
dc.relation.referencesen7. Habiboallah G., Nasroallah S. & Mahdi Z. (2008). Histological evaluation of Curcuma longa-ghee formulation and hyaluronic acid on gingival healing in dog. Journal of Ethnopharmacology, 120, 335-341. https://doi.org/10.1016/j.jep.2008.09.011
dc.relation.referencesen8. Kim G. H., Kang Y. M. & Kang K. N. (2011). Wound. Dressings for Wound Healing and Drug, Delivery, Tissue Engineering and Regenerative Medicine, 8(1), 1-7.
dc.relation.referencesen9. Orsini S., Nasa J. La, Modugno F., Colombini M. P. (2013). Characterization of Aquazol polymers using techniques based on pyrolysis and mass spectrometry. J. Anal. Appl. Pyrolysis, 104, 218-225. https://doi.org/10.1016/j.jaap.2013.07.012
dc.relation.referencesen10. Colombo A., Tassone F., Mauri M., Salerno D., Delaney J. K., Palmer M R., Ried R. De La, Simonutti R. (2012). Highly transparent nanocomposite films from water-based poly(2-ethyl-2-oxazoline)/TiO2 dispersions. RSC Adv. 2, 6628-6636. https://doi.org/10.1039/P.2ra20571h
dc.relation.referencesen11. Ebert B., Singer B., Grimaldi N. (2012). Aquazol as a Consolidant for matte paint on Vietnamese paintings. Journal of the institute of conservation. J. Inst. Conserv., 35, 62-76. https://doi.org/10.1080/19455224.2012.672813
dc.relation.referencesen12. Dworak A., Utrata-Wesołek A., Oleszko N., Wałach W., Trzebicka B., Anioł J., Sieron A. L., Klama- Baryła A., Kawecki M. (2014). Poly(2-substituted-2- oxazoline) surfaces for dermal fibroblasts adhesion and detachment. J. Mater. Sci. Mater. Med., 25, 1149-1163. https://doi.org/10.1007/s10856-013-5135-7
dc.relation.referencesen13. Viegas T. X., Bentley M. D., Milton Harris J., Fang Z., Yoon K., Dizman B., Weimer R., Mero A., Pasut G., Veronese F. M. (2011). Polyoxazoline: chemistry, properties, and applications in drug delivery. Bioconjug. Chem., 22, 976-986. https://doi.org/10.1021/bc200049d
dc.relation.referencesen14. Konradi R., Pidhatika B., Mühlebach A., Textor M. (2008). Poly-2-methyl-2-oxazoline: a peptide-like poly- mer for protein-repellent surfaces. Langmuir, 24, 613-616. https://doi.org/10.1021/la702917z
dc.relation.referencesen15. Pidhatika B., Rodenstein M., Chen Y., Rakhmatullina E., Mühlebach A., Acikgöz C., Textor M., Konradi R. (2012). Comparative stability studies of poly(2- methyl-2-oxazoline) and poly(ethylene glycol) brush coatings. Biointerphases, 7, 1. https://doi.org/10.1007/s13758-011-0001-y
dc.relation.referencesen16. Chen Y., Pidhatika B., T. von Erlach, Konradi R., Textor M., Hall H., Lühmann T. (2014). Comparative assessment of the stability of Nonfouling poly(2-methyl-2- oxazoline) and poly(ethylene glycol) surface films: an in vitro cell culture study. Biointerphases, 9, 031003. https://doi.org/10.1116/1.4878461
dc.relation.referencesen17. Luxenhofer R., Schulz A., Roques C., Li S., Bronich T. K., Batrakova E. V. et al. (2010). Doubly amphiphilic poly (2-oxazoline) s as high-capacity delivery systems for hydrophobic drugs. Biomaterials, 31, 4972-9. https://doi.org/10.1016/j.biomaterials.2010.02.057
dc.relation.urihttps://doi.org/10.1016/j.biomaterials.2013.11.009
dc.relation.urihttps://doi.org/10.1002/jbm.a.34074
dc.relation.urihttps://doi.org/10.1016/j.carbpol.2018.06.080
dc.relation.urihttps://doi.org/10.1016/S0939-6411(00)00090-4
dc.relation.urihttps://doi.org/10.1016/j.jep.2008.09.011
dc.relation.urihttps://doi.org/10.1016/j.jaap.2013.07.012
dc.relation.urihttps://doi.org/10.1039/c2ra20571h
dc.relation.urihttps://doi.org/10.1080/19455224.2012.672813
dc.relation.urihttps://doi.org/10.1007/s10856-013-5135-7
dc.relation.urihttps://doi.org/10.1021/bc200049d
dc.relation.urihttps://doi.org/10.1021/la702917z
dc.relation.urihttps://doi.org/10.1007/s13758-011-0001-y
dc.relation.urihttps://doi.org/10.1116/1.4878461
dc.relation.urihttps://doi.org/10.1016/j.biomaterials.2010.02.057
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subjectполімерні композити
dc.subjectгідрогелі
dc.subjectполімеризація
dc.subjectаквазол
dc.subjectнабрякання
dc.subjectpolymer composite
dc.subjecthydrogels
dc.subjectpolymerization
dc.subjectaquazole
dc.subjectswelling
dc.titleКомплексні гідрогелі на основі аквазолу та поліакриламіду
dc.title.alternativeComplex hydrogels based on aquasol and polyacrylamide
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2022v5n2_Chobit_M-Complex_hydrogels_based_196-201.pdf
Size:
838.59 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2022v5n2_Chobit_M-Complex_hydrogels_based_196-201__COVER.png
Size:
467.74 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.87 KB
Format:
Plain Text
Description: