Assessment of the influence of technogenically triggered hydrodynamic processes on groundwater contamination in the area of Kalush mining industry by applying geophysical methods

dc.citation.epage135
dc.citation.issue1(32)
dc.citation.journalTitleГеодинаміка
dc.citation.spage119
dc.contributor.affiliationІвано-Франківський національний технічний університет нафти
dc.contributor.affiliationIvano-Frankivsk National Technical University of Oil and Gas
dc.contributor.authorКузьменко, Едуард
dc.contributor.authorБагрій, Сергій
dc.contributor.authorKuzmenko, Eduard
dc.contributor.authorBagriy, Sergiy
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-07-03T08:11:31Z
dc.date.available2023-07-03T08:11:31Z
dc.date.created2028-02-22
dc.date.issued2028-02-22
dc.description.abstractМетою досліджень є обґрунтування наукових засад комплексного підходу до вирішення еколого-геологічних проблем, що пов`язані з процесами засолення підземних вод на території Калуського гірничопромислового регіону, кількісної оцінки динаміки такого засолення та його зв’язку з річковою системою на основі отриманих даних геохімічних та геофізичних спостережень. Актуальність робіт визначається необхідністю вирішення таких завдань: 1) виявлення джерел забруднення підземних вод; 2) означення територій засолення, зокрема населених пунктів, у межах яких горизонти питних вод стають непридатними для безпосереднього використання; 3) характеристика динаміки, тобто ступеня засолення та швидкості його змін у просторі й часі; 4) визначення небезпеки для працездатності водозабірних комплексів водопостачання; 5) визначення небезпеки забруднення річкового басейну. Методика полягає у встановленні кореляційного звязку між гідрогеохімічними та електрометричними спостереженнями та визначенні закономірності переходу від вимірювань електричного опору до мінералізації підземних вод, у створенні просторово-часових моделей динаміки мінералізації підземних вод та оцінці ризиків забруднення поверхневих водотоків з урахуванням основних джерел забруднення і в наданні вихідних даних для прийняття управлінських рішень. За допомогою гідрогеохімічних спостережень (мінералізація ґрунтових вод) та електророзвідувальних робіт (вимірювання електричного опору) встановлено кореляційні зв’язки між геофізичними характеристиками, притаманними водоносному горизонту, та мінералізацією ґрунтових вод, що в результаті дало змогу за даними площинних геофізичних досліджень конкретизувати джерела та окреслити площу та ступінь засолення. За режимними спостереженнями встановлено напрям руху фронту засолення та його швидкість. За отриманими кількісними характеристиками динаміки засолення водоносного горизонту наведено розрахунок ризиків забруднення річок Лімниця та Дністер. Наукова новизна полягає у подальшому розвитку способу оцінювання мінералізації підземних вод за результатами геофізичних досліджень, зокрема, методом електророзвідки. Вперше створено просторово-часові моделі динаміки мінералізації підземних вод на території Калуського гірничопромислового району (КГПР). Вперше наведено оцінку ризиків забруднення поверхневих водотоків (рр. Лімниця, Дністер) з урахуванням основних джерел забруднення в межах КГПР. Застосування одержаних результатів дає можливість у стислі терміни дослідити ділянки, що пов’язані з можливими забрудненнями території, надати вихідні дані для подальшого планування та прийняття управлінських дій. Надійний прогноз дає змогу передбачити заходи для зменшення екологічного навантаження на водоносний горизонт, що є єдиним питним горизонтом для м. Калуш.
dc.description.abstractThe aim of the research is to substantiate the scientific foundations of an integrated approach to solving environmental and geological problems related to groundwater salinization in the Kalush mining region; quantitative evaluation of the dynamics of such salinization and its relationship with the river system based on geochemical and geophysical observations. The relevance of the research is determined by the need to solve the following tasks: 1) identification of the sources of the groundwater contamination; 2) determination of saline areas, including settlements within which drinking water horizons become unsuitable for the direct use; 3) characteristics of the dynamics, that is, the degree of salinity and the rate of its changes in space and time; 4) determination of the danger to the operation of water intake facilities; 5) determination of the risk of contamination of the river basin. The methodology consists in establishing the correlation between hydrogeochemical and electrometric observations, as well as determining the transition patterns from measurements of electrical resistance to the groundwater salinity. It also includes creating spatio-temporal models of groundwater salinity dynamics and assessing the risks of surface watercourses contamination taking into account its main sources and providing initial data for making management decisions. With the help of the hydrogeochemical observations (the groundwater mineralization) and electrical exploration (measurement of electrical resistance), correlations were established between the geophysical characteristics inherent in the aquifer and the groundwater mineralization. As a result, this made it possible to concretize the sources and determine the area and degree of salinization according to the planar geophysical surveys. Regime observations allowed us to establish the movement direction and speed of the salinity front. The obtained quantitative characteristics of the salinization dynamics of the aquifer allowed calculating the contamination risks of the Limnytsia and Dnister Rivers. The scientific novelty consists in the further development of the methods for assessing underground mineralization based on the results of geophysical research, including the method of electrical exploration. For the first time, spatio-temporal models of the groundwater mineralization dynamics in the territory of the Kalush mining region (KMR) were created. In addition, the assessment of the risks of the surface watercourse contamination (the Limnytsia and Dnister Rivers) was given, taking into account the main sources of contamination within the KMR. The application of the obtained results makes it possible to quickly research the areas associated with probable contamination of the territory, to provide initial data for further planning and management actions. A reliable forecast allows envisaging the measures for reducing the environmental load on the aquifer, which is the only drinking horizon for the town of Kalush.
dc.format.extent119-135
dc.format.pages17
dc.identifier.citationKuzmenko E. Assessment of the influence of technogenically triggered hydrodynamic processes on groundwater contamination in the area of Kalush mining industry by applying geophysical methods / Eduard Kuzmenko, Sergiy Bagriy // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2022. — No 1(32). — P. 119–135.
dc.identifier.citationenKuzmenko E. Assessment of the influence of technogenically triggered hydrodynamic processes on groundwater contamination in the area of Kalush mining industry by applying geophysical methods / Eduard Kuzmenko, Sergiy Bagriy // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2022. — No 1(32). — P. 119–135.
dc.identifier.doidoi.org/10.23939/jgd2022.02.119
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/59365
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofГеодинаміка, 1(32), 2022
dc.relation.ispartofGeodynamics, 1(32), 2022
dc.relation.referencesBagriy, S. M., & Kuzmenko, E. D. (2013). On the
dc.relation.referencesassessment of groundwater pollution using electrometric methods. Geodynamics, 2(15), 93–96 (in Ukrainian).
dc.relation.referencesBialostocki, R., & Farbisz, J. (2007). Geoelectric and
dc.relation.referenceselectrofusion research. The current state and the
dc.relation.referencespossibility of using the results. Bieletyn Informacy
dc.relation.referencesGeophysics. Ed. PBG Warszawa, N 1(5), 28–41.
dc.relation.referencesBialostocki, R., & Farbisz, J. (2008). Pacanowski
dc.relation.referencesGeophysical surveys for the needs of identification
dc.relation.referencesand monitoring of geohazards. Bieletyn Informacy
dc.relation.referencesGeophysics. Ed. PBG Warszawa, N1(7), 54–61.
dc.relation.referencesBialostocki, R., Szczypa, S., & Zuk, Z. (2006).
dc.relation.referencesUsefulness assessment of the electrofusion data
dc.relation.referencesbank for the diagnosis and monitoring of the
dc.relation.referencesgeological environment. Bieletyn Informacy
dc.relation.referencesGeofizyka. Ed. PBG Warszawa, N 1/ (3), 62–77.
dc.relation.referencesDeshchytsya, S. A., O. I. Pidvirnyi, O. I., Romaniuk, O. I. (2014). Electromagnetic monitoring of
dc.relation.referencesenvironmentally problematic objects in Precarpathians: results and technological means used.
dc.relation.referencesGeodynamics, 1 (16), 114–128. https://doi.org/10.23939/jgd2014.01.114
dc.relation.referencesDolin, V. V., Yakovlev, E. A., Kuzmenko, E. D., &
dc.relation.referencesBaranenko B. T. (2010). Forecasting the ecohydrogeochemical situation during the flooding of the
dc.relation.referencesDombrovsky quarry of potash ores Ecological
dc.relation.referencesSafety and Balanced Use of Resources, (1 (1)), 74–86 (in Ukrainian). https://ebzr.nung.edu.ua/index.php/ebzr/article/view/326
dc.relation.referencesHaidin, A. M., & Rudko G. I. (2016). Technogenic karst.
dc.relation.referencesKyiv–Chernivtsi: Bukrek, 200 р. (in Ukrainian).
dc.relation.referencesHamdan, H., Kritikakis, G., Andronikidis, N.,
dc.relation.referencesEconomou, N., Manoutsoglou, E., & Vafidis, A.
dc.relation.references(2010). Integrated geophysical methods for
dc.relation.referencesimaging saline karst aquifers: a case study of
dc.relation.referencesStylos, Chania, Greece. Journal of the Balkan
dc.relation.referencesGeophysical Society, 13(1), 1-8.
dc.relation.referenceshttp://www.balkangeophysoc.gr/onlinejournal/2010_V13/No1_Feb2010/JBGS_Vol_13_2010_Feb_p01-08_Hamdan.pdf
dc.relation.referencesJansen, J. R. (2011). Geophysical methods to map
dc.relation.referencesbrackish and saline water in aquifers. Georgia
dc.relation.referencesInstitute of Technology. Proceedings of the 2011
dc.relation.referencesGeorgia Water Resources Conference, April 11, 12, and 13, 2011, Athens, Georgia.
dc.relation.referenceshttp://hdl.handle.net/1853/46031
dc.relation.referencesKobranova, V. N. (1962). Physical properties of rocks
dc.relation.references(Petrophysics). Moscow: Gostoptekhizdat, 491 (in
dc.relation.referencesRussian).
dc.relation.referencesLyakhovitsky, F. M., Khmelevskaya, V. K., &
dc.relation.referencesYashchenko, Z. G. (1989). Engineering
dc.relation.referencesgeophysics. Moscow: Nedra, 252 p. (in Russian).
dc.relation.referencesMelkanovitsky, I. M., Ryapolova, V. A., & Khordikainen, M. A. (1982). Methods of geophysical
dc.relation.referencesresearch in the search and exploration of freshwater
dc.relation.referencesdeposits. Moscow: Nedra, 249 p. (in Russian).
dc.relation.referencesMethods of geophysics in hydrogeology and
dc.relation.referencesengineering geology. Moscow: Nedra, 1985. 184
dc.relation.referencesp. (in Russian).
dc.relation.referencesOnishchuk, I. I., Reva, M. V., Nikitash, O. P., &
dc.relation.referencesOnishchuk, V. I. (2006). Research of technogenic
dc.relation.referencespollution of the environment by geophysical
dc.relation.referencesmethods. Visn. Kyiv University. Geology, 2006, 38-39, 93–96. http://www.geolvisnyk.univ.kiev.ua/archive/N38-39_2006/onyshchuk39.pdf.
dc.relation.references(in Ukrainian).
dc.relation.referencesOnyschuk, V., Reva, M., & Onyschuk, D. (2010).
dc.relation.referencesEcogeophysical researches of technogenic pollution in work of structure of mineral fertilizers.
dc.relation.referencesVisn. Kyiv University of Geology, 51, 21–23 (in
dc.relation.referencesUkrainian).
dc.relation.referenceshttp://elar.nung.edu.ua/handle/123456789/7028
dc.relation.referencesOnyshchuk, V. I. (2005). Development of technology
dc.relation.referencesof microgeophysical research of soil flooding
dc.relation.referencesprocesses (on the example of Transnistrian ForestSteppe) and Kyiv Polissya). Dis. Cand. geol.
dc.relation.referencesSciences. Kyiv: Kyiv National University. Taras
dc.relation.referencesShevchenko, 207 p. (in Ukrainian).
dc.relation.referenceshttp://elar.nung.edu.ua/handle/123456789/7028
dc.relation.referencesOyedele, K. F. (2009). Total Dissolved Solids (TDS)
dc.relation.referencesmapping in groundwater using geophysical
dc.relation.referencesmethod. New York Science Journal. 2(3). 21-31.
dc.relation.referenceshttps://ir.unilag.edu.ng/bitstream/handle/123456789/5841/Total%20Dissolved%20Solids%20(TDS)%20Mapping%20In%20Groundwater%20Using%20Geophysical%20Method.pdf?sequence=1
dc.relation.referencesPaine, J. G., Buckley, S. M., Collins, E. W., &
dc.relation.referencesWilson, C. R. (2012). Assessing collapse risk in
dc.relation.referencesevaporite sinkhole-prone areas using microgramvimetry and radar interferometryassessing
dc.relation.referencessinkhole collapse risk using microgravimetry and
dc.relation.referencesradar interferometry. Journal of Environmental
dc.relation.referencesand Engineering Geophysics, 17(2), 75-87.
dc.relation.referenceshttps://doi.org/10.2113/JEEG17.2.75 Pacanowski G, Czarniak P, Bąkowska A, Mieszkowski R, Welc F (2014) The role of geophysical ERT
dc.relation.referencesmethod to evaluate the leakproofness of diaphragm
dc.relation.referenceswall of deep foundation trenches on the example of
dc.relation.referencesthe construction of retail and office complex in
dc.relation.referencesLublin, Poland. Studia Quaternaria 31:91–99.
dc.relation.referencesdoi:10.2478/squa-2014-0009
dc.relation.referencesPavlyuk, V. I. (2011). Salt deposits of Precarpathia
dc.relation.referencesand the World and features of development and
dc.relation.referencesactivation of karst in the areas of their extraction.
dc.relation.referencesNational Academy of Environmental Protection
dc.relation.referencesand Resort Construction: Construction and manmade safety. 37, 97–108 (in Ukrainian).
dc.relation.referencesRomanyuk, O. I., Shamotko, V. I., Deshchytsia, S. A.,
dc.relation.referencesDutko, R. B., & Kusaylo, R. I. (2009). Electromagnetic diagnostics of aquifer pollution in the
dc.relation.referencesterritories adjacent to the Dombrovsky quarry.
dc.relation.referencesScientific Bulletin of Ivano-Frankivsk National
dc.relation.referencesTechnical University of Oil and Gas, 1(19), 24-31.
dc.relation.referenceshttp://elar.nung.edu.ua/handle/123456789/1772.
dc.relation.references(in Ukrainian).
dc.relation.referencesSappa, G., & Coviello, M. T. (2012). Seawater
dc.relation.referencesIntrusion and Salinization Processes Assesment in
dc.relation.referencesa Multistrata Coastal Aquifer in Italy. Journal of
dc.relation.referencesWater Resource and Protection, 4(11), 954-967. 10.4236/jwarp.2012.411111
dc.relation.referencesShurovskyi, A., Anikeev, S., Shamotko, V., Deshchytsya, S., Nikolaienko, O., & Popluiko, A.
dc.relation.references(2012). Geophysical monitoring of environmentally hazardous geological processes in the Kalush
dc.relation.referencesagglomeration, Mineral Resources of Ukraine, (2), 31–38 (in Ukrainian).
dc.relation.referencesShurovskyi, A. D., Anikeev, S. G., Shamotko, V. Y.,
dc.relation.references& Deshchytsya, S. A. (2013). Geophysical
dc.relation.referencesmonitoring of the geological environment to solve
dc.relation.referencesenvironmental problems within the agglomeration
dc.relation.referencesof Kalush. Mining journal, (12), 99–104 (in
dc.relation.referencesUkrainian).
dc.relation.referencesenBagriy, S. M., & Kuzmenko, E. D. (2013). On the
dc.relation.referencesenassessment of groundwater pollution using electrometric methods. Geodynamics, 2(15), 93–96 (in Ukrainian).
dc.relation.referencesenBialostocki, R., & Farbisz, J. (2007). Geoelectric and
dc.relation.referencesenelectrofusion research. The current state and the
dc.relation.referencesenpossibility of using the results. Bieletyn Informacy
dc.relation.referencesenGeophysics. Ed. PBG Warszawa, N 1(5), 28–41.
dc.relation.referencesenBialostocki, R., & Farbisz, J. (2008). Pacanowski
dc.relation.referencesenGeophysical surveys for the needs of identification
dc.relation.referencesenand monitoring of geohazards. Bieletyn Informacy
dc.relation.referencesenGeophysics. Ed. PBG Warszawa, N1(7), 54–61.
dc.relation.referencesenBialostocki, R., Szczypa, S., & Zuk, Z. (2006).
dc.relation.referencesenUsefulness assessment of the electrofusion data
dc.relation.referencesenbank for the diagnosis and monitoring of the
dc.relation.referencesengeological environment. Bieletyn Informacy
dc.relation.referencesenGeofizyka. Ed. PBG Warszawa, N 1/ (3), 62–77.
dc.relation.referencesenDeshchytsya, S. A., O. I. Pidvirnyi, O. I., Romaniuk, O. I. (2014). Electromagnetic monitoring of
dc.relation.referencesenenvironmentally problematic objects in Precarpathians: results and technological means used.
dc.relation.referencesenGeodynamics, 1 (16), 114–128. https://doi.org/10.23939/jgd2014.01.114
dc.relation.referencesenDolin, V. V., Yakovlev, E. A., Kuzmenko, E. D., &
dc.relation.referencesenBaranenko B. T. (2010). Forecasting the ecohydrogeochemical situation during the flooding of the
dc.relation.referencesenDombrovsky quarry of potash ores Ecological
dc.relation.referencesenSafety and Balanced Use of Resources, (1 (1)), 74–86 (in Ukrainian). https://ebzr.nung.edu.ua/index.php/ebzr/article/view/326
dc.relation.referencesenHaidin, A. M., & Rudko G. I. (2016). Technogenic karst.
dc.relation.referencesenKyiv–Chernivtsi: Bukrek, 200 r. (in Ukrainian).
dc.relation.referencesenHamdan, H., Kritikakis, G., Andronikidis, N.,
dc.relation.referencesenEconomou, N., Manoutsoglou, E., & Vafidis, A.
dc.relation.referencesen(2010). Integrated geophysical methods for
dc.relation.referencesenimaging saline karst aquifers: a case study of
dc.relation.referencesenStylos, Chania, Greece. Journal of the Balkan
dc.relation.referencesenGeophysical Society, 13(1), 1-8.
dc.relation.referencesenhttp://www.balkangeophysoc.gr/onlinejournal/2010_V13/No1_Feb2010/JBGS_Vol_13_2010_Feb_p01-08_Hamdan.pdf
dc.relation.referencesenJansen, J. R. (2011). Geophysical methods to map
dc.relation.referencesenbrackish and saline water in aquifers. Georgia
dc.relation.referencesenInstitute of Technology. Proceedings of the 2011
dc.relation.referencesenGeorgia Water Resources Conference, April 11, 12, and 13, 2011, Athens, Georgia.
dc.relation.referencesenhttp://hdl.handle.net/1853/46031
dc.relation.referencesenKobranova, V. N. (1962). Physical properties of rocks
dc.relation.referencesen(Petrophysics). Moscow: Gostoptekhizdat, 491 (in
dc.relation.referencesenRussian).
dc.relation.referencesenLyakhovitsky, F. M., Khmelevskaya, V. K., &
dc.relation.referencesenYashchenko, Z. G. (1989). Engineering
dc.relation.referencesengeophysics. Moscow: Nedra, 252 p. (in Russian).
dc.relation.referencesenMelkanovitsky, I. M., Ryapolova, V. A., & Khordikainen, M. A. (1982). Methods of geophysical
dc.relation.referencesenresearch in the search and exploration of freshwater
dc.relation.referencesendeposits. Moscow: Nedra, 249 p. (in Russian).
dc.relation.referencesenMethods of geophysics in hydrogeology and
dc.relation.referencesenengineering geology. Moscow: Nedra, 1985. 184
dc.relation.referencesenp. (in Russian).
dc.relation.referencesenOnishchuk, I. I., Reva, M. V., Nikitash, O. P., &
dc.relation.referencesenOnishchuk, V. I. (2006). Research of technogenic
dc.relation.referencesenpollution of the environment by geophysical
dc.relation.referencesenmethods. Visn. Kyiv University. Geology, 2006, 38-39, 93–96. http://www.geolvisnyk.univ.kiev.ua/archive/N38-39_2006/onyshchuk39.pdf.
dc.relation.referencesen(in Ukrainian).
dc.relation.referencesenOnyschuk, V., Reva, M., & Onyschuk, D. (2010).
dc.relation.referencesenEcogeophysical researches of technogenic pollution in work of structure of mineral fertilizers.
dc.relation.referencesenVisn. Kyiv University of Geology, 51, 21–23 (in
dc.relation.referencesenUkrainian).
dc.relation.referencesenhttp://elar.nung.edu.ua/handle/123456789/7028
dc.relation.referencesenOnyshchuk, V. I. (2005). Development of technology
dc.relation.referencesenof microgeophysical research of soil flooding
dc.relation.referencesenprocesses (on the example of Transnistrian ForestSteppe) and Kyiv Polissya). Dis. Cand. geol.
dc.relation.referencesenSciences. Kyiv: Kyiv National University. Taras
dc.relation.referencesenShevchenko, 207 p. (in Ukrainian).
dc.relation.referencesenhttp://elar.nung.edu.ua/handle/123456789/7028
dc.relation.referencesenOyedele, K. F. (2009). Total Dissolved Solids (TDS)
dc.relation.referencesenmapping in groundwater using geophysical
dc.relation.referencesenmethod. New York Science Journal. 2(3). 21-31.
dc.relation.referencesenhttps://ir.unilag.edu.ng/bitstream/handle/123456789/5841/Total%20Dissolved%20Solids%20(TDS)%20Mapping%20In%20Groundwater%20Using%20Geophysical%20Method.pdf?sequence=1
dc.relation.referencesenPaine, J. G., Buckley, S. M., Collins, E. W., &
dc.relation.referencesenWilson, C. R. (2012). Assessing collapse risk in
dc.relation.referencesenevaporite sinkhole-prone areas using microgramvimetry and radar interferometryassessing
dc.relation.referencesensinkhole collapse risk using microgravimetry and
dc.relation.referencesenradar interferometry. Journal of Environmental
dc.relation.referencesenand Engineering Geophysics, 17(2), 75-87.
dc.relation.referencesenhttps://doi.org/10.2113/JEEG17.2.75 Pacanowski G, Czarniak P, Bąkowska A, Mieszkowski R, Welc F (2014) The role of geophysical ERT
dc.relation.referencesenmethod to evaluate the leakproofness of diaphragm
dc.relation.referencesenwall of deep foundation trenches on the example of
dc.relation.referencesenthe construction of retail and office complex in
dc.relation.referencesenLublin, Poland. Studia Quaternaria 31:91–99.
dc.relation.referencesendoi:10.2478/squa-2014-0009
dc.relation.referencesenPavlyuk, V. I. (2011). Salt deposits of Precarpathia
dc.relation.referencesenand the World and features of development and
dc.relation.referencesenactivation of karst in the areas of their extraction.
dc.relation.referencesenNational Academy of Environmental Protection
dc.relation.referencesenand Resort Construction: Construction and manmade safety. 37, 97–108 (in Ukrainian).
dc.relation.referencesenRomanyuk, O. I., Shamotko, V. I., Deshchytsia, S. A.,
dc.relation.referencesenDutko, R. B., & Kusaylo, R. I. (2009). Electromagnetic diagnostics of aquifer pollution in the
dc.relation.referencesenterritories adjacent to the Dombrovsky quarry.
dc.relation.referencesenScientific Bulletin of Ivano-Frankivsk National
dc.relation.referencesenTechnical University of Oil and Gas, 1(19), 24-31.
dc.relation.referencesenhttp://elar.nung.edu.ua/handle/123456789/1772.
dc.relation.referencesen(in Ukrainian).
dc.relation.referencesenSappa, G., & Coviello, M. T. (2012). Seawater
dc.relation.referencesenIntrusion and Salinization Processes Assesment in
dc.relation.referencesena Multistrata Coastal Aquifer in Italy. Journal of
dc.relation.referencesenWater Resource and Protection, 4(11), 954-967. 10.4236/jwarp.2012.411111
dc.relation.referencesenShurovskyi, A., Anikeev, S., Shamotko, V., Deshchytsya, S., Nikolaienko, O., & Popluiko, A.
dc.relation.referencesen(2012). Geophysical monitoring of environmentally hazardous geological processes in the Kalush
dc.relation.referencesenagglomeration, Mineral Resources of Ukraine, (2), 31–38 (in Ukrainian).
dc.relation.referencesenShurovskyi, A. D., Anikeev, S. G., Shamotko, V. Y.,
dc.relation.referencesen& Deshchytsya, S. A. (2013). Geophysical
dc.relation.referencesenmonitoring of the geological environment to solve
dc.relation.referencesenenvironmental problems within the agglomeration
dc.relation.referencesenof Kalush. Mining journal, (12), 99–104 (in
dc.relation.referencesenUkrainian).
dc.relation.urihttps://doi.org/10.23939/jgd2014.01.114
dc.relation.urihttps://ebzr.nung.edu.ua/index.php/ebzr/article/view/326
dc.relation.urihttp://www.balkangeophysoc.gr/onlinejournal/2010_V13/No1_Feb2010/JBGS_Vol_13_2010_Feb_p01-08_Hamdan.pdf
dc.relation.urihttp://hdl.handle.net/1853/46031
dc.relation.urihttp://www.geolvisnyk.univ.kiev.ua/archive/N38-39_2006/onyshchuk39.pdf
dc.relation.urihttp://elar.nung.edu.ua/handle/123456789/7028
dc.relation.urihttps://ir.unilag.edu.ng/bitstream/handle/123456789/5841/Total%20Dissolved%20Solids%20(TDS)%20Mapping%20In%20Groundwater%20Using%20Geophysical%20Method.pdf?sequence=1
dc.relation.urihttps://doi.org/10.2113/JEEG17.2.75
dc.relation.urihttp://elar.nung.edu.ua/handle/123456789/1772
dc.rights.holder© Інститут геології і геохімії горючих копалин Національної академії наук України, 2022
dc.rights.holder© Інститут геофізики ім. С. І. Субботіна Національної академії наук України, 2022
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.rights.holder© Kuzmenko Eduard, Bagriy Sergiy
dc.subjectзасолення
dc.subjectелектричний опір
dc.subjectводоносний горизонт
dc.subjectмінералізація
dc.subjectспостережні свердловини
dc.subjectджерела забруднення
dc.subjectводозабір
dc.subjectsalinity
dc.subjectelectrical resistance
dc.subjectaquifer
dc.subjectmineralization
dc.subjectobservation wells
dc.subjectpollution sources
dc.subjectwater intake system
dc.subject.udc550.83
dc.titleAssessment of the influence of technogenically triggered hydrodynamic processes on groundwater contamination in the area of Kalush mining industry by applying geophysical methods
dc.title.alternativeОцінка впливу техногенно спровокованих гідродинамічних процесів на забруднення підземних вод території Калуського гірничопромислового району геофізичними методами
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2022n1_32__Kuzmenko_E-Assessment_of_the_influence_119-135.pdf
Size:
1.61 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2022n1_32__Kuzmenko_E-Assessment_of_the_influence_119-135__COVER.png
Size:
560.92 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.82 KB
Format:
Plain Text
Description: