The role of Building Information Modelling in the implementation of sustainable, environmentally friendly, and social infrastructure projects
dc.citation.epage | 78 | |
dc.citation.issue | 1 | |
dc.citation.journalTitle | Архітектурні дослідження | |
dc.citation.spage | 69 | |
dc.citation.volume | 10 | |
dc.contributor.affiliation | Університет Менделя в Брно | |
dc.contributor.affiliation | Mendel University in Brno | |
dc.contributor.author | Реджай, Гентжана | |
dc.contributor.author | Rexhaj, Gentjana | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-05-14T07:15:37Z | |
dc.date.created | 2024-02-27 | |
dc.date.issued | 2024-02-27 | |
dc.description.abstract | Реалії ХХІ століття в умовах перенаселення, політичних змін та економічних викликів вимагають розробки та реалізації інфраструктурних проектів, які забезпечують сталість використання ресурсів та мають мінімальний негативний вплив на навколишні природні екосистеми. Метою даного дослідження є обґрунтування та оцінка основних аспектів інформаційного моделювання будівель, його можливостей та переваг при будівництві сталої інфраструктури в контексті енергоефективності, збалансованого використання ресурсів, впровадження екологічно чистих технологій, удосконалення принципів благоустрою територій та покращення якості життя людей. Використано низку загальнотеоретичних методів дослідження, зокрема: методи аналізу та синтезу, метод інтерв’ювання, метод дедукції та індукції. Аналіз наукових статей показав недостатню кількість публікацій, які розкривають особливості використання сучасних технологій інформаційного моделювання при проектуванні екологічно безпечної, сталої та соціально відповідальної інфраструктури. У дослідженні описано загальний вплив інформаційного моделювання будівель на екологічний аспект інфраструктурної діяльності. Обґрунтовано особливості застосування технології інформаційного моделювання будівель в оцінці впливу на довкілля. Також проаналізовано соціальний аспект інформаційного моделювання інфраструктурних проєктів. Підкреслено важливість побудови моделювання з використанням інтегрованих підходів для оцінки безпеки та прийняття управлінських рішень. Виявлено проблеми в обробці інформації моделей інформаційного моделювання будівель, які здебільшого стосуються соціально-технічних аспектів. Обґрунтовано структуру методології інформаційного моделювання будівель в контексті суттєвого зменшення шкідливих викидів, енергозбереження, використання екологічно чистих технологій та матеріалів. Практичне значення дослідження полягає в інтеграції інформаційного моделювання в процеси будівництва, планування, моніторингу та управління ризиками в довгостроковій перспективі, що дозволяє забезпечити ефективну реалізацію проектів та уникнути екологічних, технічних і соціальних проблем у майбутньому. | |
dc.description.abstract | The realities of the 21st century in the context of overpopulation, political changes and economic challenges require the development and implementation of infrastructure projects that ensure the sustainability of resource use and have a minimal negative impact on the surrounding natural ecosystems. The purpose of this study is to substantiate and evaluate the main aspects of Building Information Modelling its possibilities and its advantages in the construction of sustainable infrastructure in the context of energy efficiency, balanced use of resources, implementation of environmentally friendly technologies, improvement of the principles of landscaping and improvement of people’s quality of life. A number of general theoretical research methods were used, in particular: the methods of analysis and synthesis, the method of interviewing, the method of deduction and induction. The analysis of scientific articles showed an insufficient number of publications that reveal the features of the use of modern information modelling technologies in the design of environmentally safe, sustainable and socially responsible infrastructure. The study described the overall impact of Building Information Modelling on the environmental aspect of infrastructure activities. The peculiarities of the application of Building Information Modelling technology in environmental impact assessment were substantiated. The social aspect of information modelling of infrastructure projects was also analysed. The importance of building modelling using integrated approaches for safety assessment and management decision-making was emphasized. The problems in the processing of Building Information Modelling model information, which mostly concern socio-technical aspects, were revealed. The structure of the methodology of information modelling of buildings was substantiated in the context of a significant reduction of harmful emissions, energy saving, the use of environmentally friendly technologies and materials. The practical significance of the study lies in the integration of information modelling into the processes of construction, planning, monitoring and risk management in the long term, which allows to ensure the effective implementation of projects and the avoidance of environmental, technical and social problems in the future. | |
dc.format.extent | 69-78 | |
dc.format.pages | 10 | |
dc.identifier.citation | Rexhaj G. The role of Building Information Modelling in the implementation of sustainable, environmentally friendly, and social infrastructure projects / Gentjana Rexhaj // Architectural Studies. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 10. — No 1. — P. 69–78. | |
dc.identifier.citationen | Rexhaj G. The role of Building Information Modelling in the implementation of sustainable, environmentally friendly, and social infrastructure projects / Gentjana Rexhaj // Architectural Studies. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 10. — No 1. — P. 69–78. | |
dc.identifier.doi | doi.org/10.56318/as/1.2024.69 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/64566 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Архітектурні дослідження, 1 (10), 2024 | |
dc.relation.ispartof | Architectural Studies, 1 (10), 2024 | |
dc.relation.references | [1] Aranda, J.Á., Santonja, M.M., Saurí, M.G., & Peris-Fajarnés, G. (2021). Minimizing shadow area in mountain roads for improving the sustainability of infrastructures. Sustainability, 13(10), article number 5392. doi: 10.3390/su13105392. | |
dc.relation.references | [2] Arenas, N.F., & Shafique, M. (2023). Recent progress on BIM-based sustainable buildings: State of the art review. Developments in the Built Environment, 15, article number 100176. doi: 10.1016/j.dibe.2023.100176. | |
dc.relation.references | [3] Borjigin, A.O., Sresakoolchai, J., Kaewunruen, S., & Hammond, J. (2022). Digital twin aided sustainability assessment of modern light rail infrastructures. Frontiers in Built Environment, 8, article number 796388. doi: 10.3389/fbuil.2022.796388. | |
dc.relation.references | [4] Chang, C.M., Salinas, G.T., Gamero, T.S., Schroeder, S., Vélez Canchanya, M.A., & Mahnaz, S.L. (2023). An infrastructure management humanistic approach for smart cities development evolution and sustainability. Infrastructures, 8(9), article number 127. doi: 10.3390/infrastructures8090127. | |
dc.relation.references | [5] Charef, R., Alaka, H., & Emmitt, S. (2018). Beyond the third dimension of BIM: A systematic review of literature and assessment of professional views. Journal of Building Engineering, 19, 242-257. doi: 10.1016/j.jobe.2018.04.028. | |
dc.relation.references | [6] Chen, S., Zeng, Y., Majdi, A., Salameh, A.A., Alkhalifah, T., Alturise, F., & Ali, H.E. (2023). Potential features of Building Information Modelling for application of project management knowledge areas as advances modeling tools. Advances in Engineering Software, 176, article number 103372. doi: 10.1016/j.advengsoft.2022.103372. | |
dc.relation.references | [7] Correa, S.L.M., & Santos, E.T. (2021). BIM support in the tendering phase of infrastructure projects. In E.T. Santos & S. Scheer (Eds.), Proceedings of the 18th international conference on computing in civil and building engineering (pp. 365-379). Cham: Springer. doi: 10.1007/978-3-030-51295-8_27. | |
dc.relation.references | [8] del Carmen Rey-Merchán, M., Gómez-de-Gabriel, J.M., López-Arquillos, A., & Fernández-Madrigal, J.A. (2021). Virtual fence system based on IoT paradigm to prevent occupational accidents in the construction sector. International Journal of Environmental Research and Public Health, 18(13), article number 6839. doi: 10.3390/ijerph18136839. | |
dc.relation.references | [9] Energy-related emissions of greenhouse gases and air pollutants. (2024). Retrieved from https://www.umweltbundesamt.de/daten/energie/energiebedingte-emissionen#entwicklung-der-energiebedingten-treibhausgas-emissionen. | |
dc.relation.references | [10] Fink, A. (2019). Conducting research literature reviews: From the Internet to paper. Thousand Oaks: Sage Publications. | |
dc.relation.references | [11] Gade, P.N., & Svidt, K. (2021). Exploration of practitioner experiences of flexibility and transparency to improve BIM-based model checking systems. Journal of Information Technology in Construction, 26, 1041-1060. doi: 10.36680/j.itcon.2021.055. | |
dc.relation.references | [12] Gaur, S., & Tawalare, A. (2021). Investigating the role of BIM in stakeholder management: Evidence from a metro-rail project. Journal of Management in Engineering, 38(1). doi: 10.1061/(ASCE)ME.1943-5479.0000979. | |
dc.relation.references | [13] Global Code of Ethics. (2021). Retrieved from https://emccuk.org/Public/Public/Accreditation/Global_Code_of_Ethics.aspx. | |
dc.relation.references | [14] Huang, M.Q., Ninić, J., & Zhang, Q.B. (2020). BIM, machine learning and computer vision techniques in underground construction: Current status and future perspectives. Tunnelling and Underground Space Technology, 108, article number 103677. doi: 10.1016/j.tust.2020.103677. | |
dc.relation.references | [15] Huang, Y., Wu, L., Chen, J., Lu, H., & Xiang, J. (2022). Impacts of Building Information Modelling (BIM) on communication network of the construction project: A social capital perspective. PLoS ONE, 17(10), article number e0275833. doi: 10.1371/journal.pone.0275833. | |
dc.relation.references | [16] Hui, C.X., Dan, G., Alamri, S., & Toghraie, D. (2023). Greening smart cities: An investigation of the integration of urban natural resources and smart city technologies for promoting environmental sustainability. Sustainable Cities and Society, 99, article number 104985. doi: 10.1016/j.scs.2023.104985. | |
dc.relation.references | [17] Kalajian, K., Ahmed, S., & Youssef, W.M.A. (2023). BIM in infrastructure projects. International Journal of BIM & Engineering Science, 6(2), 74-87. doi: 10.54216/ijbes.060205. | |
dc.relation.references | [18] Khahro, S.H., Kumar, D., Siddiqui, F.H., Ali, T.H., Raza, M.S., & Khoso, A.R. (2021). Optimizing energy use, cost and carbon emission through Building Information Modelling and a sustainability approach: A case-study of a hospital building. Sustainability, 13(7), article number 3675. doi: 10.3390/su13073675. | |
dc.relation.references | [19] Kuckartz, U., & Rädiker, S. (2019). Documenting and archiving the research process. In Analyzing qualitative data with MAXQDA (pp. 283-290). Cham: Springer. doi: 10.1007/978-3-030-15671-8_20. | |
dc.relation.references | [20] Kutia, M., Li, J., Sarkissian, A., & Pagella, T. (2023). Land cover classification and urbanization monitoring using Landsat data: A case study in Changsha city, Hunan province, China. Ukrainian Journal of Forest and Wood Science, 14(1), 72-91. doi: 10.31548/forest/1.2023.72. | |
dc.relation.references | [21] Laali, A., Nourzad, S.H.H., & Faghihi, V. (2022). Optimizing sustainability of infrastructure projects through the integration of Building Information Modeling and envision rating system at the design stage. Sustainable Cities and Society, 84, article number 104013. doi: 10.1016/j.scs.2022.104013. | |
dc.relation.references | [22] McPherson, M., et al. (2022). Open-source modelling infrastructure: Building decarbonization capacity in Canada. Energy Strategy Reviews, 44, article number 100961. doi: 10.1016/j.esr.2022.100961. | |
dc.relation.references | [23] Moudgil, V., Hewage, K., Hussain, S.A., & Sadiq, R. (2023). Integration of IoT in building energy infrastructure: A critical review on challenges and solutions. Renewable and Sustainable Energy Reviews, 174, article number 113121. doi: 10.1016/j.rser.2022.113121. | |
dc.relation.references | [24] Nasab, A.R., Malekitabar, H., Elzarka, H., Tak, A.N., & Ghorab, K. (2023). Managing safety risks from overlapping construction activities: A BIM approach. Buildings, 13(10), article number 2647. doi: 10.3390/buildings13102647. | |
dc.relation.references | [25] Noor, R.N.H.R.M., Ibrahim, C.K.I.C., & Belayutham, S. (2022). Exploring the key attributes influencing social collaboration based BIM projects among actors: A Malaysian case study. AIP Conference Proceedings, 2532, article number 090002. doi: 10.1063/5.0113004. | |
dc.relation.references | [26] Oreto, C., Biancardo, S.A., Abbondati, F., & Veropalumbo, R. (2023). Leveraging infrastructure BIM for life-cycle-based sustainable road pavement management. Materials, 16(3), article number 1047. doi: 10.3390/ma16031047. | |
dc.relation.references | [27] Prokopenko, T., & Povolotskyi, Ya. (2022). A system of criteria for evaluating the efficiency of projects in the field of information technologies. Bulletin of Cherkasy State Technological University, 4, 23-30. doi: 10.24025/2306-4412.4.2022.271448. | |
dc.relation.references | [28] Raouf, A.M.I., & Al‐Ghamdi, S.G. (2018). Building Information Modelling and green buildings: Challenges and opportunities. Architectural Engineering and Design Management, 15(1), 1-28. doi: 10.1080/17452007.2018.1502655. | |
dc.relation.references | [29] Rodríguez-Amigo, A., Fernández-Alvarado, J.F., & Fernández-Rodríguez, S. (2022). Case of study on a sustainability building: Environmental risk assessment related with allergenicity from air quality considering meteorological and urban green infrastructure data on BIM. Science of the Total Environment, 838(1), article number 155910. doi: 10.1016/j.scitotenv.2022.155910. | |
dc.relation.references | [30] Sakr, M., & Sadhu, A. (2023). Visualization of structural health monitoring information using Internet-of-Things integrated with Building Information Modeling. Journal of Infrastructure Intelligence and Resilience, 2(3), article number 100053. doi: 10.1016/j.iintel.2023.100053. | |
dc.relation.references | [31] Schults, R., Annenkov, A., Bilous, M., & Kovtun, V. (2016). Interpretation of geodetic observations of the high-rise buildings displacements. Geodesy and Cartography, 42(2), 39-46. doi: 10.3846/20296991.2016.1198566. | |
dc.relation.references | [32] Shalbolova, U., Chikibayeva, Z., & Kenzhegaliyeva, Z. (2021). Efficiency of investment projects to modernize facilities housing and communal services (case of Kazakhstan). IOP Conference Series: Earth and Environmental Science, 650, article number 012075. doi: 10.1088/1755-1315/650/1/012075. | |
dc.relation.references | [33] Sharafat, A., Khan, M.S., Latif, K., Tanoli, W.A., Park, W., & Seo, J. (2021). BIM-GIS-based integrated framework for underground utility management system for earthwork operations. Applied Sciences, 11(12), article number 5721. doi: 10.3390/app11125721. | |
dc.relation.references | [34] Sidliarenko, A. (2023). Mathematical models of road construction, reconstruction and repair under conditions of uncertainty. Bulletin of Cherkasy State Technological University, 3, 113-127. doi: 10.24025/2306-4412.3.2023.287845. | |
dc.relation.references | [35] Theißen, S., et al. (2020). Digitalization of user-oriented demand planning through Building Information Modeling (BIM). IOP Conference Series: Earth and Environmental Science, 588, article number 032004. doi: 10.1088/1755-1315/588/3/032004. | |
dc.relation.references | [36] van Eldik, M.A., Vahdatikhaki, F., dos Santos, J.M.O., Visser, M., & Doree, A. (2020). BIM-based environmental impact assessment for infrastructure design projects. Automation in Construction, 120, article number 103379. doi: 10.1016/j.autcon.2020.103379. | |
dc.relation.references | [37] Veerendra, G.T.N., Dey, S., Manoj, A.V.P., & Kumaravel, B. (2022). Life cycle assessment for a suburban building located within the vicinity using Revit Architecture. Journal of Building Pathology and Rehabilitation, 7, article number 56. doi: 10.1007/s41024-022-00199-6. | |
dc.relation.references | [38] von Soest, C. (2022). Why do we speak to experts? Reviving the strength of the expert interview method. Perspectives on Politics, 21(1), 277-287. doi: 10.1017/s1537592722001116. | |
dc.relation.references | [39] Wang, J. (2022). Optimized mathematical model for energy efficient construction management in smart cities using Building Information Modeling. Strategic Planning for Energy and the Environment, 41(1), 61-80. doi: 10.13052/spee1048-5236.4113. | |
dc.relation.references | [40] Weber, B., Achenbach, M., & Niederländer, A. (2023). Rechtskonformes Datenteilen im Bauprozess – Anforderungen des data governance act an common data environments. Bauingenieur, 98(3), 76-84. doi: 10.37544/0005-6650-2023-03-66. | |
dc.relation.references | [41] Yang, Y., Ng, S.T., Dao, J., Zhou, S., Xu, F.J., Xu, X., & Zhou, Z. (2021). BIM-GIS-DCEs enabled vulnerability assessment of interdependent infrastructures – a case of stormwater drainage-building-road transport Nexus in urban flooding. Automation in Construction, 125, article number 103626. doi: 10.1016/j.autcon.2021.103626. | |
dc.relation.references | [42] Yang, Z., Zhu, C., Zhu, Y., & Li, X. (2023). Blockchain technology in building environmental sustainability: A systematic literature review and future perspectives. Building and Environment, 245, article number 110970. doi: 10.1016/j.buildenv.2023.110970. | |
dc.relation.referencesen | [1] Aranda, J.Á., Santonja, M.M., Saurí, M.G., & Peris-Fajarnés, G. (2021). Minimizing shadow area in mountain roads for improving the sustainability of infrastructures. Sustainability, 13(10), article number 5392. doi: 10.3390/su13105392. | |
dc.relation.referencesen | [2] Arenas, N.F., & Shafique, M. (2023). Recent progress on BIM-based sustainable buildings: State of the art review. Developments in the Built Environment, 15, article number 100176. doi: 10.1016/j.dibe.2023.100176. | |
dc.relation.referencesen | [3] Borjigin, A.O., Sresakoolchai, J., Kaewunruen, S., & Hammond, J. (2022). Digital twin aided sustainability assessment of modern light rail infrastructures. Frontiers in Built Environment, 8, article number 796388. doi: 10.3389/fbuil.2022.796388. | |
dc.relation.referencesen | [4] Chang, C.M., Salinas, G.T., Gamero, T.S., Schroeder, S., Vélez Canchanya, M.A., & Mahnaz, S.L. (2023). An infrastructure management humanistic approach for smart cities development evolution and sustainability. Infrastructures, 8(9), article number 127. doi: 10.3390/infrastructures8090127. | |
dc.relation.referencesen | [5] Charef, R., Alaka, H., & Emmitt, S. (2018). Beyond the third dimension of BIM: A systematic review of literature and assessment of professional views. Journal of Building Engineering, 19, 242-257. doi: 10.1016/j.jobe.2018.04.028. | |
dc.relation.referencesen | [6] Chen, S., Zeng, Y., Majdi, A., Salameh, A.A., Alkhalifah, T., Alturise, F., & Ali, H.E. (2023). Potential features of Building Information Modelling for application of project management knowledge areas as advances modeling tools. Advances in Engineering Software, 176, article number 103372. doi: 10.1016/j.advengsoft.2022.103372. | |
dc.relation.referencesen | [7] Correa, S.L.M., & Santos, E.T. (2021). BIM support in the tendering phase of infrastructure projects. In E.T. Santos & S. Scheer (Eds.), Proceedings of the 18th international conference on computing in civil and building engineering (pp. 365-379). Cham: Springer. doi: 10.1007/978-3-030-51295-8_27. | |
dc.relation.referencesen | [8] del Carmen Rey-Merchán, M., Gómez-de-Gabriel, J.M., López-Arquillos, A., & Fernández-Madrigal, J.A. (2021). Virtual fence system based on IoT paradigm to prevent occupational accidents in the construction sector. International Journal of Environmental Research and Public Health, 18(13), article number 6839. doi: 10.3390/ijerph18136839. | |
dc.relation.referencesen | [9] Energy-related emissions of greenhouse gases and air pollutants. (2024). Retrieved from https://www.umweltbundesamt.de/daten/energie/energiebedingte-emissionen#entwicklung-der-energiebedingten-treibhausgas-emissionen. | |
dc.relation.referencesen | [10] Fink, A. (2019). Conducting research literature reviews: From the Internet to paper. Thousand Oaks: Sage Publications. | |
dc.relation.referencesen | [11] Gade, P.N., & Svidt, K. (2021). Exploration of practitioner experiences of flexibility and transparency to improve BIM-based model checking systems. Journal of Information Technology in Construction, 26, 1041-1060. doi: 10.36680/j.itcon.2021.055. | |
dc.relation.referencesen | [12] Gaur, S., & Tawalare, A. (2021). Investigating the role of BIM in stakeholder management: Evidence from a metro-rail project. Journal of Management in Engineering, 38(1). doi: 10.1061/(ASCE)ME.1943-5479.0000979. | |
dc.relation.referencesen | [13] Global Code of Ethics. (2021). Retrieved from https://emccuk.org/Public/Public/Accreditation/Global_Code_of_Ethics.aspx. | |
dc.relation.referencesen | [14] Huang, M.Q., Ninić, J., & Zhang, Q.B. (2020). BIM, machine learning and computer vision techniques in underground construction: Current status and future perspectives. Tunnelling and Underground Space Technology, 108, article number 103677. doi: 10.1016/j.tust.2020.103677. | |
dc.relation.referencesen | [15] Huang, Y., Wu, L., Chen, J., Lu, H., & Xiang, J. (2022). Impacts of Building Information Modelling (BIM) on communication network of the construction project: A social capital perspective. PLoS ONE, 17(10), article number e0275833. doi: 10.1371/journal.pone.0275833. | |
dc.relation.referencesen | [16] Hui, C.X., Dan, G., Alamri, S., & Toghraie, D. (2023). Greening smart cities: An investigation of the integration of urban natural resources and smart city technologies for promoting environmental sustainability. Sustainable Cities and Society, 99, article number 104985. doi: 10.1016/j.scs.2023.104985. | |
dc.relation.referencesen | [17] Kalajian, K., Ahmed, S., & Youssef, W.M.A. (2023). BIM in infrastructure projects. International Journal of BIM & Engineering Science, 6(2), 74-87. doi: 10.54216/ijbes.060205. | |
dc.relation.referencesen | [18] Khahro, S.H., Kumar, D., Siddiqui, F.H., Ali, T.H., Raza, M.S., & Khoso, A.R. (2021). Optimizing energy use, cost and carbon emission through Building Information Modelling and a sustainability approach: A case-study of a hospital building. Sustainability, 13(7), article number 3675. doi: 10.3390/su13073675. | |
dc.relation.referencesen | [19] Kuckartz, U., & Rädiker, S. (2019). Documenting and archiving the research process. In Analyzing qualitative data with MAXQDA (pp. 283-290). Cham: Springer. doi: 10.1007/978-3-030-15671-8_20. | |
dc.relation.referencesen | [20] Kutia, M., Li, J., Sarkissian, A., & Pagella, T. (2023). Land cover classification and urbanization monitoring using Landsat data: A case study in Changsha city, Hunan province, China. Ukrainian Journal of Forest and Wood Science, 14(1), 72-91. doi: 10.31548/forest/1.2023.72. | |
dc.relation.referencesen | [21] Laali, A., Nourzad, S.H.H., & Faghihi, V. (2022). Optimizing sustainability of infrastructure projects through the integration of Building Information Modeling and envision rating system at the design stage. Sustainable Cities and Society, 84, article number 104013. doi: 10.1016/j.scs.2022.104013. | |
dc.relation.referencesen | [22] McPherson, M., et al. (2022). Open-source modelling infrastructure: Building decarbonization capacity in Canada. Energy Strategy Reviews, 44, article number 100961. doi: 10.1016/j.esr.2022.100961. | |
dc.relation.referencesen | [23] Moudgil, V., Hewage, K., Hussain, S.A., & Sadiq, R. (2023). Integration of IoT in building energy infrastructure: A critical review on challenges and solutions. Renewable and Sustainable Energy Reviews, 174, article number 113121. doi: 10.1016/j.rser.2022.113121. | |
dc.relation.referencesen | [24] Nasab, A.R., Malekitabar, H., Elzarka, H., Tak, A.N., & Ghorab, K. (2023). Managing safety risks from overlapping construction activities: A BIM approach. Buildings, 13(10), article number 2647. doi: 10.3390/buildings13102647. | |
dc.relation.referencesen | [25] Noor, R.N.H.R.M., Ibrahim, C.K.I.C., & Belayutham, S. (2022). Exploring the key attributes influencing social collaboration based BIM projects among actors: A Malaysian case study. AIP Conference Proceedings, 2532, article number 090002. doi: 10.1063/5.0113004. | |
dc.relation.referencesen | [26] Oreto, C., Biancardo, S.A., Abbondati, F., & Veropalumbo, R. (2023). Leveraging infrastructure BIM for life-cycle-based sustainable road pavement management. Materials, 16(3), article number 1047. doi: 10.3390/ma16031047. | |
dc.relation.referencesen | [27] Prokopenko, T., & Povolotskyi, Ya. (2022). A system of criteria for evaluating the efficiency of projects in the field of information technologies. Bulletin of Cherkasy State Technological University, 4, 23-30. doi: 10.24025/2306-4412.4.2022.271448. | |
dc.relation.referencesen | [28] Raouf, A.M.I., & Al‐Ghamdi, S.G. (2018). Building Information Modelling and green buildings: Challenges and opportunities. Architectural Engineering and Design Management, 15(1), 1-28. doi: 10.1080/17452007.2018.1502655. | |
dc.relation.referencesen | [29] Rodríguez-Amigo, A., Fernández-Alvarado, J.F., & Fernández-Rodríguez, S. (2022). Case of study on a sustainability building: Environmental risk assessment related with allergenicity from air quality considering meteorological and urban green infrastructure data on BIM. Science of the Total Environment, 838(1), article number 155910. doi: 10.1016/j.scitotenv.2022.155910. | |
dc.relation.referencesen | [30] Sakr, M., & Sadhu, A. (2023). Visualization of structural health monitoring information using Internet-of-Things integrated with Building Information Modeling. Journal of Infrastructure Intelligence and Resilience, 2(3), article number 100053. doi: 10.1016/j.iintel.2023.100053. | |
dc.relation.referencesen | [31] Schults, R., Annenkov, A., Bilous, M., & Kovtun, V. (2016). Interpretation of geodetic observations of the high-rise buildings displacements. Geodesy and Cartography, 42(2), 39-46. doi: 10.3846/20296991.2016.1198566. | |
dc.relation.referencesen | [32] Shalbolova, U., Chikibayeva, Z., & Kenzhegaliyeva, Z. (2021). Efficiency of investment projects to modernize facilities housing and communal services (case of Kazakhstan). IOP Conference Series: Earth and Environmental Science, 650, article number 012075. doi: 10.1088/1755-1315/650/1/012075. | |
dc.relation.referencesen | [33] Sharafat, A., Khan, M.S., Latif, K., Tanoli, W.A., Park, W., & Seo, J. (2021). BIM-GIS-based integrated framework for underground utility management system for earthwork operations. Applied Sciences, 11(12), article number 5721. doi: 10.3390/app11125721. | |
dc.relation.referencesen | [34] Sidliarenko, A. (2023). Mathematical models of road construction, reconstruction and repair under conditions of uncertainty. Bulletin of Cherkasy State Technological University, 3, 113-127. doi: 10.24025/2306-4412.3.2023.287845. | |
dc.relation.referencesen | [35] Theißen, S., et al. (2020). Digitalization of user-oriented demand planning through Building Information Modeling (BIM). IOP Conference Series: Earth and Environmental Science, 588, article number 032004. doi: 10.1088/1755-1315/588/3/032004. | |
dc.relation.referencesen | [36] van Eldik, M.A., Vahdatikhaki, F., dos Santos, J.M.O., Visser, M., & Doree, A. (2020). BIM-based environmental impact assessment for infrastructure design projects. Automation in Construction, 120, article number 103379. doi: 10.1016/j.autcon.2020.103379. | |
dc.relation.referencesen | [37] Veerendra, G.T.N., Dey, S., Manoj, A.V.P., & Kumaravel, B. (2022). Life cycle assessment for a suburban building located within the vicinity using Revit Architecture. Journal of Building Pathology and Rehabilitation, 7, article number 56. doi: 10.1007/s41024-022-00199-6. | |
dc.relation.referencesen | [38] von Soest, C. (2022). Why do we speak to experts? Reviving the strength of the expert interview method. Perspectives on Politics, 21(1), 277-287. doi: 10.1017/s1537592722001116. | |
dc.relation.referencesen | [39] Wang, J. (2022). Optimized mathematical model for energy efficient construction management in smart cities using Building Information Modeling. Strategic Planning for Energy and the Environment, 41(1), 61-80. doi: 10.13052/spee1048-5236.4113. | |
dc.relation.referencesen | [40] Weber, B., Achenbach, M., & Niederländer, A. (2023). Rechtskonformes Datenteilen im Bauprozess – Anforderungen des data governance act an common data environments. Bauingenieur, 98(3), 76-84. doi: 10.37544/0005-6650-2023-03-66. | |
dc.relation.referencesen | [41] Yang, Y., Ng, S.T., Dao, J., Zhou, S., Xu, F.J., Xu, X., & Zhou, Z. (2021). BIM-GIS-DCEs enabled vulnerability assessment of interdependent infrastructures – a case of stormwater drainage-building-road transport Nexus in urban flooding. Automation in Construction, 125, article number 103626. doi: 10.1016/j.autcon.2021.103626. | |
dc.relation.referencesen | [42] Yang, Z., Zhu, C., Zhu, Y., & Li, X. (2023). Blockchain technology in building environmental sustainability: A systematic literature review and future perspectives. Building and Environment, 245, article number 110970. doi: 10.1016/j.buildenv.2023.110970. | |
dc.relation.uri | https://www.umweltbundesamt.de/daten/energie/energiebedingte-emissionen#entwicklung-der-energiebedingten-treibhausgas-emissionen | |
dc.relation.uri | https://emccuk.org/Public/Public/Accreditation/Global_Code_of_Ethics.aspx | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
dc.subject | інтегровані технології | |
dc.subject | екологічний моніторинг та оцінка | |
dc.subject | енергоефективність | |
dc.subject | цифрові інновації | |
dc.subject | ризик та безпека | |
dc.subject | integrated technologies | |
dc.subject | ecological monitoring and assessment | |
dc.subject | energy efficiency | |
dc.subject | digital innovation | |
dc.subject | risk and security | |
dc.subject.udc | 721.021 | |
dc.subject.udc | 330.131.5 | |
dc.title | The role of Building Information Modelling in the implementation of sustainable, environmentally friendly, and social infrastructure projects | |
dc.title.alternative | Роль інформаційного моделювання будівель у впровадженні сталих, екологічно чистих та соціальних інфраструктурних проектів | |
dc.type | Article |
Files
License bundle
1 - 1 of 1