Optimum collection and concentration strategies of hydrobionts excess biomass in biological surface water purifying technologies

dc.citation.epage47
dc.citation.issue6
dc.citation.spage40
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationUkrainian National Forestry University
dc.contributor.affiliationLviv State University of Life Safety
dc.contributor.authorMalovanyy, Myroslav
dc.contributor.authorTymchuk, Ivan
dc.contributor.authorBalandiukh, Iurii
dc.contributor.authorSoloviy, Christina
dc.contributor.authorZhuk, Volodymyr
dc.contributor.authorKopiy, Maria
dc.contributor.authorStokaliuk, Oleh
dc.contributor.authorPetrushka, Kateryna
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-04-25T06:44:52Z
dc.date.available2023-04-25T06:44:52Z
dc.date.created2021-03-03
dc.date.issued2021-03-03
dc.description.abstractThe analysis of perspective collection and concentration technologies of excess biomass in the technologies of wastewater and surface water biological treatment with the use of aquatic organisms has been carried out. The scheme of a life cycle of the aquatic organisms in wastewater and surface water treatment technologies has been proposed. The analysis of technological approaches for biomass collection of three types: aquatic plants and macroalgae; aquatic plants with a developed root system and microalgae of aquatic organisms has been carried out. A strategy for concentrating microalgae has been proposed. The high efficiency of the coagulation-flocculation gravitational thickening method of freshwater microalgae suspensions of the Microcystis aeruginosa species has been confirmed in laboratory conditions.
dc.format.extent40-47
dc.format.pages8
dc.identifier.citationOptimum collection and concentration strategies of hydrobionts excess biomass in biological surface water purifying technologies / Myroslav Malovanyy, Ivan Tymchuk, Iurii Balandiukh, Christina Soloviy, Volodymyr Zhuk, Maria Kopiy, Oleh Stokaliuk, Kateryna Petrushka // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 1. — No 6. — P. 40–47.
dc.identifier.citationenOptimum collection and concentration strategies of hydrobionts excess biomass in biological surface water purifying technologies / Myroslav Malovanyy, Ivan Tymchuk, Iurii Balandiukh, Christina Soloviy, Volodymyr Zhuk, Maria Kopiy, Oleh Stokaliuk, Kateryna Petrushka // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 1. — No 6. — P. 40–47.
dc.identifier.doidoi.org/10.23939/ep2021.01.040
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/58004
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofEnvironmental Problems, 6 (1), 2021
dc.relation.referencesBigaj, I. M., Brzozowska, R., Łopata, M., Wiśniewski, G.,
dc.relation.referencesDunalska, J. A., Szymański D., & Zieliński, R. A.
dc.relation.references(2013). Comparison of coagulation behaviour and floc
dc.relation.referencescharacteristics of polyaluminium chloride (PAX 18, PAX
dc.relation.referencesXL19H, ALCAT) with surface water treatment.
dc.relation.referencesLimnological Review, 13 (2), 73−78.
dc.relation.referencesBrix, H. (1993). Macrophytes – mediated oxygen transfer in
dc.relation.referenceswetlands: Transport mechanism and rates. In G. A. Moshiri
dc.relation.references(Ed.), Constructed wetlands for water quality improvement.
dc.relation.referencesAnn Arbor, London: Lewis, Chapter 41, 391–398.
dc.relation.referencesCleaning of reservoirs from algae and cane. (2020). Retrieved
dc.relation.referencesfrom https://dredgers.com.ua/en/kamish1-2/
dc.relation.referencesDogaris, Ioannis, Ammar, Ehab, & Philippidis, George P.
dc.relation.references(2020). Prospects of integrating algae technologies into
dc.relation.referenceslandfill leachate treatment. World Journal of Microbiology
dc.relation.referencesand Biotechnology, (36:39), 25. doi: https://doi.org/10.1007/s11274-020-2810-y
dc.relation.referencesDzhamalova, G. A. (2015). Matematicheskoe planirovanie
dc.relation.referencesemissii biogaza i filtrata v protsesse intensivnogo
dc.relation.referencesanaerobnogo razlozheniya tverdyih byitovyih othodov v
dc.relation.referencesbioreaktore. Sovremennyie problemyi nauki i obrazovaniya,
dc.relation.references(2-2), 44–50.
dc.relation.referencesFlyurik, E., Abramovich, O., & Zmitrovich, A. (2014).
dc.relation.referencesIspolzovanie Eichornia crassipes dlya ochistki stochnyih
dc.relation.referencesvod i polucheniya kormovoy dobavki. Trudyi BGTU, (4), 155–160.
dc.relation.referencesGajewska, M., Tuszyńska, A., & Obarska-Pempkowiak, H.
dc.relation.references(2004). Influence of configuration of the beds on
dc.relation.referencescontaminations removal in hybrid constructed wetlands.
dc.relation.referencesPol. J. Environ. Stud., (13), 149–153.
dc.relation.referencesGovahi, S., Karimi-Jashni, A., & Derakhshan, M. (2012)
dc.relation.referencesTreatability of landfill leachate by combined upflow
dc.relation.referencesanaerobic sludge blanket reactor and aerated lagoon.
dc.relation.referencesInternational Journal of Environmental Science and
dc.relation.referencesTechnology, (9), 145–151. doi: https://doi.org/10.1007/s13762-011-0021-7.
dc.relation.referencesGranados, M. R., Acién, F. G., Gómez, C., Fernández-Sevilla,
dc.relation.referencesJ. M., & Grima, M. E. (2012). Evaluation of flocculants for
dc.relation.referencesthe recovery of freshwater microalgae. Bioresource
dc.relation.referencesTechnology, (118), 102–110.
dc.relation.referencesJóźwiakowski, K., Gajewska, M., Marzec, M., Gizińska-Górna, M.,
dc.relation.referencesPytka, A., Kowalczyk – Juśko, A., Sosnowska, B.,
dc.relation.referencesBaran, S., Malik, A., & Kufel, R. (2016). Hybrid
dc.relation.referencesconstructed wetlands for the National Parks – a case
dc.relation.referencesstudy, requirements, dimensioning, preliminary results.
dc.relation.referencesIn: Vymazal, J. (Ed.), Natural and Constructed Wetlands.
dc.relation.referencesNutrients, Heavy Metals and Energy Cycling, and Flow.
dc.relation.referencesSpringer International Publishing, Switzerland, 247–265.
dc.relation.referencesJozwiakowski, K., Bugajski, P., Kurek, K., Caceres, R., Siwiec,
dc.relation.referencesT., Jucherski A., Czekała, W., & Kozłowski, K. (2020).
dc.relation.referencesTechnological reliability of pollutant removal in different
dc.relation.referencesseasons in one-stage constructed wetland system with
dc.relation.referenceshorizontal flow operating in the moderate climate.
dc.relation.referencesSeparation and Purification Technology, (238), 1–23. doi:
dc.relation.referenceshttps://doi.org/10.1016/j.seppur.2019.116439
dc.relation.referencesLapan, O., Mikhyeyev, O., Madzhd, S., Dmytrukha, T.,
dc.relation.referencesCherniak, L., & Petrusenko, V. (2019).Water Purification
dc.relation.referencesfrom Ions of Cadmium (II) Using a Bio-Plateau. Journal
dc.relation.referencesof Ecological Engineering, 20(11), 29–34. doi:
dc.relation.referenceshttps://doi.org/10.12911/22998993/113412
dc.relation.referencesMalovanyy, M., Nykyforov, V., Kharlamova, О., Synelnikov, О.,
dc.relation.references& Dereyko, Kh. (2016,а). Reduction of the environmental
dc.relation.referencesthreat from uncontrolled development of cyanobacteria in
dc.relation.referenceswaters of Dnipro reservoirs. Environmental Problems, 1(1),61–64.
dc.relation.referencesMalovanyy, M., Nikiforov, V., Kharlamova, O., & Synelnikov, O.
dc.relation.references(2016,b). Production of renewable energy resources
dc.relation.referencesvia complex treatment of cyanobacteria biomass.
dc.relation.referencesChemistry and Chemical Technology, 10(2), 251–254.
dc.relation.referencesdoi: https://doi.org/10.23939/chcht10.02.25
dc.relation.referencesMalovanyy, M., Zhuk, V., Nykyforov, V., Bordun, I.,
dc.relation.referencesBalandiukh, Ju., & Leskiv, G. (2019). Experimental
dc.relation.referencesinvestigation of Microcystis aeruginosa cyanobacteria
dc.relation.referencesthickening to obtain a biomass for the energy production.
dc.relation.referencesJournal of water and land development, 43 (X–XII), 113–119. doi: https://doi.org/10.2478/jwld-2019-0069
dc.relation.referencesMarzec, M., Józwiakowski, K., Debska, A., Gizinska-Górna, M.,
dc.relation.referencesPytka-Woszczyło, A., Kowalczyk-Jusko, A., & Listosz, A.
dc.relation.references(2018). The Efficiency and Reliability of Pollutant Removal
dc.relation.referencesin a Hybrid Constructed Wetland with Common Reed,
dc.relation.referencesManna Grass, and Virginia Mallow. Water, (10), 1445. doi:
dc.relation.referenceshttps://doi.org/10.3390/w10101445
dc.relation.referencesMasi, F., & Martinuzzi, N. (2007). Constructed wetlands for the
dc.relation.referencesMediterranean countries: hybrid systems for water reuse
dc.relation.referencesand sustainable sanitation. Desalination, 215 (1–3), 44–55.
dc.relation.referencesdoi: https://doi.org/10.1016/j.desal.2006.11.014
dc.relation.referencesNykyforov, V., Malovanyy, M., Kozlovska, T., Novokhatko,
dc.relation.referencesO., & Digtiar, S. (2016). The biotechnological ways of blue-
dc.relation.referencesgreen algae complex processing. Eastern-European Journal
dc.relation.referencesof Enterprise Technologies, 5(10), 11–18. doi:
dc.relation.referenceshttps://doi.org/10.15587/1729-4061.2016.79789
dc.relation.referencesPayandeh, P. E., Naser, M., & Parisa, D. (2017). Study of
dc.relation.referencesBiological Methods in Landfill Leachate Treatment.
dc.relation.referencesOpen Journal of Ecology, (7), 568–580. doi:
dc.relation.referenceshttps://doi.org/10.4236/oje.2017.79038
dc.relation.referencesRai, U. N., Tripathi, R. D., Singh, N. K., Upadhyay, A. K.,
dc.relation.referencesDwivedi, S., Shukla, M. K., Mallick, S., Singh, S. N., &
dc.relation.referencesNautiyal, C. S. (2013). Constructed wetland as an
dc.relation.referencesecotechnological tool for pollution treatment for conservation
dc.relation.referencesof Ganga river. Bioresour. Technol., (148), 535–541. doi:
dc.relation.referenceshttps://doi.org/10.1016/ j.biortech.2013.09.005
dc.relation.referencesSardi Saavedra, A., Madera Parra, C, Peсa, E. J., Cerуn, V. A,
dc.relation.references&Mosquera, J. (2018). Grupos funcionales fitoplanctуnicos
dc.relation.referencesen una laguna algal de alta tasa usada para la
dc.relation.referencesbiorremediaciуn de lixiviados de rellenos sanitarios.
dc.relation.referencesActa Biolуg Colombiana, (23), 295–303. doi:
dc.relation.referenceshttps://doi.org/10.15446/abc.v23n3.69537
dc.relation.referencesSniffen, K. D., Sales, C. M., & Olson, M. S. (2015). Nitrogen
dc.relation.referencesremoval from raw landfill leachate by an algae–bacteria
dc.relation.referencesconsortium. Water Sci Technol., (73), 479–485. doi:
dc.relation.referenceshttps://doi.org/10.2166/wst.2015.499
dc.relation.referencesSoloviy, C., & Malovanyy, M. (2019). Freshwater ecosystem
dc.relation.referencesmacrophytes and microphytes: development, environmental
dc.relation.referencesproblems, usage as raw material. Review. Environmental
dc.relation.referencesProblems, 4(3), 115–124. doi: https://doi.org/10.23939/ep2019.03.115
dc.relation.referencesVillamagna, A. M., Murphy, B. R. (2010). Ecological and socio-
dc.relation.referenceseconomic impacts of invasive water hyacinth (Eichhornia
dc.relation.referencescrassipes): a review. Freshwater Biology, (55), 282–298.
dc.relation.referencesdoi: https://doi.org/10.1111/j.1365-2427.2009.02294.x
dc.relation.referencesZahirniak, M. V., et al. (2017). Ekolohichna biotekhnolohiia
dc.relation.referencespererobky syno-zelenykh vodorostei. Kremenchuk: PP
dc.relation.referencesShcherbatykh O. V. [in Ukrainian]
dc.relation.referencesenBigaj, I. M., Brzozowska, R., Łopata, M., Wiśniewski, G.,
dc.relation.referencesenDunalska, J. A., Szymański D., & Zieliński, R. A.
dc.relation.referencesen(2013). Comparison of coagulation behaviour and floc
dc.relation.referencesencharacteristics of polyaluminium chloride (PAX 18, PAX
dc.relation.referencesenXL19H, ALCAT) with surface water treatment.
dc.relation.referencesenLimnological Review, 13 (2), 73−78.
dc.relation.referencesenBrix, H. (1993). Macrophytes – mediated oxygen transfer in
dc.relation.referencesenwetlands: Transport mechanism and rates. In G. A. Moshiri
dc.relation.referencesen(Ed.), Constructed wetlands for water quality improvement.
dc.relation.referencesenAnn Arbor, London: Lewis, Chapter 41, 391–398.
dc.relation.referencesenCleaning of reservoirs from algae and cane. (2020). Retrieved
dc.relation.referencesenfrom https://dredgers.com.ua/en/kamish1-2/
dc.relation.referencesenDogaris, Ioannis, Ammar, Ehab, & Philippidis, George P.
dc.relation.referencesen(2020). Prospects of integrating algae technologies into
dc.relation.referencesenlandfill leachate treatment. World Journal of Microbiology
dc.relation.referencesenand Biotechnology, (36:39), 25. doi: https://doi.org/10.1007/s11274-020-2810-y
dc.relation.referencesenDzhamalova, G. A. (2015). Matematicheskoe planirovanie
dc.relation.referencesenemissii biogaza i filtrata v protsesse intensivnogo
dc.relation.referencesenanaerobnogo razlozheniya tverdyih byitovyih othodov v
dc.relation.referencesenbioreaktore. Sovremennyie problemyi nauki i obrazovaniya,
dc.relation.referencesen(2-2), 44–50.
dc.relation.referencesenFlyurik, E., Abramovich, O., & Zmitrovich, A. (2014).
dc.relation.referencesenIspolzovanie Eichornia crassipes dlya ochistki stochnyih
dc.relation.referencesenvod i polucheniya kormovoy dobavki. Trudyi BGTU, (4), 155–160.
dc.relation.referencesenGajewska, M., Tuszyńska, A., & Obarska-Pempkowiak, H.
dc.relation.referencesen(2004). Influence of configuration of the beds on
dc.relation.referencesencontaminations removal in hybrid constructed wetlands.
dc.relation.referencesenPol. J. Environ. Stud., (13), 149–153.
dc.relation.referencesenGovahi, S., Karimi-Jashni, A., & Derakhshan, M. (2012)
dc.relation.referencesenTreatability of landfill leachate by combined upflow
dc.relation.referencesenanaerobic sludge blanket reactor and aerated lagoon.
dc.relation.referencesenInternational Journal of Environmental Science and
dc.relation.referencesenTechnology, (9), 145–151. doi: https://doi.org/10.1007/s13762-011-0021-7.
dc.relation.referencesenGranados, M. R., Acién, F. G., Gómez, C., Fernández-Sevilla,
dc.relation.referencesenJ. M., & Grima, M. E. (2012). Evaluation of flocculants for
dc.relation.referencesenthe recovery of freshwater microalgae. Bioresource
dc.relation.referencesenTechnology, (118), 102–110.
dc.relation.referencesenJóźwiakowski, K., Gajewska, M., Marzec, M., Gizińska-Górna, M.,
dc.relation.referencesenPytka, A., Kowalczyk – Juśko, A., Sosnowska, B.,
dc.relation.referencesenBaran, S., Malik, A., & Kufel, R. (2016). Hybrid
dc.relation.referencesenconstructed wetlands for the National Parks – a case
dc.relation.referencesenstudy, requirements, dimensioning, preliminary results.
dc.relation.referencesenIn: Vymazal, J. (Ed.), Natural and Constructed Wetlands.
dc.relation.referencesenNutrients, Heavy Metals and Energy Cycling, and Flow.
dc.relation.referencesenSpringer International Publishing, Switzerland, 247–265.
dc.relation.referencesenJozwiakowski, K., Bugajski, P., Kurek, K., Caceres, R., Siwiec,
dc.relation.referencesenT., Jucherski A., Czekała, W., & Kozłowski, K. (2020).
dc.relation.referencesenTechnological reliability of pollutant removal in different
dc.relation.referencesenseasons in one-stage constructed wetland system with
dc.relation.referencesenhorizontal flow operating in the moderate climate.
dc.relation.referencesenSeparation and Purification Technology, (238), 1–23. doi:
dc.relation.referencesenhttps://doi.org/10.1016/j.seppur.2019.116439
dc.relation.referencesenLapan, O., Mikhyeyev, O., Madzhd, S., Dmytrukha, T.,
dc.relation.referencesenCherniak, L., & Petrusenko, V. (2019).Water Purification
dc.relation.referencesenfrom Ions of Cadmium (II) Using a Bio-Plateau. Journal
dc.relation.referencesenof Ecological Engineering, 20(11), 29–34. doi:
dc.relation.referencesenhttps://doi.org/10.12911/22998993/113412
dc.relation.referencesenMalovanyy, M., Nykyforov, V., Kharlamova, O., Synelnikov, O.,
dc.relation.referencesen& Dereyko, Kh. (2016,a). Reduction of the environmental
dc.relation.referencesenthreat from uncontrolled development of cyanobacteria in
dc.relation.referencesenwaters of Dnipro reservoirs. Environmental Problems, 1(1),61–64.
dc.relation.referencesenMalovanyy, M., Nikiforov, V., Kharlamova, O., & Synelnikov, O.
dc.relation.referencesen(2016,b). Production of renewable energy resources
dc.relation.referencesenvia complex treatment of cyanobacteria biomass.
dc.relation.referencesenChemistry and Chemical Technology, 10(2), 251–254.
dc.relation.referencesendoi: https://doi.org/10.23939/chcht10.02.25
dc.relation.referencesenMalovanyy, M., Zhuk, V., Nykyforov, V., Bordun, I.,
dc.relation.referencesenBalandiukh, Ju., & Leskiv, G. (2019). Experimental
dc.relation.referenceseninvestigation of Microcystis aeruginosa cyanobacteria
dc.relation.referencesenthickening to obtain a biomass for the energy production.
dc.relation.referencesenJournal of water and land development, 43 (X–XII), 113–119. doi: https://doi.org/10.2478/jwld-2019-0069
dc.relation.referencesenMarzec, M., Józwiakowski, K., Debska, A., Gizinska-Górna, M.,
dc.relation.referencesenPytka-Woszczyło, A., Kowalczyk-Jusko, A., & Listosz, A.
dc.relation.referencesen(2018). The Efficiency and Reliability of Pollutant Removal
dc.relation.referencesenin a Hybrid Constructed Wetland with Common Reed,
dc.relation.referencesenManna Grass, and Virginia Mallow. Water, (10), 1445. doi:
dc.relation.referencesenhttps://doi.org/10.3390/w10101445
dc.relation.referencesenMasi, F., & Martinuzzi, N. (2007). Constructed wetlands for the
dc.relation.referencesenMediterranean countries: hybrid systems for water reuse
dc.relation.referencesenand sustainable sanitation. Desalination, 215 (1–3), 44–55.
dc.relation.referencesendoi: https://doi.org/10.1016/j.desal.2006.11.014
dc.relation.referencesenNykyforov, V., Malovanyy, M., Kozlovska, T., Novokhatko,
dc.relation.referencesenO., & Digtiar, S. (2016). The biotechnological ways of blue-
dc.relation.referencesengreen algae complex processing. Eastern-European Journal
dc.relation.referencesenof Enterprise Technologies, 5(10), 11–18. doi:
dc.relation.referencesenhttps://doi.org/10.15587/1729-4061.2016.79789
dc.relation.referencesenPayandeh, P. E., Naser, M., & Parisa, D. (2017). Study of
dc.relation.referencesenBiological Methods in Landfill Leachate Treatment.
dc.relation.referencesenOpen Journal of Ecology, (7), 568–580. doi:
dc.relation.referencesenhttps://doi.org/10.4236/oje.2017.79038
dc.relation.referencesenRai, U. N., Tripathi, R. D., Singh, N. K., Upadhyay, A. K.,
dc.relation.referencesenDwivedi, S., Shukla, M. K., Mallick, S., Singh, S. N., &
dc.relation.referencesenNautiyal, C. S. (2013). Constructed wetland as an
dc.relation.referencesenecotechnological tool for pollution treatment for conservation
dc.relation.referencesenof Ganga river. Bioresour. Technol., (148), 535–541. doi:
dc.relation.referencesenhttps://doi.org/10.1016/ j.biortech.2013.09.005
dc.relation.referencesenSardi Saavedra, A., Madera Parra, C, Pesa, E. J., Cerun, V. A,
dc.relation.referencesen&Mosquera, J. (2018). Grupos funcionales fitoplanctunicos
dc.relation.referencesenen una laguna algal de alta tasa usada para la
dc.relation.referencesenbiorremediaciun de lixiviados de rellenos sanitarios.
dc.relation.referencesenActa Biolug Colombiana, (23), 295–303. doi:
dc.relation.referencesenhttps://doi.org/10.15446/abc.v23n3.69537
dc.relation.referencesenSniffen, K. D., Sales, C. M., & Olson, M. S. (2015). Nitrogen
dc.relation.referencesenremoval from raw landfill leachate by an algae–bacteria
dc.relation.referencesenconsortium. Water Sci Technol., (73), 479–485. doi:
dc.relation.referencesenhttps://doi.org/10.2166/wst.2015.499
dc.relation.referencesenSoloviy, C., & Malovanyy, M. (2019). Freshwater ecosystem
dc.relation.referencesenmacrophytes and microphytes: development, environmental
dc.relation.referencesenproblems, usage as raw material. Review. Environmental
dc.relation.referencesenProblems, 4(3), 115–124. doi: https://doi.org/10.23939/ep2019.03.115
dc.relation.referencesenVillamagna, A. M., Murphy, B. R. (2010). Ecological and socio-
dc.relation.referenceseneconomic impacts of invasive water hyacinth (Eichhornia
dc.relation.referencesencrassipes): a review. Freshwater Biology, (55), 282–298.
dc.relation.referencesendoi: https://doi.org/10.1111/j.1365-2427.2009.02294.x
dc.relation.referencesenZahirniak, M. V., et al. (2017). Ekolohichna biotekhnolohiia
dc.relation.referencesenpererobky syno-zelenykh vodorostei. Kremenchuk: PP
dc.relation.referencesenShcherbatykh O. V. [in Ukrainian]
dc.relation.urihttps://dredgers.com.ua/en/kamish1-2/
dc.relation.urihttps://doi.org/10.1007/s11274-020-2810-y
dc.relation.urihttps://doi.org/10.1007/s13762-011-0021-7
dc.relation.urihttps://doi.org/10.1016/j.seppur.2019.116439
dc.relation.urihttps://doi.org/10.12911/22998993/113412
dc.relation.urihttps://doi.org/10.23939/chcht10.02.25
dc.relation.urihttps://doi.org/10.2478/jwld-2019-0069
dc.relation.urihttps://doi.org/10.3390/w10101445
dc.relation.urihttps://doi.org/10.1016/j.desal.2006.11.014
dc.relation.urihttps://doi.org/10.15587/1729-4061.2016.79789
dc.relation.urihttps://doi.org/10.4236/oje.2017.79038
dc.relation.urihttps://doi.org/10.1016/
dc.relation.urihttps://doi.org/10.15446/abc.v23n3.69537
dc.relation.urihttps://doi.org/10.2166/wst.2015.499
dc.relation.urihttps://doi.org/10.23939/ep2019.03.115
dc.relation.urihttps://doi.org/10.1111/j.1365-2427.2009.02294.x
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.rights.holder© Malovanyy M., Tymchuk I., Balandiukh I., Soloviy Сh., Zhuk V., Kopiy M., Stokaliuk O., Petrushka K., 2021
dc.subjecthydrobionts
dc.subjectexcess biomass
dc.subjectcollection
dc.subjectconcentration
dc.subjectsurface and wastewater
dc.subjectaquatic plants
dc.subjectmicroalgae
dc.titleOptimum collection and concentration strategies of hydrobionts excess biomass in biological surface water purifying technologies
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2021v1n6_Malovanyy_M-Optimum_collection_and_40-47.pdf
Size:
922.53 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2021v1n6_Malovanyy_M-Optimum_collection_and_40-47__COVER.png
Size:
358.61 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.86 KB
Format:
Plain Text
Description: