Nonlinear modeling and analysis of damaged reinforced concrete beams using ANSYS and LIRA-SAPR software packages

dc.citation.epage49
dc.citation.issue2
dc.citation.journalTitleТеорія та будівельна практика
dc.citation.spage39
dc.citation.volume6
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorКрасніцький, П. В.
dc.contributor.authorЛободанов, М. М.
dc.contributor.authorKrasnitskyi, Petro
dc.contributor.authorLobodanov, Maksym
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-11-04T09:42:47Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractНаведено детальний порівняльний аналіз нелінійної поведінки залізобетонної балки з пошкодженою арматурою в зоні розтягу під дією поступово зростаючого навантаження до руйнування. Експериментальна балка розміром 2100 мм × 200 мм × 100 мм складається з арматурного стрижня діаметром 20 мм у зоні розтягу, двох арматурних стрижнів діаметром 6 мм у зоні стиснення та хомутів діаметром 6 мм, розташованих на відстані 75 мм один від одного для поперечного армування. Нелінійні розрахунки виконувалися за допомогою ANSYS та LIRA-SAPR з однаковими початковими умовами, застосованими до обох моделей для точного порівняння. Дослідження зосереджено на ключових аспектах, таких як точність результатів, простота використання та час, необхідний для нелінійних розрахунків, включаючи матеріальну та геометричну нелінійність. Виділяючи сильні та слабкі сторони кожного програмного забезпечення, дослідження пропонує розуміння для інженерів та дослідників, які працюють над складним структурним моделюванням залізобетону.
dc.description.abstractThis article presents a comparative analysis of the nonlinear behavior of a reinforced concrete beam with damaged reinforcement in the tension zone under a gradually increasing load until failure. The experimental beam, measuring 2100 mm × 200 mm × 100 mm, consists of a 20 mm diameter rebar in the tension zone, two 6 mm diameter rebars in the compression zone, and 6 mm diameter stirrups spaced 75 mm apart for transverse reinforcement. Nonlinear calculations were performed using ANSYS and LIRA-SAPR, with identical initial conditions applied to both models for accurate comparison. The study focuses on key aspects such as result accuracy, ease of use, and time required for nonlinear calculations, including material and geometric nonlinearity. By highlighting the strengths and weaknesses of each software, the research offers insights for engineers and researchers working on complex structural modeling of reinforced concrete.
dc.format.extent39-49
dc.format.pages11
dc.identifier.citationKrasnitskyi P. Nonlinear modeling and analysis of damaged reinforced concrete beams using ANSYS and LIRA-SAPR software packages / Petro Krasnitskyi, Maksym Lobodanov // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 2. — P. 39–49.
dc.identifier.citationenKrasnitskyi P. Nonlinear modeling and analysis of damaged reinforced concrete beams using ANSYS and LIRA-SAPR software packages / Petro Krasnitskyi, Maksym Lobodanov // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 2. — P. 39–49.
dc.identifier.doidoi.org/10.23939/jtbp2024.02.039
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/117199
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofТеорія та будівельна практика, 2 (6), 2024
dc.relation.ispartofTheory and Building Practice, 2 (6), 2024
dc.relation.referencesBlikharskyy, Y., Vashkevych, R., Kopiika, N., Bobalo, T., & Blikharskyy, Z.: Calculation residual strength of reinforced concrete beams with damages, which occurred during loading. In IOP Conference Series: Materials Science and Engineering (Vol. 1021, No. 1, p. 012012). IOP Publishing (2021). DOI 10.1088/1757-899X/1021/1/012012
dc.relation.referencesAntony Samy, L. M., Ganesan, K., Sakthivel, A., Gnana Sekaran, J., & Muniyandi, S.: Numerical study on flexural behavior of reinforced concrete beam using MATLAB. In AIP Conference Proceedings (Vol. 2831, No. 1). AIP Publishing (2023, September). https://doi.org/10.1063/5.0162709
