Інформаційна система прогнозування продажів будівельних матеріалів

dc.citation.epage23
dc.citation.issue13
dc.citation.journalTitleВісник Національного університету "Львівська політехніка". Інформаційні системи та мережі
dc.citation.spage1
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationЛьвівський національний університет імені Івана Франка
dc.contributor.affiliationУніверситет Оснабрюка
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationIvan Franko National University of Lviv
dc.contributor.affiliationOsnabrück University
dc.contributor.authorСемків, Михайло
dc.contributor.authorЧирун, Любомир
dc.contributor.authorБублик, Мирослава
dc.contributor.authorШевченко, Марина
dc.contributor.authorЧирун, Софія
dc.contributor.authorSemkiv, Mykhailo
dc.contributor.authorChyrun, Lyubomyr
dc.contributor.authorBublyk, Myroslava
dc.contributor.authorShevchenko, Maryna
dc.contributor.authorChyrun, Sofia
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-06T09:14:03Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractМета виконання роботи – аналіз особливостей проєктування та розроблення інформаційної системи. Об’єкт дослідження – процес системи прогнозування продажів будівельних матеріалів. Предмет дослідження – методи та засоби процесу прогнозування продажів асортименту будівельних матеріалів. Відповідно до напрацювань та розрахунків, наведених у статті, а саме аналізу програмних продуктів-аналогів та інформації про предметну область, виконано системний аналіз об’єкта та вибір технологічних засобів розроблення загальної структури типової інформаційної системи прогнозування продажів асортименту будівельних матеріалів на торговельному онлайн-майданчику на основі використання нейронної мережі.
dc.description.abstractThe work purpose is information system design and development. The study object is sales forecasting system process for building materials assortment. The study subject is forecasting sales system development methods and means for building materials assortment. the process of the system of forecasting sales of the range of construction materials. In accordance with the results and calculations given in the qualification work, namely: analysis of analogue programs and information about the subject area, system analysis of the object and the choice of technological means of development, the general structure of a typical system for forecasting sales of an assortment of building materials on an online trading platform based on use has been developed neural network.
dc.format.extent1-23
dc.format.pages23
dc.identifier.citationІнформаційна система прогнозування продажів будівельних матеріалів / Михайло Семків, Любомир Чирун, Мирослава Бублик, Марина Шевченко, Софія Чирун // Вісник Національного університету "Львівська політехніка". Інформаційні системи та мережі. — Львів : Видавництво Львівської політехніки, 2023. — № 13. — С. 1–23.
dc.identifier.citationenInformation system for forecasting sales of building materials / Semkiv Mykhailo, Chyrun Lyubomyr, Bublyk Myroslava, Shevchenko Maryna, Chyrun Sofia // Information Systems and Networks. — Lviv : Lviv Politechnic Publishing House, 2023. — No 13. — P. 1–23.
dc.identifier.doidoi.org/10.23939/sisn2023.13.001
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63958
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofВісник Національного університету "Львівська політехніка". Інформаційні системи та мережі, 13, 2023
dc.relation.ispartofInformation Systems and Networks, 13, 2023
dc.relation.references1. Bueno A., Godinho Filho M., Frank A. G. (2020). Smart production planning and control in the Industry 4.0 context: A systematic literature review. Computers & Industrial Engineering, 149, 106774. DOI: 10.1016/j.cie.2020.106774.
dc.relation.references2. Usuga Cadavid J. P., et al. (2020). Machine learning applied in production planning and control: a stateof-the-art in the era of Industry 4.0. J. Intell Manuf 31, 1531–1558. DOI: 10.1007/s10845-019-01531-7.
dc.relation.references3. Fragapane G., De Koster R., Sgarbossa F., Strandhagen J. O. (2021). Planning and control of autonomous mobile robots for intralogistics: Literature review and research agenda. European Journal of Operational Research, 294(2), 405–426. DOI: 10.1016/j.ejor.2021.01.019.
dc.relation.references4. Bendul J. C., Blunck H. (2019). The design space of production planning and control for industry 4.0. Computers in Industry, 105, 260–272. DOI: 10.1016/j.compind.2018.10.010.
dc.relation.references5. Chofreh A. G., Goni F. A., Klemeš J. J., Malik M. N., Khan H. H. (2020). Development of guidelines for the implementation of sustainable enterprise resource planning systems. Journal of Cleaner Production, 244, 118655. DOI: 10.1016/j.jclepro.2019.118655.
dc.relation.references6. Taghipour M., Shabrang M., Habibi M. H., Shamami N. (2020). Assessment and Analysis of Risk Associated with the Implementation of Enterprise Resource Planning (ERP) Project Using FMEA Technique (Including Case-Study). Management, 3(1), 29–46. DOI: 10.31058/j.mana.2020.32002.
dc.relation.references7. Astuty W., Pratama I., Basir I., Harahap J. P. R. (2022). Does enterprise resource planning lead to the quality of the management accounting information system? Polish Journal of Management Studies, 25(2), 93–107. DOI: 10.17512/pjms.2022.25.2.06.
dc.relation.references8. Mazaraki A., Drozdova Y., Bay S. (2020). Theoretical and methodological principles for assessment the readiness of socio-economic systems for changes. Baltic journal of economic studies, 6(1), 80–86. DOI: 10.30525/2256-0742/2020-6-1-80-86.
dc.relation.references9. Javanmardi E., Liu S. (2019). Exploring grey systems theory-based methods and applications in analyzing socio-economic systems. Sustainability, 11(15), 4192. DOI: 10.3390/su11154192.
dc.relation.references10. Bulturbayevich M. B., Saodat S., Umida J., Shakhnoza N., Feruza, S. (2020). Theoretical and Practical Bases of Investments and Processes of Their Distribution in the Conditions of Modernization of Economy. International Journal on Integrated Education, 3(9), 132–137. DOI: 10.31149/ijie.v3i9.603.
dc.relation.references11. Fuchs C. (2020). Communication and capitalism: A critical theory (p. 406). University of Westminster Press. DOI: 10.16997/book45.
dc.relation.references12. Wlamyr P. A., Davila Perez M. V., Caicedo-Rolon A. J. (2022). Logistics as an added value in Colombia. Journal of Language and Linguistic Studies, 18(4). URL: http://jlls.org/index.php/jlls/article/view/5028/1759.
dc.relation.references13. Agatić A., Tijan E., Hess S., Jugović T. P. (2021). Advanced Data Analytics in Logistics Demand Forecasting. In 44th International Convention on Information, Communication and Electronic Technology (MIPRO), pp. 1387–1392. DOI: 10.23919/MIPRO52101.2021.9596820.
dc.relation.references14. Yan M., Schmit T. M., Baker M. J., LeRoux M. N., Gómez M. I. (2022). Sell now or later? A decisionmaking model for feeder cattle selling. Agricultural and Resource Economics Review, 51(2), 343–360. DOI: 10.1017/age.2022.1.
dc.relation.references15. Chege S. M., Wang D., Suntu S. L. (2020). Impact of information technology innovation on firm performance in Kenya. Information Technology for Development, 26(2), 316–345. DOI: 10.1080/02681102.2019.1573717.
dc.relation.references16. Jimenez-Jimenez D., Martínez-Costa M., Sanchez Rodriguez C. (2019). The mediating role of supply chain collaboration on the relationship between information technology and innovation. Journal of Knowledge Management, 23(3), 548–567. DOI: 10.1108/JKM-01-2018-0019.
dc.relation.references17. Mehralian M. M. (2022). Identifying and Explaining the Effective Factors of Digital Marketing Strategies in Consumers’ Emotional States and Sales Rates: A Mixed Methods Research. In 20th International Conference of the Business and Strategic Management. DOI: 10.2139/ssrn.4195988.
dc.relation.references18. Ullo S. L., Sinha G. R. (2020). Advances in smart environment monitoring systems using IoT and sensors. Sensors, 20(11), 3113. DOI: 10.3390/s20113113.
dc.relation.references19. Sotnyk I., Hulak D., Yakushev O., Yakusheva O., Prokopenko O. V., Yevdokymov A. (2020). Development of the US electric car market: Macroeconomic determinants and forecasts. Polityka Energetyczna, 23(3), 147–164. URL: https://bibliotekanauki.pl/articles/283581.pdf.
dc.relation.references20. Matseliukh Y., Bublyk M., Vysotska V. (2021). Development of Intelligent System for Visual Passenger Flows Simulation of Public Transport in Smart City Based on Neural Network. In COLINS, pp. 1087–1138.
dc.relation.references21. Bublyk M., Zahreva Y., Vysotska V., Matseliukh Y., Chyrun L., Korolenko O. (2022). Information System Development For Recording Offenses In Smart City Based On Cloud Technologies And Social Networks. Webology (ISSN: 1735-188X), 19(2).
dc.relation.references22. Bublyk M., Kalynii T., Varava L., Vysotska V., Chyrun L., Matseliukh Y. (2022). Decision Support System Design For Low-Voice Emergency Medical Calls At Smart City Based On Chatbot Management In Social Networks. Webology (ISSN: 1735-188X), 19(2).
dc.relation.references23. Trunina I., Zagirniak D., Pryakhina K., Bezugla T. (2020). Diagnostics of the enterprise personnel sustainability. Problems and Perspectives in Management, 18(2), 382. DOI: 10.21511/ppm.18(2).2020.31.
dc.relation.references24. Zhu G., Gao X. (2019). Precision retail marketing strategy based on digital marketing model. Science Journal of Business and Management, 7(1), 33–37. DOI: 10.11648/j.sjbm.20190701.15.
dc.relation.references25. Matseliukh Y., Vysotska V., Bublyk M., Kopach T., Korolenko O. (2021). Network modelling of resource consumption intensities in human capital management in digital business enterprises by the critical path method. URL: http://ds.knu.edu.ua/jspui/handle/123456789/3299.
dc.relation.references26. Bublyk M., Kowalska-Styczeń A., Lytvyn V., Vysotska V. (2021). The Ukrainian economy transformation into the circular based on fuzzy-logic cluster analysis. Energies, 14(18), 5951. DOI: 10.3390/en14185951.
dc.relation.references27. Vysotska V., Bublyk M., Vysotsky A., Berko A., Chyrun L., Doroshkevych K. (2020). Methods and tools for web resources processing in e-commercial content systems. In IEEE 15th International Conference on Computer Sciences and Information Technologies (CSIT), Vol. 1, pp. 114–118. DOI: 10.1109/CSIT49958.2020.9321950.
dc.relation.references28. Bublyk M., Lytvyn V., Vysotska V., Chyrun L., Matseliukh Y., Sokulska N. (2020). The Decision Tree Usage for the Results Analysis of the Psychophysiological Testing. In IDDM, pp. 458–472. URL: https://ceurws.org/Vol-2753/paper31.pdf.
dc.relation.references29. Rishnyak I., Veres O., Lytvyn V., Bublyk M., Karpov I., Vysotska V., Panasyuk V. (2020). Implementation Models Application for IT Project Risk Management. In CITRisk, pp. 102–117.
dc.relation.references30. Bublyk M., Vysotska V., Chyrun L., Panasyuk V., Brodyak O. (2021). Assessing Security Risks Method in E-Commerce System for IT Portfolio Management. In IntelITSIS, pp. 362–379.
dc.relation.references31. Ren S., Chan HL., Siqin T. (2020). Demand forecasting in retail operations for fashionable products: methods, practices, and real case study. Ann Oper Res., 291, 761–777. DOI: 10.1007/s10479-019-03148-8.
dc.relation.references32. Vysotska V., Demchuk A., Lytvyn V. (2019). Features of the Internet architecture of the commercial content management system based on Machine Learning, Web mining and SEO technologies. Radio Electronics, Computer Science, Control, (4), 121–135.
dc.relation.references33. Balush I., Vysotska V., Albota, S. (2021). Recommendation System Development Based on Intelligent Search, NLP and Machine Learning Methods. In MoMLeT+ DS, pp. 584–617.
dc.relation.references34. Lytvyn V., et al. (2019). Design of the architecture of an intelligent system for distributing commercial content in the internet space based on SEO-technologies, neural networks, and Machine Learning. Eastern-European Journal of Enterprise Technologies, 2(2), pp. 15–34. DOI: 10.15587/1729-4061.2019.164441.
dc.relation.references35. Gozhyj A., Kalinina I., Vysotska V., Sachenko S., Kovalchuk R. (2020). Qualitative and Quantitative Characteristics Analysis for Information Security Risk Assessment in E-Commerce Systems. In ICTES, pp. 177–190. URL: http://ceur-ws.org/Vol-2762/paper12.pdf.
dc.relation.references36. Lytvyn V., et al. (2019). Design of a recommendation system based on Collaborative Filtering and machine learning considering personal needs of the user. Eastern-European Journal of Enterprise Technologies, 4(2), pp. 6–28. DOI: 10.15587/1729-4061.2019.175507.
dc.relation.references37. Demchuk A., Lytvyn V., Vysotska V., Dilai M. (2020). Methods and Means of Web Content Personalization for Commercial Information Products Distribution. Advances in Intelligent Systems and Computing, Vol. 1020. Springer, Cham. DOI: 10.1007/978-3-030-26474-1_24.
dc.relation.references38. Bublyk M., Vysotska V., Chyrun L., Panasyuk V., Brodyak O. (2021). Assessing Security Risks Method in E-Commerce System for IT Portfolio Management. In IntelITSIS, pp. 362–379.
dc.relation.references39. Demchuk A., Rusyn B., Pohreliuk L., Gozhyj A., Kalinina I., Chyrun L., Antonyuk N. (2019). Commercial Content Distribution System Based on Neural Network and Machine Learning. In ICTES, pp. 40–57.
dc.relation.references40. Brownlee J. How to Configure the Number of Layers and Nodes in a Neural Network. URL: https://machinelearningmastery.com/how-to-configure-the-number-of-layers-and-nodes-in-a-neural-network/.
dc.relation.references41. Barmuta K. A., Ponkratov V. V., Maramygin M., Kuznetsov N. V., Ivlev V., Ivleva M. (2019). Mathematical model of optimizing the balance sheet structure of the Russian banking system with allowance for the foreign exchange risk levels. Entrepreneurship and Sustainability Issues, 7(1), 484. DOI: 10.9770/jesi.2019.7.1(34).
dc.relation.references42. Lo S. L. Y., How B. S., Leong W. D., Teng S. Y., Rhamdhani M. A., Sunarso J. (2021). Techno-economic analysis for biomass supply chain: A state-of-the-art review. Renewable and Sustainable Energy Reviews, 135, 110164. DOI: 10.1016/j.rser.2020.110164.
dc.relation.references43. Statistica software. URL: https://www.statistica.com/en/.
dc.relation.references44. Forecast pro. URL: https://www.forecastpro.com/.
dc.relation.references45. Novo forecast. URL: https://novoforecast.com/.
dc.relation.references46. Hilorme T., Tkach K., Dorenskyi O., Katerna O., Durmanov A. (2019). Decision making model of introducing energy-saving technologies based on the analytic hierarchy process. Journal of Management Information and Decision Sciences, 22(4), 489–494.
dc.relation.references47. Maram V., Sultan S. J., Omar M. F. B., Bommisetty V. N. R. (2019). Selection of software in manufacturing operations using analytic hierarchy process. In AIP Conference Proceedings, Vol. 2138, No. 1, p. 040016. AIP Publishing LLC. DOI: 10.1063/1.5121095.
dc.relation.references48. Şahin T., Ocak S., Top M. (2019). Analytic hierarchy process for hospital site selection. Health Policy and Technology, 8(1), pp. 42–50. DOI: 10.1016/j.hlpt.2019.02.005.
dc.relation.referencesen1. Bueno A., Godinho Filho M., Frank A. G. (2020). Smart production planning and control in the Industry 4.0 context: A systematic literature review. Computers & Industrial Engineering, 149, 106774. DOI: 10.1016/j.cie.2020.106774.
dc.relation.referencesen2. Usuga Cadavid J. P., et al. (2020). Machine learning applied in production planning and control: a stateof-the-art in the era of Industry 4.0. J. Intell Manuf 31, 1531–1558. DOI: 10.1007/s10845-019-01531-7.
dc.relation.referencesen3. Fragapane G., De Koster R., Sgarbossa F., Strandhagen J. O. (2021). Planning and control of autonomous mobile robots for intralogistics: Literature review and research agenda. European Journal of Operational Research, 294(2), 405–426. DOI: 10.1016/j.ejor.2021.01.019.
dc.relation.referencesen4. Bendul J. C., Blunck H. (2019). The design space of production planning and control for industry 4.0. Computers in Industry, 105, 260–272. DOI: 10.1016/j.compind.2018.10.010.
dc.relation.referencesen5. Chofreh A. G., Goni F. A., Klemeš J. J., Malik M. N., Khan H. H. (2020). Development of guidelines for the implementation of sustainable enterprise resource planning systems. Journal of Cleaner Production, 244, 118655. DOI: 10.1016/j.jclepro.2019.118655.
dc.relation.referencesen6. Taghipour M., Shabrang M., Habibi M. H., Shamami N. (2020). Assessment and Analysis of Risk Associated with the Implementation of Enterprise Resource Planning (ERP) Project Using FMEA Technique (Including Case-Study). Management, 3(1), 29–46. DOI: 10.31058/j.mana.2020.32002.
dc.relation.referencesen7. Astuty W., Pratama I., Basir I., Harahap J. P. R. (2022). Does enterprise resource planning lead to the quality of the management accounting information system? Polish Journal of Management Studies, 25(2), 93–107. DOI: 10.17512/pjms.2022.25.2.06.
dc.relation.referencesen8. Mazaraki A., Drozdova Y., Bay S. (2020). Theoretical and methodological principles for assessment the readiness of socio-economic systems for changes. Baltic journal of economic studies, 6(1), 80–86. DOI: 10.30525/2256-0742/2020-6-1-80-86.
dc.relation.referencesen9. Javanmardi E., Liu S. (2019). Exploring grey systems theory-based methods and applications in analyzing socio-economic systems. Sustainability, 11(15), 4192. DOI: 10.3390/su11154192.
dc.relation.referencesen10. Bulturbayevich M. B., Saodat S., Umida J., Shakhnoza N., Feruza, S. (2020). Theoretical and Practical Bases of Investments and Processes of Their Distribution in the Conditions of Modernization of Economy. International Journal on Integrated Education, 3(9), 132–137. DOI: 10.31149/ijie.v3i9.603.
dc.relation.referencesen11. Fuchs C. (2020). Communication and capitalism: A critical theory (p. 406). University of Westminster Press. DOI: 10.16997/book45.
dc.relation.referencesen12. Wlamyr P. A., Davila Perez M. V., Caicedo-Rolon A. J. (2022). Logistics as an added value in Colombia. Journal of Language and Linguistic Studies, 18(4). URL: http://jlls.org/index.php/jlls/article/view/5028/1759.
dc.relation.referencesen13. Agatić A., Tijan E., Hess S., Jugović T. P. (2021). Advanced Data Analytics in Logistics Demand Forecasting. In 44th International Convention on Information, Communication and Electronic Technology (MIPRO), pp. 1387–1392. DOI: 10.23919/MIPRO52101.2021.9596820.
dc.relation.referencesen14. Yan M., Schmit T. M., Baker M. J., LeRoux M. N., Gómez M. I. (2022). Sell now or later? A decisionmaking model for feeder cattle selling. Agricultural and Resource Economics Review, 51(2), 343–360. DOI: 10.1017/age.2022.1.
dc.relation.referencesen15. Chege S. M., Wang D., Suntu S. L. (2020). Impact of information technology innovation on firm performance in Kenya. Information Technology for Development, 26(2), 316–345. DOI: 10.1080/02681102.2019.1573717.
dc.relation.referencesen16. Jimenez-Jimenez D., Martínez-Costa M., Sanchez Rodriguez C. (2019). The mediating role of supply chain collaboration on the relationship between information technology and innovation. Journal of Knowledge Management, 23(3), 548–567. DOI: 10.1108/JKM-01-2018-0019.
dc.relation.referencesen17. Mehralian M. M. (2022). Identifying and Explaining the Effective Factors of Digital Marketing Strategies in Consumers’ Emotional States and Sales Rates: A Mixed Methods Research. In 20th International Conference of the Business and Strategic Management. DOI: 10.2139/ssrn.4195988.
dc.relation.referencesen18. Ullo S. L., Sinha G. R. (2020). Advances in smart environment monitoring systems using IoT and sensors. Sensors, 20(11), 3113. DOI: 10.3390/s20113113.
dc.relation.referencesen19. Sotnyk I., Hulak D., Yakushev O., Yakusheva O., Prokopenko O. V., Yevdokymov A. (2020). Development of the US electric car market: Macroeconomic determinants and forecasts. Polityka Energetyczna, 23(3), 147–164. URL: https://bibliotekanauki.pl/articles/283581.pdf.
dc.relation.referencesen20. Matseliukh Y., Bublyk M., Vysotska V. (2021). Development of Intelligent System for Visual Passenger Flows Simulation of Public Transport in Smart City Based on Neural Network. In COLINS, pp. 1087–1138.
dc.relation.referencesen21. Bublyk M., Zahreva Y., Vysotska V., Matseliukh Y., Chyrun L., Korolenko O. (2022). Information System Development For Recording Offenses In Smart City Based On Cloud Technologies And Social Networks. Webology (ISSN: 1735-188X), 19(2).
dc.relation.referencesen22. Bublyk M., Kalynii T., Varava L., Vysotska V., Chyrun L., Matseliukh Y. (2022). Decision Support System Design For Low-Voice Emergency Medical Calls At Smart City Based On Chatbot Management In Social Networks. Webology (ISSN: 1735-188X), 19(2).
dc.relation.referencesen23. Trunina I., Zagirniak D., Pryakhina K., Bezugla T. (2020). Diagnostics of the enterprise personnel sustainability. Problems and Perspectives in Management, 18(2), 382. DOI: 10.21511/ppm.18(2).2020.31.
dc.relation.referencesen24. Zhu G., Gao X. (2019). Precision retail marketing strategy based on digital marketing model. Science Journal of Business and Management, 7(1), 33–37. DOI: 10.11648/j.sjbm.20190701.15.
dc.relation.referencesen25. Matseliukh Y., Vysotska V., Bublyk M., Kopach T., Korolenko O. (2021). Network modelling of resource consumption intensities in human capital management in digital business enterprises by the critical path method. URL: http://ds.knu.edu.ua/jspui/handle/123456789/3299.
dc.relation.referencesen26. Bublyk M., Kowalska-Styczeń A., Lytvyn V., Vysotska V. (2021). The Ukrainian economy transformation into the circular based on fuzzy-logic cluster analysis. Energies, 14(18), 5951. DOI: 10.3390/en14185951.
dc.relation.referencesen27. Vysotska V., Bublyk M., Vysotsky A., Berko A., Chyrun L., Doroshkevych K. (2020). Methods and tools for web resources processing in e-commercial content systems. In IEEE 15th International Conference on Computer Sciences and Information Technologies (CSIT), Vol. 1, pp. 114–118. DOI: 10.1109/CSIT49958.2020.9321950.
dc.relation.referencesen28. Bublyk M., Lytvyn V., Vysotska V., Chyrun L., Matseliukh Y., Sokulska N. (2020). The Decision Tree Usage for the Results Analysis of the Psychophysiological Testing. In IDDM, pp. 458–472. URL: https://ceurws.org/Vol-2753/paper31.pdf.
dc.relation.referencesen29. Rishnyak I., Veres O., Lytvyn V., Bublyk M., Karpov I., Vysotska V., Panasyuk V. (2020). Implementation Models Application for IT Project Risk Management. In CITRisk, pp. 102–117.
dc.relation.referencesen30. Bublyk M., Vysotska V., Chyrun L., Panasyuk V., Brodyak O. (2021). Assessing Security Risks Method in E-Commerce System for IT Portfolio Management. In IntelITSIS, pp. 362–379.
dc.relation.referencesen31. Ren S., Chan HL., Siqin T. (2020). Demand forecasting in retail operations for fashionable products: methods, practices, and real case study. Ann Oper Res., 291, 761–777. DOI: 10.1007/s10479-019-03148-8.
dc.relation.referencesen32. Vysotska V., Demchuk A., Lytvyn V. (2019). Features of the Internet architecture of the commercial content management system based on Machine Learning, Web mining and SEO technologies. Radio Electronics, Computer Science, Control, (4), 121–135.
dc.relation.referencesen33. Balush I., Vysotska V., Albota, S. (2021). Recommendation System Development Based on Intelligent Search, NLP and Machine Learning Methods. In MoMLeT+ DS, pp. 584–617.
dc.relation.referencesen34. Lytvyn V., et al. (2019). Design of the architecture of an intelligent system for distributing commercial content in the internet space based on SEO-technologies, neural networks, and Machine Learning. Eastern-European Journal of Enterprise Technologies, 2(2), pp. 15–34. DOI: 10.15587/1729-4061.2019.164441.
dc.relation.referencesen35. Gozhyj A., Kalinina I., Vysotska V., Sachenko S., Kovalchuk R. (2020). Qualitative and Quantitative Characteristics Analysis for Information Security Risk Assessment in E-Commerce Systems. In ICTES, pp. 177–190. URL: http://ceur-ws.org/Vol-2762/paper12.pdf.
dc.relation.referencesen36. Lytvyn V., et al. (2019). Design of a recommendation system based on Collaborative Filtering and machine learning considering personal needs of the user. Eastern-European Journal of Enterprise Technologies, 4(2), pp. 6–28. DOI: 10.15587/1729-4061.2019.175507.
dc.relation.referencesen37. Demchuk A., Lytvyn V., Vysotska V., Dilai M. (2020). Methods and Means of Web Content Personalization for Commercial Information Products Distribution. Advances in Intelligent Systems and Computing, Vol. 1020. Springer, Cham. DOI: 10.1007/978-3-030-26474-1_24.
dc.relation.referencesen38. Bublyk M., Vysotska V., Chyrun L., Panasyuk V., Brodyak O. (2021). Assessing Security Risks Method in E-Commerce System for IT Portfolio Management. In IntelITSIS, pp. 362–379.
dc.relation.referencesen39. Demchuk A., Rusyn B., Pohreliuk L., Gozhyj A., Kalinina I., Chyrun L., Antonyuk N. (2019). Commercial Content Distribution System Based on Neural Network and Machine Learning. In ICTES, pp. 40–57.
dc.relation.referencesen40. Brownlee J. How to Configure the Number of Layers and Nodes in a Neural Network. URL: https://machinelearningmastery.com/how-to-configure-the-number-of-layers-and-nodes-in-a-neural-network/.
dc.relation.referencesen41. Barmuta K. A., Ponkratov V. V., Maramygin M., Kuznetsov N. V., Ivlev V., Ivleva M. (2019). Mathematical model of optimizing the balance sheet structure of the Russian banking system with allowance for the foreign exchange risk levels. Entrepreneurship and Sustainability Issues, 7(1), 484. DOI: 10.9770/jesi.2019.7.1(34).
dc.relation.referencesen42. Lo S. L. Y., How B. S., Leong W. D., Teng S. Y., Rhamdhani M. A., Sunarso J. (2021). Techno-economic analysis for biomass supply chain: A state-of-the-art review. Renewable and Sustainable Energy Reviews, 135, 110164. DOI: 10.1016/j.rser.2020.110164.
dc.relation.referencesen43. Statistica software. URL: https://www.statistica.com/en/.
dc.relation.referencesen44. Forecast pro. URL: https://www.forecastpro.com/.
dc.relation.referencesen45. Novo forecast. URL: https://novoforecast.com/.
dc.relation.referencesen46. Hilorme T., Tkach K., Dorenskyi O., Katerna O., Durmanov A. (2019). Decision making model of introducing energy-saving technologies based on the analytic hierarchy process. Journal of Management Information and Decision Sciences, 22(4), 489–494.
dc.relation.referencesen47. Maram V., Sultan S. J., Omar M. F. B., Bommisetty V. N. R. (2019). Selection of software in manufacturing operations using analytic hierarchy process. In AIP Conference Proceedings, Vol. 2138, No. 1, p. 040016. AIP Publishing LLC. DOI: 10.1063/1.5121095.
dc.relation.referencesen48. Şahin T., Ocak S., Top M. (2019). Analytic hierarchy process for hospital site selection. Health Policy and Technology, 8(1), pp. 42–50. DOI: 10.1016/j.hlpt.2019.02.005.
dc.relation.urihttp://jlls.org/index.php/jlls/article/view/5028/1759
dc.relation.urihttps://bibliotekanauki.pl/articles/283581.pdf
dc.relation.urihttp://ds.knu.edu.ua/jspui/handle/123456789/3299
dc.relation.urihttps://ceurws.org/Vol-2753/paper31.pdf
dc.relation.urihttp://ceur-ws.org/Vol-2762/paper12.pdf
dc.relation.urihttps://machinelearningmastery.com/how-to-configure-the-number-of-layers-and-nodes-in-a-neural-network/
dc.relation.urihttps://www.statistica.com/en/
dc.relation.urihttps://www.forecastpro.com/
dc.relation.urihttps://novoforecast.com/
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Семків М. І., Бублик М. І., Чирун Л. В., Шевченко М. М., Чирун С. Л., 2023
dc.subjectпрогнозування
dc.subjectпродажі
dc.subjectпрогнозування продажів
dc.subjectінформаційна система
dc.subjectforecasting
dc.subjectsales
dc.subjectsales forecasting
dc.subjectinformation system
dc.subject.udc004.9
dc.titleІнформаційна система прогнозування продажів будівельних матеріалів
dc.title.alternativeInformation system for forecasting sales of building materials
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023n13_Semkiv_M-Information_system_for_forecasting_1-23.pdf
Size:
2.76 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023n13_Semkiv_M-Information_system_for_forecasting_1-23__COVER.png
Size:
400.88 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.95 KB
Format:
Plain Text
Description: