Assessment of the influence of technogenically triggered hydrodynamic processes on groundwater contamination in the area of Kalush mining industry by applying geophysical methods
dc.citation.epage | 135 | |
dc.citation.issue | 1(32) | |
dc.citation.journalTitle | Геодинаміка | |
dc.citation.spage | 119 | |
dc.contributor.affiliation | Івано-Франківський національний технічний університет нафти | |
dc.contributor.affiliation | Ivano-Frankivsk National Technical University of Oil and Gas | |
dc.contributor.author | Кузьменко, Едуард | |
dc.contributor.author | Багрій, Сергій | |
dc.contributor.author | Kuzmenko, Eduard | |
dc.contributor.author | Bagriy, Sergiy | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-07-03T08:11:31Z | |
dc.date.available | 2023-07-03T08:11:31Z | |
dc.date.created | 2028-02-22 | |
dc.date.issued | 2028-02-22 | |
dc.description.abstract | Метою досліджень є обґрунтування наукових засад комплексного підходу до вирішення еколого-геологічних проблем, що пов`язані з процесами засолення підземних вод на території Калуського гірничопромислового регіону, кількісної оцінки динаміки такого засолення та його зв’язку з річковою системою на основі отриманих даних геохімічних та геофізичних спостережень. Актуальність робіт визначається необхідністю вирішення таких завдань: 1) виявлення джерел забруднення підземних вод; 2) означення територій засолення, зокрема населених пунктів, у межах яких горизонти питних вод стають непридатними для безпосереднього використання; 3) характеристика динаміки, тобто ступеня засолення та швидкості його змін у просторі й часі; 4) визначення небезпеки для працездатності водозабірних комплексів водопостачання; 5) визначення небезпеки забруднення річкового басейну. Методика полягає у встановленні кореляційного звязку між гідрогеохімічними та електрометричними спостереженнями та визначенні закономірності переходу від вимірювань електричного опору до мінералізації підземних вод, у створенні просторово-часових моделей динаміки мінералізації підземних вод та оцінці ризиків забруднення поверхневих водотоків з урахуванням основних джерел забруднення і в наданні вихідних даних для прийняття управлінських рішень. За допомогою гідрогеохімічних спостережень (мінералізація ґрунтових вод) та електророзвідувальних робіт (вимірювання електричного опору) встановлено кореляційні зв’язки між геофізичними характеристиками, притаманними водоносному горизонту, та мінералізацією ґрунтових вод, що в результаті дало змогу за даними площинних геофізичних досліджень конкретизувати джерела та окреслити площу та ступінь засолення. За режимними спостереженнями встановлено напрям руху фронту засолення та його швидкість. За отриманими кількісними характеристиками динаміки засолення водоносного горизонту наведено розрахунок ризиків забруднення річок Лімниця та Дністер. Наукова новизна полягає у подальшому розвитку способу оцінювання мінералізації підземних вод за результатами геофізичних досліджень, зокрема, методом електророзвідки. Вперше створено просторово-часові моделі динаміки мінералізації підземних вод на території Калуського гірничопромислового району (КГПР). Вперше наведено оцінку ризиків забруднення поверхневих водотоків (рр. Лімниця, Дністер) з урахуванням основних джерел забруднення в межах КГПР. Застосування одержаних результатів дає можливість у стислі терміни дослідити ділянки, що пов’язані з можливими забрудненнями території, надати вихідні дані для подальшого планування та прийняття управлінських дій. Надійний прогноз дає змогу передбачити заходи для зменшення екологічного навантаження на водоносний горизонт, що є єдиним питним горизонтом для м. Калуш. | |
dc.description.abstract | The aim of the research is to substantiate the scientific foundations of an integrated approach to solving environmental and geological problems related to groundwater salinization in the Kalush mining region; quantitative evaluation of the dynamics of such salinization and its relationship with the river system based on geochemical and geophysical observations. The relevance of the research is determined by the need to solve the following tasks: 1) identification of the sources of the groundwater contamination; 2) determination of saline areas, including settlements within which drinking water horizons become unsuitable for the direct use; 3) characteristics of the dynamics, that is, the degree of salinity and the rate of its changes in space and time; 4) determination of the danger to the operation of water intake facilities; 5) determination of the risk of contamination of the river basin. The methodology consists in establishing the correlation between hydrogeochemical and electrometric observations, as well as determining the transition patterns from measurements of electrical resistance to the groundwater salinity. It also includes creating spatio-temporal models of groundwater salinity dynamics and assessing the risks of surface watercourses contamination taking into account its main sources and providing initial data for making management decisions. With the help of the hydrogeochemical observations (the groundwater mineralization) and electrical exploration (measurement of electrical resistance), correlations were established between the geophysical characteristics inherent in the aquifer and the groundwater mineralization. As a result, this made it possible to concretize the sources and determine the area and degree of salinization according to the planar geophysical surveys. Regime observations allowed us to establish the movement direction and speed of the salinity front. The obtained quantitative characteristics of the salinization dynamics of the aquifer allowed calculating the contamination risks of the Limnytsia and Dnister Rivers. The scientific novelty consists in the further development of the methods for assessing underground mineralization based on the results of geophysical research, including the method of electrical exploration. For the first time, spatio-temporal models of the groundwater mineralization dynamics in the territory of the Kalush mining region (KMR) were created. In addition, the assessment of the risks of the surface watercourse contamination (the Limnytsia and Dnister Rivers) was given, taking into account the main sources of contamination within the KMR. The application of the obtained results makes it possible to quickly research the areas associated with probable contamination of the territory, to provide initial data for further planning and management actions. A reliable forecast allows envisaging the measures for reducing the environmental load on the aquifer, which is the only drinking horizon for the town of Kalush. | |
dc.format.extent | 119-135 | |
dc.format.pages | 17 | |
dc.identifier.citation | Kuzmenko E. Assessment of the influence of technogenically triggered hydrodynamic processes on groundwater contamination in the area of Kalush mining industry by applying geophysical methods / Eduard Kuzmenko, Sergiy Bagriy // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2022. — No 1(32). — P. 119–135. | |
dc.identifier.citationen | Kuzmenko E. Assessment of the influence of technogenically triggered hydrodynamic processes on groundwater contamination in the area of Kalush mining industry by applying geophysical methods / Eduard Kuzmenko, Sergiy Bagriy // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2022. — No 1(32). — P. 119–135. | |
dc.identifier.doi | doi.org/10.23939/jgd2022.02.119 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/59365 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Геодинаміка, 1(32), 2022 | |
dc.relation.ispartof | Geodynamics, 1(32), 2022 | |
dc.relation.references | Bagriy, S. M., & Kuzmenko, E. D. (2013). On the | |
dc.relation.references | assessment of groundwater pollution using electrometric methods. Geodynamics, 2(15), 93–96 (in Ukrainian). | |
dc.relation.references | Bialostocki, R., & Farbisz, J. (2007). Geoelectric and | |
dc.relation.references | electrofusion research. The current state and the | |
dc.relation.references | possibility of using the results. Bieletyn Informacy | |
dc.relation.references | Geophysics. Ed. PBG Warszawa, N 1(5), 28–41. | |
dc.relation.references | Bialostocki, R., & Farbisz, J. (2008). Pacanowski | |
dc.relation.references | Geophysical surveys for the needs of identification | |
dc.relation.references | and monitoring of geohazards. Bieletyn Informacy | |
dc.relation.references | Geophysics. Ed. PBG Warszawa, N1(7), 54–61. | |
dc.relation.references | Bialostocki, R., Szczypa, S., & Zuk, Z. (2006). | |
dc.relation.references | Usefulness assessment of the electrofusion data | |
dc.relation.references | bank for the diagnosis and monitoring of the | |
dc.relation.references | geological environment. Bieletyn Informacy | |
dc.relation.references | Geofizyka. Ed. PBG Warszawa, N 1/ (3), 62–77. | |
dc.relation.references | Deshchytsya, S. A., O. I. Pidvirnyi, O. I., Romaniuk, O. I. (2014). Electromagnetic monitoring of | |
dc.relation.references | environmentally problematic objects in Precarpathians: results and technological means used. | |
dc.relation.references | Geodynamics, 1 (16), 114–128. https://doi.org/10.23939/jgd2014.01.114 | |
dc.relation.references | Dolin, V. V., Yakovlev, E. A., Kuzmenko, E. D., & | |
dc.relation.references | Baranenko B. T. (2010). Forecasting the ecohydrogeochemical situation during the flooding of the | |
dc.relation.references | Dombrovsky quarry of potash ores Ecological | |
dc.relation.references | Safety and Balanced Use of Resources, (1 (1)), 74–86 (in Ukrainian). https://ebzr.nung.edu.ua/index.php/ebzr/article/view/326 | |
dc.relation.references | Haidin, A. M., & Rudko G. I. (2016). Technogenic karst. | |
dc.relation.references | Kyiv–Chernivtsi: Bukrek, 200 р. (in Ukrainian). | |
dc.relation.references | Hamdan, H., Kritikakis, G., Andronikidis, N., | |
dc.relation.references | Economou, N., Manoutsoglou, E., & Vafidis, A. | |
dc.relation.references | (2010). Integrated geophysical methods for | |
dc.relation.references | imaging saline karst aquifers: a case study of | |
dc.relation.references | Stylos, Chania, Greece. Journal of the Balkan | |
dc.relation.references | Geophysical Society, 13(1), 1-8. | |
dc.relation.references | http://www.balkangeophysoc.gr/onlinejournal/2010_V13/No1_Feb2010/JBGS_Vol_13_2010_Feb_p01-08_Hamdan.pdf | |
dc.relation.references | Jansen, J. R. (2011). Geophysical methods to map | |
dc.relation.references | brackish and saline water in aquifers. Georgia | |
dc.relation.references | Institute of Technology. Proceedings of the 2011 | |
dc.relation.references | Georgia Water Resources Conference, April 11, 12, and 13, 2011, Athens, Georgia. | |
dc.relation.references | http://hdl.handle.net/1853/46031 | |
dc.relation.references | Kobranova, V. N. (1962). Physical properties of rocks | |
dc.relation.references | (Petrophysics). Moscow: Gostoptekhizdat, 491 (in | |
dc.relation.references | Russian). | |
dc.relation.references | Lyakhovitsky, F. M., Khmelevskaya, V. K., & | |
dc.relation.references | Yashchenko, Z. G. (1989). Engineering | |
dc.relation.references | geophysics. Moscow: Nedra, 252 p. (in Russian). | |
dc.relation.references | Melkanovitsky, I. M., Ryapolova, V. A., & Khordikainen, M. A. (1982). Methods of geophysical | |
dc.relation.references | research in the search and exploration of freshwater | |
dc.relation.references | deposits. Moscow: Nedra, 249 p. (in Russian). | |
dc.relation.references | Methods of geophysics in hydrogeology and | |
dc.relation.references | engineering geology. Moscow: Nedra, 1985. 184 | |
dc.relation.references | p. (in Russian). | |
dc.relation.references | Onishchuk, I. I., Reva, M. V., Nikitash, O. P., & | |
dc.relation.references | Onishchuk, V. I. (2006). Research of technogenic | |
dc.relation.references | pollution of the environment by geophysical | |
dc.relation.references | methods. Visn. Kyiv University. Geology, 2006, 38-39, 93–96. http://www.geolvisnyk.univ.kiev.ua/archive/N38-39_2006/onyshchuk39.pdf. | |
dc.relation.references | (in Ukrainian). | |
dc.relation.references | Onyschuk, V., Reva, M., & Onyschuk, D. (2010). | |
dc.relation.references | Ecogeophysical researches of technogenic pollution in work of structure of mineral fertilizers. | |
dc.relation.references | Visn. Kyiv University of Geology, 51, 21–23 (in | |
dc.relation.references | Ukrainian). | |
dc.relation.references | http://elar.nung.edu.ua/handle/123456789/7028 | |
dc.relation.references | Onyshchuk, V. I. (2005). Development of technology | |
dc.relation.references | of microgeophysical research of soil flooding | |
dc.relation.references | processes (on the example of Transnistrian ForestSteppe) and Kyiv Polissya). Dis. Cand. geol. | |
dc.relation.references | Sciences. Kyiv: Kyiv National University. Taras | |
dc.relation.references | Shevchenko, 207 p. (in Ukrainian). | |
dc.relation.references | http://elar.nung.edu.ua/handle/123456789/7028 | |
dc.relation.references | Oyedele, K. F. (2009). Total Dissolved Solids (TDS) | |
dc.relation.references | mapping in groundwater using geophysical | |
dc.relation.references | method. New York Science Journal. 2(3). 21-31. | |
dc.relation.references | https://ir.unilag.edu.ng/bitstream/handle/123456789/5841/Total%20Dissolved%20Solids%20(TDS)%20Mapping%20In%20Groundwater%20Using%20Geophysical%20Method.pdf?sequence=1 | |
dc.relation.references | Paine, J. G., Buckley, S. M., Collins, E. W., & | |
dc.relation.references | Wilson, C. R. (2012). Assessing collapse risk in | |
dc.relation.references | evaporite sinkhole-prone areas using microgramvimetry and radar interferometryassessing | |
dc.relation.references | sinkhole collapse risk using microgravimetry and | |
dc.relation.references | radar interferometry. Journal of Environmental | |
dc.relation.references | and Engineering Geophysics, 17(2), 75-87. | |
dc.relation.references | https://doi.org/10.2113/JEEG17.2.75 Pacanowski G, Czarniak P, Bąkowska A, Mieszkowski R, Welc F (2014) The role of geophysical ERT | |
dc.relation.references | method to evaluate the leakproofness of diaphragm | |
dc.relation.references | wall of deep foundation trenches on the example of | |
dc.relation.references | the construction of retail and office complex in | |
dc.relation.references | Lublin, Poland. Studia Quaternaria 31:91–99. | |
dc.relation.references | doi:10.2478/squa-2014-0009 | |
dc.relation.references | Pavlyuk, V. I. (2011). Salt deposits of Precarpathia | |
dc.relation.references | and the World and features of development and | |
dc.relation.references | activation of karst in the areas of their extraction. | |
dc.relation.references | National Academy of Environmental Protection | |
dc.relation.references | and Resort Construction: Construction and manmade safety. 37, 97–108 (in Ukrainian). | |
dc.relation.references | Romanyuk, O. I., Shamotko, V. I., Deshchytsia, S. A., | |
dc.relation.references | Dutko, R. B., & Kusaylo, R. I. (2009). Electromagnetic diagnostics of aquifer pollution in the | |
dc.relation.references | territories adjacent to the Dombrovsky quarry. | |
dc.relation.references | Scientific Bulletin of Ivano-Frankivsk National | |
dc.relation.references | Technical University of Oil and Gas, 1(19), 24-31. | |
dc.relation.references | http://elar.nung.edu.ua/handle/123456789/1772. | |
dc.relation.references | (in Ukrainian). | |
dc.relation.references | Sappa, G., & Coviello, M. T. (2012). Seawater | |
dc.relation.references | Intrusion and Salinization Processes Assesment in | |
dc.relation.references | a Multistrata Coastal Aquifer in Italy. Journal of | |
dc.relation.references | Water Resource and Protection, 4(11), 954-967. 10.4236/jwarp.2012.411111 | |
dc.relation.references | Shurovskyi, A., Anikeev, S., Shamotko, V., Deshchytsya, S., Nikolaienko, O., & Popluiko, A. | |
dc.relation.references | (2012). Geophysical monitoring of environmentally hazardous geological processes in the Kalush | |
dc.relation.references | agglomeration, Mineral Resources of Ukraine, (2), 31–38 (in Ukrainian). | |
dc.relation.references | Shurovskyi, A. D., Anikeev, S. G., Shamotko, V. Y., | |
dc.relation.references | & Deshchytsya, S. A. (2013). Geophysical | |
dc.relation.references | monitoring of the geological environment to solve | |
dc.relation.references | environmental problems within the agglomeration | |
dc.relation.references | of Kalush. Mining journal, (12), 99–104 (in | |
dc.relation.references | Ukrainian). | |
dc.relation.referencesen | Bagriy, S. M., & Kuzmenko, E. D. (2013). On the | |
dc.relation.referencesen | assessment of groundwater pollution using electrometric methods. Geodynamics, 2(15), 93–96 (in Ukrainian). | |
dc.relation.referencesen | Bialostocki, R., & Farbisz, J. (2007). Geoelectric and | |
dc.relation.referencesen | electrofusion research. The current state and the | |
dc.relation.referencesen | possibility of using the results. Bieletyn Informacy | |
dc.relation.referencesen | Geophysics. Ed. PBG Warszawa, N 1(5), 28–41. | |
dc.relation.referencesen | Bialostocki, R., & Farbisz, J. (2008). Pacanowski | |
dc.relation.referencesen | Geophysical surveys for the needs of identification | |
dc.relation.referencesen | and monitoring of geohazards. Bieletyn Informacy | |
dc.relation.referencesen | Geophysics. Ed. PBG Warszawa, N1(7), 54–61. | |
dc.relation.referencesen | Bialostocki, R., Szczypa, S., & Zuk, Z. (2006). | |
dc.relation.referencesen | Usefulness assessment of the electrofusion data | |
dc.relation.referencesen | bank for the diagnosis and monitoring of the | |
dc.relation.referencesen | geological environment. Bieletyn Informacy | |
dc.relation.referencesen | Geofizyka. Ed. PBG Warszawa, N 1/ (3), 62–77. | |
dc.relation.referencesen | Deshchytsya, S. A., O. I. Pidvirnyi, O. I., Romaniuk, O. I. (2014). Electromagnetic monitoring of | |
dc.relation.referencesen | environmentally problematic objects in Precarpathians: results and technological means used. | |
dc.relation.referencesen | Geodynamics, 1 (16), 114–128. https://doi.org/10.23939/jgd2014.01.114 | |
dc.relation.referencesen | Dolin, V. V., Yakovlev, E. A., Kuzmenko, E. D., & | |
dc.relation.referencesen | Baranenko B. T. (2010). Forecasting the ecohydrogeochemical situation during the flooding of the | |
dc.relation.referencesen | Dombrovsky quarry of potash ores Ecological | |
dc.relation.referencesen | Safety and Balanced Use of Resources, (1 (1)), 74–86 (in Ukrainian). https://ebzr.nung.edu.ua/index.php/ebzr/article/view/326 | |
dc.relation.referencesen | Haidin, A. M., & Rudko G. I. (2016). Technogenic karst. | |
dc.relation.referencesen | Kyiv–Chernivtsi: Bukrek, 200 r. (in Ukrainian). | |
dc.relation.referencesen | Hamdan, H., Kritikakis, G., Andronikidis, N., | |
dc.relation.referencesen | Economou, N., Manoutsoglou, E., & Vafidis, A. | |
dc.relation.referencesen | (2010). Integrated geophysical methods for | |
dc.relation.referencesen | imaging saline karst aquifers: a case study of | |
dc.relation.referencesen | Stylos, Chania, Greece. Journal of the Balkan | |
dc.relation.referencesen | Geophysical Society, 13(1), 1-8. | |
dc.relation.referencesen | http://www.balkangeophysoc.gr/onlinejournal/2010_V13/No1_Feb2010/JBGS_Vol_13_2010_Feb_p01-08_Hamdan.pdf | |
dc.relation.referencesen | Jansen, J. R. (2011). Geophysical methods to map | |
dc.relation.referencesen | brackish and saline water in aquifers. Georgia | |
dc.relation.referencesen | Institute of Technology. Proceedings of the 2011 | |
dc.relation.referencesen | Georgia Water Resources Conference, April 11, 12, and 13, 2011, Athens, Georgia. | |
dc.relation.referencesen | http://hdl.handle.net/1853/46031 | |
dc.relation.referencesen | Kobranova, V. N. (1962). Physical properties of rocks | |
dc.relation.referencesen | (Petrophysics). Moscow: Gostoptekhizdat, 491 (in | |
dc.relation.referencesen | Russian). | |
dc.relation.referencesen | Lyakhovitsky, F. M., Khmelevskaya, V. K., & | |
dc.relation.referencesen | Yashchenko, Z. G. (1989). Engineering | |
dc.relation.referencesen | geophysics. Moscow: Nedra, 252 p. (in Russian). | |
dc.relation.referencesen | Melkanovitsky, I. M., Ryapolova, V. A., & Khordikainen, M. A. (1982). Methods of geophysical | |
dc.relation.referencesen | research in the search and exploration of freshwater | |
dc.relation.referencesen | deposits. Moscow: Nedra, 249 p. (in Russian). | |
dc.relation.referencesen | Methods of geophysics in hydrogeology and | |
dc.relation.referencesen | engineering geology. Moscow: Nedra, 1985. 184 | |
dc.relation.referencesen | p. (in Russian). | |
dc.relation.referencesen | Onishchuk, I. I., Reva, M. V., Nikitash, O. P., & | |
dc.relation.referencesen | Onishchuk, V. I. (2006). Research of technogenic | |
dc.relation.referencesen | pollution of the environment by geophysical | |
dc.relation.referencesen | methods. Visn. Kyiv University. Geology, 2006, 38-39, 93–96. http://www.geolvisnyk.univ.kiev.ua/archive/N38-39_2006/onyshchuk39.pdf. | |
dc.relation.referencesen | (in Ukrainian). | |
dc.relation.referencesen | Onyschuk, V., Reva, M., & Onyschuk, D. (2010). | |
dc.relation.referencesen | Ecogeophysical researches of technogenic pollution in work of structure of mineral fertilizers. | |
dc.relation.referencesen | Visn. Kyiv University of Geology, 51, 21–23 (in | |
dc.relation.referencesen | Ukrainian). | |
dc.relation.referencesen | http://elar.nung.edu.ua/handle/123456789/7028 | |
dc.relation.referencesen | Onyshchuk, V. I. (2005). Development of technology | |
dc.relation.referencesen | of microgeophysical research of soil flooding | |
dc.relation.referencesen | processes (on the example of Transnistrian ForestSteppe) and Kyiv Polissya). Dis. Cand. geol. | |
dc.relation.referencesen | Sciences. Kyiv: Kyiv National University. Taras | |
dc.relation.referencesen | Shevchenko, 207 p. (in Ukrainian). | |
dc.relation.referencesen | http://elar.nung.edu.ua/handle/123456789/7028 | |
dc.relation.referencesen | Oyedele, K. F. (2009). Total Dissolved Solids (TDS) | |
dc.relation.referencesen | mapping in groundwater using geophysical | |
dc.relation.referencesen | method. New York Science Journal. 2(3). 21-31. | |
dc.relation.referencesen | https://ir.unilag.edu.ng/bitstream/handle/123456789/5841/Total%20Dissolved%20Solids%20(TDS)%20Mapping%20In%20Groundwater%20Using%20Geophysical%20Method.pdf?sequence=1 | |
dc.relation.referencesen | Paine, J. G., Buckley, S. M., Collins, E. W., & | |
dc.relation.referencesen | Wilson, C. R. (2012). Assessing collapse risk in | |
dc.relation.referencesen | evaporite sinkhole-prone areas using microgramvimetry and radar interferometryassessing | |
dc.relation.referencesen | sinkhole collapse risk using microgravimetry and | |
dc.relation.referencesen | radar interferometry. Journal of Environmental | |
dc.relation.referencesen | and Engineering Geophysics, 17(2), 75-87. | |
dc.relation.referencesen | https://doi.org/10.2113/JEEG17.2.75 Pacanowski G, Czarniak P, Bąkowska A, Mieszkowski R, Welc F (2014) The role of geophysical ERT | |
dc.relation.referencesen | method to evaluate the leakproofness of diaphragm | |
dc.relation.referencesen | wall of deep foundation trenches on the example of | |
dc.relation.referencesen | the construction of retail and office complex in | |
dc.relation.referencesen | Lublin, Poland. Studia Quaternaria 31:91–99. | |
dc.relation.referencesen | doi:10.2478/squa-2014-0009 | |
dc.relation.referencesen | Pavlyuk, V. I. (2011). Salt deposits of Precarpathia | |
dc.relation.referencesen | and the World and features of development and | |
dc.relation.referencesen | activation of karst in the areas of their extraction. | |
dc.relation.referencesen | National Academy of Environmental Protection | |
dc.relation.referencesen | and Resort Construction: Construction and manmade safety. 37, 97–108 (in Ukrainian). | |
dc.relation.referencesen | Romanyuk, O. I., Shamotko, V. I., Deshchytsia, S. A., | |
dc.relation.referencesen | Dutko, R. B., & Kusaylo, R. I. (2009). Electromagnetic diagnostics of aquifer pollution in the | |
dc.relation.referencesen | territories adjacent to the Dombrovsky quarry. | |
dc.relation.referencesen | Scientific Bulletin of Ivano-Frankivsk National | |
dc.relation.referencesen | Technical University of Oil and Gas, 1(19), 24-31. | |
dc.relation.referencesen | http://elar.nung.edu.ua/handle/123456789/1772. | |
dc.relation.referencesen | (in Ukrainian). | |
dc.relation.referencesen | Sappa, G., & Coviello, M. T. (2012). Seawater | |
dc.relation.referencesen | Intrusion and Salinization Processes Assesment in | |
dc.relation.referencesen | a Multistrata Coastal Aquifer in Italy. Journal of | |
dc.relation.referencesen | Water Resource and Protection, 4(11), 954-967. 10.4236/jwarp.2012.411111 | |
dc.relation.referencesen | Shurovskyi, A., Anikeev, S., Shamotko, V., Deshchytsya, S., Nikolaienko, O., & Popluiko, A. | |
dc.relation.referencesen | (2012). Geophysical monitoring of environmentally hazardous geological processes in the Kalush | |
dc.relation.referencesen | agglomeration, Mineral Resources of Ukraine, (2), 31–38 (in Ukrainian). | |
dc.relation.referencesen | Shurovskyi, A. D., Anikeev, S. G., Shamotko, V. Y., | |
dc.relation.referencesen | & Deshchytsya, S. A. (2013). Geophysical | |
dc.relation.referencesen | monitoring of the geological environment to solve | |
dc.relation.referencesen | environmental problems within the agglomeration | |
dc.relation.referencesen | of Kalush. Mining journal, (12), 99–104 (in | |
dc.relation.referencesen | Ukrainian). | |
dc.relation.uri | https://doi.org/10.23939/jgd2014.01.114 | |
dc.relation.uri | https://ebzr.nung.edu.ua/index.php/ebzr/article/view/326 | |
dc.relation.uri | http://www.balkangeophysoc.gr/onlinejournal/2010_V13/No1_Feb2010/JBGS_Vol_13_2010_Feb_p01-08_Hamdan.pdf | |
dc.relation.uri | http://hdl.handle.net/1853/46031 | |
dc.relation.uri | http://www.geolvisnyk.univ.kiev.ua/archive/N38-39_2006/onyshchuk39.pdf | |
dc.relation.uri | http://elar.nung.edu.ua/handle/123456789/7028 | |
dc.relation.uri | https://ir.unilag.edu.ng/bitstream/handle/123456789/5841/Total%20Dissolved%20Solids%20(TDS)%20Mapping%20In%20Groundwater%20Using%20Geophysical%20Method.pdf?sequence=1 | |
dc.relation.uri | https://doi.org/10.2113/JEEG17.2.75 | |
dc.relation.uri | http://elar.nung.edu.ua/handle/123456789/1772 | |
dc.rights.holder | © Інститут геології і геохімії горючих копалин Національної академії наук України, 2022 | |
dc.rights.holder | © Інститут геофізики ім. С. І. Субботіна Національної академії наук України, 2022 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.rights.holder | © Kuzmenko Eduard, Bagriy Sergiy | |
dc.subject | засолення | |
dc.subject | електричний опір | |
dc.subject | водоносний горизонт | |
dc.subject | мінералізація | |
dc.subject | спостережні свердловини | |
dc.subject | джерела забруднення | |
dc.subject | водозабір | |
dc.subject | salinity | |
dc.subject | electrical resistance | |
dc.subject | aquifer | |
dc.subject | mineralization | |
dc.subject | observation wells | |
dc.subject | pollution sources | |
dc.subject | water intake system | |
dc.subject.udc | 550.83 | |
dc.title | Assessment of the influence of technogenically triggered hydrodynamic processes on groundwater contamination in the area of Kalush mining industry by applying geophysical methods | |
dc.title.alternative | Оцінка впливу техногенно спровокованих гідродинамічних процесів на забруднення підземних вод території Калуського гірничопромислового району геофізичними методами | |
dc.type | Article |
Files
License bundle
1 - 1 of 1