dc.relation.referencesKlym, A., Blikharskyy, Y., Panchenko, O., & Sobko, Y.: The Analysis of the Influence of Damaged Concrete Compression Zone on the RC Beam Using FEM. In International Conference Current Issues of Civil and Environmental Engineering Lviv-Košice-Rzeszów (pp. 164-177). Cham: Springer Nature Switzerland (2023, September). https://doi.org/10.1007/978-3-031-44955-0_18
dc.relation.referencesTjitradi, D., Eliatun, E., & Taufik, S.: 3D ANSYS numerical modeling of reinforced concrete beam behavior under different collapsed mechanisms. International Journal of Mechanics and Applications, 14-23 (2017). DOI: 10.5923/j.mechanics.20170701.02
dc.relation.referencesGurram, K.: Finite Element Analysis of Reinforced Concrete Beams Strengthened with Hybrid Fiber Reinforced Polymer Systems using ANSYS. Current Materials Science: Formerly: Recent Patents on Materials Science, 17(3), 256-265 (2024). DOI: https://doi.org/10.2174/2666145416666230504143055
dc.relation.referencesAvci, O., & Bhargava, A.: Finite-element analysis of cantilever slab deflections with ANSYS SOLID65 3D reinforced-concrete element with cracking and crushing capabilities. Practice Periodical on Structural Design and Construction, 24(1), 05018007 (2019). https://doi.org/10.1061/(ASCE)SC.1943-5576.0000411
dc.relation.referencesTjitradi, D., & Taufik, S.: Ansys Modelling Behaviour Of The Reinforced Concrete Beam With The Effect Of Various Reinforcement Type And Concrete Strength (2022). https://repo-dosen.ulm.ac.id//handle/123456789/28847
dc.relation.referencesManasa, K.V., Jayaramappa, N., Sai Nagendra, C.V.: Experimental and Numerical Study on Flexural Behaviour of Deep Beam with Rectangular Openings Under Static Loading. In: Sreekeshava, K.S., Kolathayar, S., Vinod Chandra Menon, N. (eds) Recent Advances in Structural Engineering. IACESD 2023. Lecture Notes in Civil Engineering, vol 455. Springer, Singapore (2024). https://doi.org/10.1007/978-981-99-9502-8_29
dc.relation.referencesShen, Y., Lin, L., & Feng, Z.: Finite element analysis of reinforced concrete beams with openings in the abdomen and strengthened with steel sleeves based on ANSYS. In E3S Web of Conferences (Vol. 198, p. 01029). EDP Sciences (2020). https://doi.org/10.1051/e3sconf/202019801029
dc.relation.referencesAbouali, S., Shahverdi, M., Ghassemieh, M., & Motavalli, M.: Nonlinear simulation of reinforced concrete beams retrofitted by near-surface mounted iron-based shape memory alloys. Engineering Structures, 187, 133-148 (2019). https://doi.org/10.1016/j.engstruct.2019.02.060
dc.relation.referencesMotavalli, M., Czaderski, C., & Pfyl-Lang, K.: Prestressed CFRP for strengthening of reinforced concrete structures: Recent developments at Empa, Switzerland. Journal of Composites for construction, 15(2), 194-205 (2011). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000125
dc.relation.referencesSena-Cruz, J., Barros, J., Bianco, V., Bilotta, A., Bournas, D., Ceroni, F., ... & Triantafillou, T.: NSM systems. Design Procedures for the Use of Composites in Strengthening of Reinforced Concrete Structures: State-of-the-Art Report of the RILEM Technical Committee 234-DUC, 303-348 (2016). https://doi.org/10.1007/978-94-017-7336-2_8
dc.relation.referencesKhong, T. T., Tran, Q. T., & Do, V. T.: Modeling of Reinforced Concrete Beam Retrofitted with Fiber Reinforced Polymer Composite by Using ANSYS Software. In ICSCEA 2019: Proceedings of the International Conference on Sustainable Civil Engineering and Architecture (pp. 295-309). Springer Singapore (2020). https://doi.org/10.1007/978-981-15-5144-4_25
dc.relation.referencesPandimani, Ponnada, M. R., & Geddada, Y.: Numerical nonlinear modeling and simulations of high strength reinforced concrete beams using ANSYS. Journal of Building Pathology and Rehabilitation, 7(1), 22 (2022). https://doi.org/10.1007/s41024-021-00155-w
dc.relation.referencesMohammed, T. J., Breesem, K. M., & Hussein, A. F.: Numerical Analysis of Torsional Reinforcement of Concrete Beams in Unconventional by ANSYS Software. Civil Engineering Journal, 9(01) (2023). http://dx.doi.org/10.28991/CEJ-2023-09-01-04
dc.relation.referencesNarule, G. N., & Sonawane, K. K.: Flexural and shear cracking performance of strengthened RC rectangular beam with variable pattern of the BFRP strips. Innovative Infrastructure Solutions, 7(2), 1-16 (2022). doi:10.1007/s41062-022-00785-0.
dc.relation.referencesHabeeb Askandar, N., & Darweesh Mahmood, A.: Torsional Strengthening of RC Beams with Near-Surface Mounted Steel Bars. Advances in Materials Science and Engineering, 2020(1), 1-16. doi:10.1155/2020/1492980.
dc.relation.referencesKrantovska, O., Ksonshkevych, L., Synii, S., Pasichnyk, R., & Maskalkova, Y.: Modeling of the stress-strain state of a continuous reinforced concrete beam in ANSYS mechanical. In AIP Conference Proceedings (Vol. 2684, No. 1). AIP Publishing. (2023, May). https://doi.org/10.1063/5.0142710
dc.relation.referencesYang, L., He, X., Zhang, C., Lai, X., Li, J., & Song, X.: Crack identification driven by the fusion of mechanism and data for the variable-cross-section cantilever beam. Mechanical Systems and Signal Processing, 196, 110320 (2023). https://doi.org/10.1016/j.ymssp.2023.110320
dc.relation.referencesBarour, S., & Zergua, A.: Numerical analysis of reinforced concrete beams strengthened in shear using carbon fiber reinforced polymer materials. Journal of Engineering, Design and Technology, 19(2), 339-357 (2021). https://doi.org/10.1108/JEDT-03-2020-0099
dc.relation.referencesVenkatesh, C., Sonali Sri Durga, C., Durga, S., & Muralidhararao, T.: Evaluation of fire impact on structural elements using ANSYS. Journal of Building Pathology and Rehabilitation, 6(1), 22 (2021). https://doi.org/10.1007/s41024-021-00115-4
dc.relation.referencesJebur, H. S.: Nonlinear Finite Element Analysis of Reinforced and Plain Concrete Haunched Beams Under Torsion. Civil and Environmental Engineering, 17(1), 229-241(2021). DOI: 10.2478/cee-2021-0024
dc.relation.referencesPatane, A., & Vesmawala, G.: Experimental and analytical investigation of the behaviour of reinforced concrete beam under pure torsion. Materials Today: Proceedings. (2023) https://doi.org/10.1016/j.matpr.2023.03.539
dc.relation.referencesSiddiqui, S. A., Ahmad, A., Siddiqui, A. A., & Chaturvedi, P.: Stability Analysis of a Cantilever Structure using ANSYS and MATLAB. In 2021 2nd International Conference on Intelligent Engineering and Management (ICIEM) (pp. 7-12) (2021, April). IEEE. DOI: 10.1109/ICIEM51511.2021.9445357
dc.relation.referencesKaralar, M.: Experimental and numerical investigation on flexural and crack failure of reinforced concrete beams with bottom ash and fly ash. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 44(Suppl 1), 331-354 (2020). https://doi.org/10.1007/s40996-020-00465-y
dc.relation.referencesBondok, M. H., Debaiky, A. S., & Makhlouf, M. H.: Numerical Investigations of GFRC beams strengthened in shear with innovative techniques. Mansoura Engineering Journal, 48(1), 2. (2023). https://doi.org/10.58491/2735-4202.3023
dc.relation.referencesSaid, M., Shanour, A. S., Mustafa, T. S., Abdel-Kareem, A. H., & Khalil, M. M.: Experimental flexural performance of concrete beams reinforced with an innovative hybrid bars. Engineering Structures, 226, 111348 (2021). https://doi.org/10.1016/j.engstruct.2020.111348
dc.relation.referencesKlymenko, Ye. V., Antoniuk, N. R., & Polianskyi, K. V. (2019). Modeliuvannia roboty poshkodzhenykh zalizobetonnykh balok v pk «Lira-Sapr». DOI: 10.31650/2415-377X-2019-77-58-65
dc.relation.referencesenBlikharskyy, Y., Vashkevych, R., Kopiika, N., Bobalo, T., & Blikharskyy, Z., Calculation residual strength of reinforced concrete beams with damages, which occurred during loading. In IOP Conference Series: Materials Science and Engineering (Vol. 1021, No. 1, p. 012012). IOP Publishing (2021). DOI 10.1088/1757-899X/1021/1/012012
dc.relation.referencesenAntony Samy, L. M., Ganesan, K., Sakthivel, A., Gnana Sekaran, J., & Muniyandi, S., Numerical study on flexural behavior of reinforced concrete beam using MATLAB. In AIP Conference Proceedings (Vol. 2831, No. 1). AIP Publishing (2023, September). https://doi.org/10.1063/5.0162709
dc.relation.referencesenKlym, A., Blikharskyy, Y., Panchenko, O., & Sobko, Y., The Analysis of the Influence of Damaged Concrete Compression Zone on the RC Beam Using FEM. In International Conference Current Issues of Civil and Environmental Engineering Lviv-Košice-Rzeszów (pp. 164-177). Cham: Springer Nature Switzerland (2023, September). https://doi.org/10.1007/978-3-031-44955-0_18
dc.relation.referencesenTjitradi, D., Eliatun, E., & Taufik, S., 3D ANSYS numerical modeling of reinforced concrete beam behavior under different collapsed mechanisms. International Journal of Mechanics and Applications, 14-23 (2017). DOI: 10.5923/j.mechanics.20170701.02
dc.relation.referencesenGurram, K., Finite Element Analysis of Reinforced Concrete Beams Strengthened with Hybrid Fiber Reinforced Polymer Systems using ANSYS. Current Materials Science: Formerly: Recent Patents on Materials Science, 17(3), 256-265 (2024). DOI: https://doi.org/10.2174/2666145416666230504143055
dc.relation.referencesenAvci, O., & Bhargava, A., Finite-element analysis of cantilever slab deflections with ANSYS SOLID65 3D reinforced-concrete element with cracking and crushing capabilities. Practice Periodical on Structural Design and Construction, 24(1), 05018007 (2019). https://doi.org/10.1061/(ASCE)SC.1943-5576.0000411
dc.relation.referencesenTjitradi, D., & Taufik, S., Ansys Modelling Behaviour Of The Reinforced Concrete Beam With The Effect Of Various Reinforcement Type And Concrete Strength (2022). https://repo-dosen.ulm.ac.id//handle/123456789/28847
dc.relation.referencesenManasa, K.V., Jayaramappa, N., Sai Nagendra, C.V., Experimental and Numerical Study on Flexural Behaviour of Deep Beam with Rectangular Openings Under Static Loading. In: Sreekeshava, K.S., Kolathayar, S., Vinod Chandra Menon, N. (eds) Recent Advances in Structural Engineering. IACESD 2023. Lecture Notes in Civil Engineering, vol 455. Springer, Singapore (2024). https://doi.org/10.1007/978-981-99-9502-8_29
dc.relation.referencesenShen, Y., Lin, L., & Feng, Z., Finite element analysis of reinforced concrete beams with openings in the abdomen and strengthened with steel sleeves based on ANSYS. In E3S Web of Conferences (Vol. 198, p. 01029). EDP Sciences (2020). https://doi.org/10.1051/e3sconf/202019801029
dc.relation.referencesenAbouali, S., Shahverdi, M., Ghassemieh, M., & Motavalli, M., Nonlinear simulation of reinforced concrete beams retrofitted by near-surface mounted iron-based shape memory alloys. Engineering Structures, 187, 133-148 (2019). https://doi.org/10.1016/j.engstruct.2019.02.060
dc.relation.referencesenMotavalli, M., Czaderski, C., & Pfyl-Lang, K., Prestressed CFRP for strengthening of reinforced concrete structures: Recent developments at Empa, Switzerland. Journal of Composites for construction, 15(2), 194-205 (2011). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000125
dc.relation.referencesenSena-Cruz, J., Barros, J., Bianco, V., Bilotta, A., Bournas, D., Ceroni, F., ... & Triantafillou, T., NSM systems. Design Procedures for the Use of Composites in Strengthening of Reinforced Concrete Structures: State-of-the-Art Report of the RILEM Technical Committee 234-DUC, 303-348 (2016). https://doi.org/10.1007/978-94-017-7336-2_8
dc.relation.referencesenKhong, T. T., Tran, Q. T., & Do, V. T., Modeling of Reinforced Concrete Beam Retrofitted with Fiber Reinforced Polymer Composite by Using ANSYS Software. In ICSCEA 2019: Proceedings of the International Conference on Sustainable Civil Engineering and Architecture (pp. 295-309). Springer Singapore (2020). https://doi.org/10.1007/978-981-15-5144-4_25
dc.relation.referencesenPandimani, Ponnada, M. R., & Geddada, Y., Numerical nonlinear modeling and simulations of high strength reinforced concrete beams using ANSYS. Journal of Building Pathology and Rehabilitation, 7(1), 22 (2022). https://doi.org/10.1007/s41024-021-00155-w
dc.relation.referencesenMohammed, T. J., Breesem, K. M., & Hussein, A. F., Numerical Analysis of Torsional Reinforcement of Concrete Beams in Unconventional by ANSYS Software. Civil Engineering Journal, 9(01) (2023). http://dx.doi.org/10.28991/CEJ-2023-09-01-04
dc.relation.referencesenNarule, G. N., & Sonawane, K. K., Flexural and shear cracking performance of strengthened RC rectangular beam with variable pattern of the BFRP strips. Innovative Infrastructure Solutions, 7(2), 1-16 (2022). doi:10.1007/s41062-022-00785-0.
dc.relation.referencesenHabeeb Askandar, N., & Darweesh Mahmood, A., Torsional Strengthening of RC Beams with Near-Surface Mounted Steel Bars. Advances in Materials Science and Engineering, 2020(1), 1-16. doi:10.1155/2020/1492980.
dc.relation.referencesenKrantovska, O., Ksonshkevych, L., Synii, S., Pasichnyk, R., & Maskalkova, Y., Modeling of the stress-strain state of a continuous reinforced concrete beam in ANSYS mechanical. In AIP Conference Proceedings (Vol. 2684, No. 1). AIP Publishing. (2023, May). https://doi.org/10.1063/5.0142710
dc.relation.referencesenYang, L., He, X., Zhang, C., Lai, X., Li, J., & Song, X., Crack identification driven by the fusion of mechanism and data for the variable-cross-section cantilever beam. Mechanical Systems and Signal Processing, 196, 110320 (2023). https://doi.org/10.1016/j.ymssp.2023.110320
dc.relation.referencesenBarour, S., & Zergua, A., Numerical analysis of reinforced concrete beams strengthened in shear using carbon fiber reinforced polymer materials. Journal of Engineering, Design and Technology, 19(2), 339-357 (2021). https://doi.org/10.1108/JEDT-03-2020-0099
dc.relation.referencesenVenkatesh, C., Sonali Sri Durga, C., Durga, S., & Muralidhararao, T., Evaluation of fire impact on structural elements using ANSYS. Journal of Building Pathology and Rehabilitation, 6(1), 22 (2021). https://doi.org/10.1007/s41024-021-00115-4
dc.relation.referencesenJebur, H. S., Nonlinear Finite Element Analysis of Reinforced and Plain Concrete Haunched Beams Under Torsion. Civil and Environmental Engineering, 17(1), 229-241(2021). DOI: 10.2478/cee-2021-0024
dc.relation.referencesenPatane, A., & Vesmawala, G., Experimental and analytical investigation of the behaviour of reinforced concrete beam under pure torsion. Materials Today: Proceedings. (2023) https://doi.org/10.1016/j.matpr.2023.03.539
dc.relation.referencesenSiddiqui, S. A., Ahmad, A., Siddiqui, A. A., & Chaturvedi, P., Stability Analysis of a Cantilever Structure using ANSYS and MATLAB. In 2021 2nd International Conference on Intelligent Engineering and Management (ICIEM) (pp. 7-12) (2021, April). IEEE. DOI: 10.1109/ICIEM51511.2021.9445357
dc.relation.referencesenKaralar, M., Experimental and numerical investigation on flexural and crack failure of reinforced concrete beams with bottom ash and fly ash. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 44(Suppl 1), 331-354 (2020). https://doi.org/10.1007/s40996-020-00465-y
dc.relation.referencesenBondok, M. H., Debaiky, A. S., & Makhlouf, M. H., Numerical Investigations of GFRC beams strengthened in shear with innovative techniques. Mansoura Engineering Journal, 48(1), 2. (2023). https://doi.org/10.58491/2735-4202.3023
dc.relation.referencesenSaid, M., Shanour, A. S., Mustafa, T. S., Abdel-Kareem, A. H., & Khalil, M. M., Experimental flexural performance of concrete beams reinforced with an innovative hybrid bars. Engineering Structures, 226, 111348 (2021). https://doi.org/10.1016/j.engstruct.2020.111348
dc.relation.referencesenKlymenko, Ye. V., Antoniuk, N. R., & Polianskyi, K. V. (2019). Modeliuvannia roboty poshkodzhenykh zalizobetonnykh balok v pk "Lira-Sapr". DOI: 10.31650/2415-377X-2019-77-58-65
dc.relation.urihttps://doi.org/10.1063/5.0162709
dc.relation.urihttps://doi.org/10.1007/978-3-031-44955-0_18
dc.relation.urihttps://doi.org/10.2174/2666145416666230504143055
dc.relation.urihttps://doi.org/10.1061/(ASCE)SC.1943-5576.0000411
dc.relation.urihttps://repo-dosen.ulm.ac.id//handle/123456789/28847
dc.relation.urihttps://doi.org/10.1007/978-981-99-9502-8_29
dc.relation.urihttps://doi.org/10.1051/e3sconf/202019801029
dc.relation.urihttps://doi.org/10.1016/j.engstruct.2019.02.060
dc.relation.urihttps://doi.org/10.1061/(ASCE)CC.1943-5614.0000125
dc.relation.urihttps://doi.org/10.1007/978-94-017-7336-2_8
dc.relation.urihttps://doi.org/10.1007/978-981-15-5144-4_25
dc.relation.urihttps://doi.org/10.1007/s41024-021-00155-w
dc.relation.urihttp://dx.doi.org/10.28991/CEJ-2023-09-01-04
dc.relation.urihttps://doi.org/10.1063/5.0142710
dc.relation.urihttps://doi.org/10.1016/j.ymssp.2023.110320
dc.relation.urihttps://doi.org/10.1108/JEDT-03-2020-0099
dc.relation.urihttps://doi.org/10.1007/s41024-021-00115-4
dc.relation.urihttps://doi.org/10.1016/j.matpr.2023.03.539
dc.relation.urihttps://doi.org/10.1007/s40996-020-00465-y
dc.relation.urihttps://doi.org/10.58491/2735-4202.3023
dc.relation.urihttps://doi.org/10.1016/j.engstruct.2020.111348
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Krasnitskyi P., Lobodanov M., 2024
dc.subjectметод скінченних елементів
dc.subjectнелінійний розрахунок
dc.subjectзалізобетонні балки
dc.subjectпошкодження залізобетону
dc.subjectзалишкова несуча здатність
dc.subjectнапружено-деформований стан
dc.subjectfinite element method
dc.subjectnonlinear calculation
dc.subjectreinforced concrete beams
dc.subjectdamage to reinforced concrete
dc.subjectresidual bearing capacity
dc.subjectstress-strain state
dc.titleNonlinear modeling and analysis of damaged reinforced concrete beams using ANSYS and LIRA-SAPR software packages
dc.title.alternativeНелінійне моделювання та аналіз пошкоджених залізобетонних балок за допомогою програмних комплексів ANSYS та ЛІРА-САПР
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v6n2_Krasnitskyi_P-Nonlinear_modeling_and_39-49.pdf
Size:
1.75 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v6n2_Krasnitskyi_P-Nonlinear_modeling_and_39-49__COVER.png
Size:
459.06 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.82 KB
Format:
Plain Text
Description: