Physical and mechanical properties of light and heavyweight concretes reinforced with basalt fibre

dc.citation.epage162
dc.citation.issue1
dc.citation.journalTitleАрхітектурні дослідження
dc.citation.spage151
dc.citation.volume10
dc.contributor.affiliationМіжнародний університет інноваційних технологій
dc.contributor.affiliationІнститут фізики ім. акад. Ж. Жеєнбаєва Національної академії наук Киргизької Республіки
dc.contributor.affiliationКиргизький державний технічний університет ім. І. Раззакова
dc.contributor.affiliationInternational University of Innovative Technologies
dc.contributor.affiliationInstitute of Physics named after Zh. Zheenbaev of the National Academy of Sciences of Kyrgyz Republic
dc.contributor.affiliationKyrgyz State Technical University named after I. Razzakov
dc.contributor.authorКасимов, Туратбек
dc.contributor.authorБарпієв, Бакитбек
dc.contributor.authorАйдаралієв, Жанболот
dc.contributor.authorБегалієв, Улугбек
dc.contributor.authorОмурбеков, Іслан
dc.contributor.authorKasymov, Turatbek
dc.contributor.authorBarpiev, Bakytbek
dc.contributor.authorAidaraliev, Zhanbolot
dc.contributor.authorBegaliev, Ulugbek
dc.contributor.authorOmurbekov, Islan
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-05-14T07:15:32Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractЦе дослідження було спрямоване на вивчення впливу базальтових фібр у бетонних сумішах для поліпшення їхніх фізико-механічних властивостей. Під час роботи використовували портландцемент марки ПЦ400 Д0, гранітний щебінь, перлітове гравійне наповнення і піщану крупку для створення бетонних сумішей різної щільності. Результати проведеної роботи підтвердили, що оптимальне дозування базальтових волокон відіграє ключову роль у досягненні найкращих механічних властивостей бетону. При правильному дозуванні до 3 %, волокна покращують структуру бетону, підвищуючи його міцність і тріщиностійкість. Однак при перевищенні цього рівня до 5 %, агломерація волокон і нестача цементної пасти для зв’язування заповнювачів призводять до зниження міцності бетону на вигин. Дослідження також виявило, що міцність на розрив і міцність на стиск бетону змінюються залежно від вмісту базальтових фібр. Міцність на розрив (вигин) показала тенденцію до збільшення при додаванні до 3 % волокон, з максимальним збільшенням на 11,3 % порівняно з вихідним зразком. Однак при подальшому збільшенні вмісту базальтових фібр, міцність почала знижуватися, підкреслюючи важливість дотримання оптимального дозування. Усадка бетону також змінювалася залежно від вмісту волокон: при збільшенні вмісту базальтових фібр усадка зменшувалася, що пов’язано з формуванням внутрішньої армувальної структури, яка перешкоджає переміщенню частинок бетону. У разі легких бетонів було виявлено аналогічні тенденції: міцність на стиск і міцність на вигин збільшувалися до певного рівня вмісту базальтових фібр, але потім знижувалися в разі перевищення оптимального дозування. Отримані результати підкреслюють важливість ретельного контролю дозування базальтових фібр під час проєктування бетонних конструкцій, оскільки недостатній або надлишковий вміст базальтових фібр може негативно вплинути на механічні властивості бетону. Оптимальне використання базальтових фібр може значно поліпшити міцність, тріщиностійкість та інші характеристики бетону, роблячи його більш стійким і довговічним у різних умовах експлуатації.
dc.description.abstractThe purpose of this study was to investigate the effect of basalt fibres in concrete mixtures to improve their physical and mechanical properties. The study used Portland cement grade PC400 D0, granite crushed stone, perlite gravel fill, and sand coarse aggregate to create concrete mixtures of various densities. The findings of this study confirmed that the optimum dosage of basalt fibres plays a key role in achieving the best mechanical properties of concrete. Upon proper dosage of up to 3%, the fibres improve the structure of concrete, increasing its strength and crack resistance. However, when this level is exceeded up to 5%, agglomeration of fibres and lack of cement paste to bind the aggregates result in lower flexural strength of concrete. The study also revealed that the tensile strength and compressive strength of concrete varies with basalt fibre content. The tensile (flexural) strength showed an increasing trend with the addition of up to 3% fibres, with a maximum increase of 11.3% over the original sample. However,when the basalt fibre content was further increased, the strength started to decrease, emphasising the significance of maintaining the optimum dosage. Concrete shrinkage also varied with fibre content: as the basalt fibre content increased, shrinkage decreased due to the formation of an internal reinforcing structure that prevents the movement of concrete particles. In case of lightweight concrete, analogous trends were discovered: compressive strength and flexural strength increased up to a certain level of basalt fibre content, but then decreased when the optimum dosage was exceeded. The findings emphasise the significance of careful control of basalt fibre dosage in the design of concrete structures, as insufficient or excessive basalt fibre content can adversely affect the mechanical properties of concrete. Optimised use of basalt fibres can considerably improve the strength, crack resistance, and other characteristics of concrete, making it more stable and durable under various service conditions.
dc.format.extent151-162
dc.format.pages12
dc.identifier.citationPhysical and mechanical properties of light and heavyweight concretes reinforced with basalt fibre / Turatbek Kasymov, Bakytbek Barpiev, Zhanbolot Aidaraliev, Ulugbek Begaliev, Islan Omurbekov // Architectural Studies. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 10. — No 1. — P. 151–162.
dc.identifier.citationenPhysical and mechanical properties of light and heavyweight concretes reinforced with basalt fibre / Turatbek Kasymov, Bakytbek Barpiev, Zhanbolot Aidaraliev, Ulugbek Begaliev, Islan Omurbekov // Architectural Studies. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 10. — No 1. — P. 151–162.
dc.identifier.doidoi.org/10.56318/as/1.2024.151
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/64557
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofАрхітектурні дослідження, 1 (10), 2024
dc.relation.ispartofArchitectural Studies, 1 (10), 2024
dc.relation.references[1] Al-Kharabsheh, B.N., Arbili, M.M., Majdi, A., Alogla, S.M., Hakamy, A., Ahmad, J., & Deifalla, A.F. (2023). Basalt fiber reinforced concrete: A compressive review on durability aspects. Materials, 16(1), article number 429. doi: 10.3390/ma16010429.
dc.relation.references[2] Al-Rousan, E.T., Khalid, H.R., & Rahman, M.K. (2023). Fresh, mechanical, and durability properties of basalt fiber-reinforced concrete (BFRC): A review. Developments in the Built Environment, 14, article number 100155. doi: 10.1016/j.dibe.2023.100155.
dc.relation.references[3] Anas, M., Khan, M., Bilal, H., Jadoon, Sh., & Khan, M.N. (2022). Fiber reinforced concrete: A review. Engineering Proceedings, 22(1), article number 3. doi: 10.3390/engproc2022022003.
dc.relation.references[4] Biradar, S.V., Dileep, M.S., & Gowri, T.V. (2020). Studies of concrete mechanical properties with basalt fibers. IOP Conference Series: Materials Science and Engineering, 1006, article number 012031. doi: 10.1088/1757-899X/1006/1/012031.
dc.relation.references[5] Dilbas, H., & Çakır, Ö. (2020). Influence of basalt fiber on physical and mechanical properties of treated recycled aggregate concrete. Construction and Building Materials, 254, article number 119216. doi: 10.1016/j.conbuildmat.2020.119216.
dc.relation.references[6] Dvorkin, L., Bordiuzhenko, O., Tekle, B.H., & Ribakov, Yu. (2021). A method for the design of concrete with combined steel and basalt fiber. Applied Sciences, 11(19), article number 8850. doi: 10.3390/app11198850.
dc.relation.references[7] Elshazli, M.T., Ramirez, K., Ibrahim, A., & Badran, M. (2022). Mechanical, durability and corrosion properties of basalt fiber concrete. Fibers, 10(2), article number 10. doi: 10.3390/fib10020010.
dc.relation.references[8] John, V.J., & Dharmar, B. (2021). Influence of basalt fibers on the mechanical behavior of concrete – a review. Structural Concrete, 22(1), 491-502. doi: 10.1002/suco.201900086.
dc.relation.references[9] Khan, M., Cao, M., Xie, Ch., & Ali, M. (2022). Hybrid fiber concrete with different basalt fiber length and content. Structural Concrete, 23(1), 346-364. doi: 10.1002/suco.202000472.
dc.relation.references[10] Li, H., Lin, J., Lei, X., & Wei, T. (2022a). Compressive strength prediction of basalt fiber reinforced concrete via random forest algorithm. Materials Today Communications, 30, article number 103117. doi: 10.1016/j.mtcomm.2021.103117.
dc.relation.references[11] Li, Y., Zhang, J., He, Yi., Huang, G., Li, J., Niu, Zh., & Gao, B. (2022). A review on durability of basalt fiber reinforced concrete. Composites Science and Technology, 225, article number 109519. doi: 10.1016/j.compscitech.2022.109519.
dc.relation.references[12] Li, Zh., Shen, A., Zeng, G., Chen, Zh., & Guo, Yi. (2022). Research progress on properties of basalt fiber-reinforced cement concrete. Materials Today Communications, 33, article number 104824. doi: 10.1016/j.mtcomm.2022.104824.
dc.relation.references[13] Liu, F., Xu, K., Ding, W., Qiao, Ya., & Wang, L. (2021). Microstructural characteristics and their impact on mechanical properties of steel-PVA fiber reinforced concrete. Cement and Concrete Composites, 123, article number 104196. doi: 10.1016/j.cemconcomp.2021.104196.
dc.relation.references[14] Liu, Q., Song, P., Li, L., Wang, Yu., Wang, X., & Fang, J. (2022). The effect of basalt fiber addition on cement concrete: A review focused on basalt fiber shotcrete. Frontiers in Materials, 9, article number 1048228. doi: 10.3389/fmats.2022.1048228.
dc.relation.references[15] Liu, R., Li, H., Jiang, Q., & Meng, X. (2020). Experimental investigation on flexural properties of directional steel fiber reinforced rubberized concrete. Structures, 27, 1660-1669. doi: 10.1016/j.istruc.2020.08.007.
dc.relation.references[16] Mohamed, O.A., Al Hawat, W., & Keshawarz, M. (2021). Durability and mechanical properties of concrete reinforced with basalt fiber-reinforced polymer (BFRP) bars: Towards sustainable infrastructure. Polymers, 13(9), article number 1402. doi: 10.3390/polym13091402.
dc.relation.references[17] Pastsuk, V., Kiisk, M., Lõhmus, R., Merisalu, M., Kovaljov, S., Biland, A., & Gulik, V. (2020). Selection of basalt fiber with resistance to concrete alkaline environment. SN Applied Sciences, 2, article number 1842. doi: 10.1007/s42452-020-03677-z.
dc.relation.references[18] Sagyndykov, A., Nurlybayev, B., Meirmanov, A., & Jappar, E. (2023). Foam fiber made of basalt fiber. Mechanics and Technologies, 3, 136-142. doi: 10.55956/GOKU4360.
dc.relation.references[19] Tahwia, A.M., Helal, K.A., & Youssf, O. (2023). Chopped basalt fiber-reinforced high-performance concrete: An experimental and analytical study. Journal of Composites Science, 7(6), article number 250. doi: 10.3390/jcs7060250.
dc.relation.references[20] Tamayo, P., Aghajanian, A., Rico, J., Setién, J., Polanco, J.A., & Thomas, C. (2022). Characterization of the adherence strength and the aggregate-paste bond of prestressed concrete with siderurgical aggregates. Journal of Building Engineering, 54, article number 104595. doi: 10.1016/j.jobe.2022.104595.
dc.relation.references[21] Tashpolotov, Y., & Mamatov, E. (2022). Chemical composition of basalt rocks of the Kyzyl-Kiy deposit of the Kyrgyz Republic. Bulletin of Osh State University. Mathematics. Physics. Technical Sciences, 1, 81-91. doi: 10.52754/16948645_2022_1_8.
dc.relation.references[22] Yang, L., Xie, H., Fang, S., Huang, C., Yang, A., & Chao, Y.J. (2021). Experimental study on mechanical properties and damage mechanism of basalt fiber reinforced concrete under uniaxial compression. Structures, 31, 330-340. doi: 10.1016/j.istruc.2021.01.071.
dc.relation.references[23] Yu, H., Meng, T., Zhao, Yu., Liao, J., & Ying, K. (2022). Effects of basalt fiber powder on mechanical properties and microstructure of concrete. Case Studies in Construction Materials, 17, article number e01286. doi: 10.1016/j.cscm.2022.e01286.
dc.relation.references[24] Zajac, M., Skocek, J., Durdzinski, P., Bullerjahn, F., Skibsted, J., & Haha, M.B. (2020). Effect of carbonated cement paste on composite cement hydration and performance. Cement and Concrete Research, 134, article number 106090. doi: 10.1016/j.cemconres.2020.106090.
dc.relation.references[25] Zhang, Ch., Wang, Ya., Zhang, X., Ding, Ya., & Xu, P. (2021). Mechanical properties and microstructure of basalt fiber-reinforced recycled concrete. Journal of Cleaner Production, 278, article number 123252. doi: 10.1016/j.jclepro.2020.123252.
dc.relation.references[26] Zhang, P., Wang, C., Gao, Zh., & Wang, F. (2023). A review on fracture properties of steel fiber reinforced concrete. Journal of Building Engineering, 67, article number 105975. doi: 10.1016/j.jobe.2023.105975.
dc.relation.references[27] Zhao, Yu., Taheri, A., Karakus, M., Chen, Zh., & Deng, A. (2020). Effects of water content, water type and temperature on the rheological behaviour of slag-cement and fly ash-cement paste backfill. International Journal of Mining Science and Technology, 30(3), 271-278. doi: 10.1016/j.ijmst.2020.03.003.
dc.relation.references[28] Zheng, Yu., Zhang, Y., Zhuo, J., Zhang, Ya., & Wan, C. (2022). A review of the mechanical properties and durability of basalt fiber-reinforced concrete. Construction and Building Materials, 359, article number 129360. doi: 10.1016/j.conbuildmat.2022.129360.
dc.relation.references[29] Zhou, H., Jia, B., Huang, H., & Mou, Ya. (2020). Experimental study on basic mechanical properties of basalt fiber reinforced concrete. Materials, 13(6), article number 1362. doi: 10.3390/ma13061362.
dc.relation.referencesen[1] Al-Kharabsheh, B.N., Arbili, M.M., Majdi, A., Alogla, S.M., Hakamy, A., Ahmad, J., & Deifalla, A.F. (2023). Basalt fiber reinforced concrete: A compressive review on durability aspects. Materials, 16(1), article number 429. doi: 10.3390/ma16010429.
dc.relation.referencesen[2] Al-Rousan, E.T., Khalid, H.R., & Rahman, M.K. (2023). Fresh, mechanical, and durability properties of basalt fiber-reinforced concrete (BFRC): A review. Developments in the Built Environment, 14, article number 100155. doi: 10.1016/j.dibe.2023.100155.
dc.relation.referencesen[3] Anas, M., Khan, M., Bilal, H., Jadoon, Sh., & Khan, M.N. (2022). Fiber reinforced concrete: A review. Engineering Proceedings, 22(1), article number 3. doi: 10.3390/engproc2022022003.
dc.relation.referencesen[4] Biradar, S.V., Dileep, M.S., & Gowri, T.V. (2020). Studies of concrete mechanical properties with basalt fibers. IOP Conference Series: Materials Science and Engineering, 1006, article number 012031. doi: 10.1088/1757-899X/1006/1/012031.
dc.relation.referencesen[5] Dilbas, H., & Çakır, Ö. (2020). Influence of basalt fiber on physical and mechanical properties of treated recycled aggregate concrete. Construction and Building Materials, 254, article number 119216. doi: 10.1016/j.conbuildmat.2020.119216.
dc.relation.referencesen[6] Dvorkin, L., Bordiuzhenko, O., Tekle, B.H., & Ribakov, Yu. (2021). A method for the design of concrete with combined steel and basalt fiber. Applied Sciences, 11(19), article number 8850. doi: 10.3390/app11198850.
dc.relation.referencesen[7] Elshazli, M.T., Ramirez, K., Ibrahim, A., & Badran, M. (2022). Mechanical, durability and corrosion properties of basalt fiber concrete. Fibers, 10(2), article number 10. doi: 10.3390/fib10020010.
dc.relation.referencesen[8] John, V.J., & Dharmar, B. (2021). Influence of basalt fibers on the mechanical behavior of concrete – a review. Structural Concrete, 22(1), 491-502. doi: 10.1002/suco.201900086.
dc.relation.referencesen[9] Khan, M., Cao, M., Xie, Ch., & Ali, M. (2022). Hybrid fiber concrete with different basalt fiber length and content. Structural Concrete, 23(1), 346-364. doi: 10.1002/suco.202000472.
dc.relation.referencesen[10] Li, H., Lin, J., Lei, X., & Wei, T. (2022a). Compressive strength prediction of basalt fiber reinforced concrete via random forest algorithm. Materials Today Communications, 30, article number 103117. doi: 10.1016/j.mtcomm.2021.103117.
dc.relation.referencesen[11] Li, Y., Zhang, J., He, Yi., Huang, G., Li, J., Niu, Zh., & Gao, B. (2022). A review on durability of basalt fiber reinforced concrete. Composites Science and Technology, 225, article number 109519. doi: 10.1016/j.compscitech.2022.109519.
dc.relation.referencesen[12] Li, Zh., Shen, A., Zeng, G., Chen, Zh., & Guo, Yi. (2022). Research progress on properties of basalt fiber-reinforced cement concrete. Materials Today Communications, 33, article number 104824. doi: 10.1016/j.mtcomm.2022.104824.
dc.relation.referencesen[13] Liu, F., Xu, K., Ding, W., Qiao, Ya., & Wang, L. (2021). Microstructural characteristics and their impact on mechanical properties of steel-PVA fiber reinforced concrete. Cement and Concrete Composites, 123, article number 104196. doi: 10.1016/j.cemconcomp.2021.104196.
dc.relation.referencesen[14] Liu, Q., Song, P., Li, L., Wang, Yu., Wang, X., & Fang, J. (2022). The effect of basalt fiber addition on cement concrete: A review focused on basalt fiber shotcrete. Frontiers in Materials, 9, article number 1048228. doi: 10.3389/fmats.2022.1048228.
dc.relation.referencesen[15] Liu, R., Li, H., Jiang, Q., & Meng, X. (2020). Experimental investigation on flexural properties of directional steel fiber reinforced rubberized concrete. Structures, 27, 1660-1669. doi: 10.1016/j.istruc.2020.08.007.
dc.relation.referencesen[16] Mohamed, O.A., Al Hawat, W., & Keshawarz, M. (2021). Durability and mechanical properties of concrete reinforced with basalt fiber-reinforced polymer (BFRP) bars: Towards sustainable infrastructure. Polymers, 13(9), article number 1402. doi: 10.3390/polym13091402.
dc.relation.referencesen[17] Pastsuk, V., Kiisk, M., Lõhmus, R., Merisalu, M., Kovaljov, S., Biland, A., & Gulik, V. (2020). Selection of basalt fiber with resistance to concrete alkaline environment. SN Applied Sciences, 2, article number 1842. doi: 10.1007/s42452-020-03677-z.
dc.relation.referencesen[18] Sagyndykov, A., Nurlybayev, B., Meirmanov, A., & Jappar, E. (2023). Foam fiber made of basalt fiber. Mechanics and Technologies, 3, 136-142. doi: 10.55956/GOKU4360.
dc.relation.referencesen[19] Tahwia, A.M., Helal, K.A., & Youssf, O. (2023). Chopped basalt fiber-reinforced high-performance concrete: An experimental and analytical study. Journal of Composites Science, 7(6), article number 250. doi: 10.3390/jcs7060250.
dc.relation.referencesen[20] Tamayo, P., Aghajanian, A., Rico, J., Setién, J., Polanco, J.A., & Thomas, C. (2022). Characterization of the adherence strength and the aggregate-paste bond of prestressed concrete with siderurgical aggregates. Journal of Building Engineering, 54, article number 104595. doi: 10.1016/j.jobe.2022.104595.
dc.relation.referencesen[21] Tashpolotov, Y., & Mamatov, E. (2022). Chemical composition of basalt rocks of the Kyzyl-Kiy deposit of the Kyrgyz Republic. Bulletin of Osh State University. Mathematics. Physics. Technical Sciences, 1, 81-91. doi: 10.52754/16948645_2022_1_8.
dc.relation.referencesen[22] Yang, L., Xie, H., Fang, S., Huang, C., Yang, A., & Chao, Y.J. (2021). Experimental study on mechanical properties and damage mechanism of basalt fiber reinforced concrete under uniaxial compression. Structures, 31, 330-340. doi: 10.1016/j.istruc.2021.01.071.
dc.relation.referencesen[23] Yu, H., Meng, T., Zhao, Yu., Liao, J., & Ying, K. (2022). Effects of basalt fiber powder on mechanical properties and microstructure of concrete. Case Studies in Construction Materials, 17, article number e01286. doi: 10.1016/j.cscm.2022.e01286.
dc.relation.referencesen[24] Zajac, M., Skocek, J., Durdzinski, P., Bullerjahn, F., Skibsted, J., & Haha, M.B. (2020). Effect of carbonated cement paste on composite cement hydration and performance. Cement and Concrete Research, 134, article number 106090. doi: 10.1016/j.cemconres.2020.106090.
dc.relation.referencesen[25] Zhang, Ch., Wang, Ya., Zhang, X., Ding, Ya., & Xu, P. (2021). Mechanical properties and microstructure of basalt fiber-reinforced recycled concrete. Journal of Cleaner Production, 278, article number 123252. doi: 10.1016/j.jclepro.2020.123252.
dc.relation.referencesen[26] Zhang, P., Wang, C., Gao, Zh., & Wang, F. (2023). A review on fracture properties of steel fiber reinforced concrete. Journal of Building Engineering, 67, article number 105975. doi: 10.1016/j.jobe.2023.105975.
dc.relation.referencesen[27] Zhao, Yu., Taheri, A., Karakus, M., Chen, Zh., & Deng, A. (2020). Effects of water content, water type and temperature on the rheological behaviour of slag-cement and fly ash-cement paste backfill. International Journal of Mining Science and Technology, 30(3), 271-278. doi: 10.1016/j.ijmst.2020.03.003.
dc.relation.referencesen[28] Zheng, Yu., Zhang, Y., Zhuo, J., Zhang, Ya., & Wan, C. (2022). A review of the mechanical properties and durability of basalt fiber-reinforced concrete. Construction and Building Materials, 359, article number 129360. doi: 10.1016/j.conbuildmat.2022.129360.
dc.relation.referencesen[29] Zhou, H., Jia, B., Huang, H., & Mou, Ya. (2020). Experimental study on basic mechanical properties of basalt fiber reinforced concrete. Materials, 13(6), article number 1362. doi: 10.3390/ma13061362.
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.subjectструктура будівельних матеріалів
dc.subjectфібробетон
dc.subjectміцність на вигин
dc.subjectстиск
dc.subjectрозривний розтяг
dc.subjectміцність на розрив
dc.subjectрозривне розтягнення
dc.subjectstructure of building materials
dc.subjectfibre concrete
dc.subjectflexural strength
dc.subjectcompression
dc.subjectextrusion
dc.subjecttensile breaking strength
dc.subjecttear strength
dc.subject.udc691.32
dc.titlePhysical and mechanical properties of light and heavyweight concretes reinforced with basalt fibre
dc.title.alternativeФізико-механічні властивості легких і важких бетонів, армованих базальтовою фіброю
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v10n1_Kasymov_T-Physical_and_mechanical_151-162.pdf
Size:
1.76 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v10n1_Kasymov_T-Physical_and_mechanical_151-162__COVER.png
Size:
990.85 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.98 KB
Format:
Plain Text
Description: