Environmental assessment of wet-handled coal bottom ash application for cement production
| dc.citation.epage | 57 | |
| dc.citation.issue | 1 | |
| dc.citation.journalTitle | Теорія та будівельна практика | |
| dc.citation.spage | 49 | |
| dc.citation.volume | 7 | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.author | Марущак, Р. Д. | |
| dc.contributor.author | Соболь, Х. С. | |
| dc.contributor.author | Marushchak, Roman | |
| dc.contributor.author | Sobol, Khrystyna | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2026-01-26T08:05:27Z | |
| dc.date.created | 2025-02-27 | |
| dc.date.issued | 2025-02-27 | |
| dc.description.abstract | Портландцемент є одним з найенергоємніших матеріалів зі значним вуглецевим слідом його виробництва. Курс на зниження вмісту портландцементного клінкеру у в’яжучих є запорукою отримання стійких екологічних матеріалів. Найпоширенішою мінеральною добавкою під час виготовлення в’яжучих був доменний гранульований шлак, проте через прогнозовану обмежену його доступність у майбутньому виникає необхідність розширення сировинної бази неклінкерних компонентів. З погляду зниження впливу на довкілля практичний інтерес становить використання відходів. Вугільна зола мокрого видалення характеризується високою розмелювальною здатністю, у разі введення у в’яжучі в оптимальній кількості забезпечує перебіг пуцоланових реакцій за їх гідратації, не потребує значних енергетичних затрат для досягнення їх необхідних властивостей. Основним недоліком вугільної золи є її висока вологість, що вимагає додаткових енергетичних затрат на сушіння. Для сушіння матеріалів із високою вологістю перспективним є використання теплоти відхідних газів, утворених за сухого способу виробництва портландцементного клінкеру. Згідно з виконаними розрахунками використання вугільної золи як для часткової заміни доменного гранульованого шлаку у в’яжучому, так і для заміни портландцементного клінкеру доцільне з погляду питомої витрати енергоносіїв та викидів вуглекислого газу. В’яжуче із частковою заміною доменного гранульованого шлаку на вугільну золу характеризується таким самим питомим показником викидів вуглекислого газу, як і у разі використання тільки доменного гранульованого шлаку (0,63 т СО2/т в’яжучого), водночас у разі заміни портландцементного клінкеру на вугільну золу показник викидів вуглекислого газу становить 0,55 т СО2/т в’яжучого. Результати цього дослідження можуть допомогти у розробленні політики підвищення стійкості випуску в’яжучих із використанням різних типів мінеральних добавок. | |
| dc.description.abstract | The production of Portland cements with a reduced clinker content corresponds to the strategy of decarbonization of building materials, aimed at reducing the negative impact on the environment and climate changes. This direction of development of the cement industry requires the use of more mineral additives. The application of waste-derived materials as the main non-clinker component is promising. The advantage of using wet-handled coal bottom ash is its pozzolanic effect and high grindability, but the main disadvantage is increased moisture. The introduction of wet-handled coal bottom ash in the cement industry requires an integrated approach that covers aspects of technology, economics, and ecology. The article investigates the feasibility of using wet-handled coal bottom ash as an additive to binders in terms of environmental performance while ensuring the required strength indicators of Portland cement. | |
| dc.format.extent | 49-57 | |
| dc.format.pages | 9 | |
| dc.identifier.citation | Marushchak R. Environmental assessment of wet-handled coal bottom ash application for cement production / Roman Marushchak, Khrystyna Sobol // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 7. — No 1. — P. 49–57. | |
| dc.identifier.citationen | Marushchak R. Environmental assessment of wet-handled coal bottom ash application for cement production / Roman Marushchak, Khrystyna Sobol // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 7. — No 1. — P. 49–57. | |
| dc.identifier.doi | doi.org/10.23939/jtbp2025.01.049 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/124484 | |
| dc.language.iso | en | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Теорія та будівельна практика, 1 (7), 2025 | |
| dc.relation.ispartof | Theory and Building Practice, 1 (7), 2025 | |
| dc.relation.references | Cheng, D., Reiner, D.M., Yang, F., Cui, C., Meng, J., Shan, Y. … Guan, D. (2023). Projecting future carbon emissions from cement production in developing countries. Nature Communications, 14, 8213. doi.org/10.1038/s41467-023-43660-x | |
| dc.relation.references | Sroda, B. (2020). The cement industry on the road to the Green Deal. Construction, Architecture Technologies, 3, 68-74 (in Polish). bwmeta1.element.baztech-8fe7721f-eadb-432d-b91d-8997cc14e7d6 | |
| dc.relation.references | Niu, L., Wu, S., Andrew, R. M., Shao, Z., Wang, J., & Xi, F. (2024). Global and National CO2 Uptake by Cement Carbonation from 1928 to 2024 [preprint]. Earth System Science Data. doi.org/10.5194/essd-2024-437. | |
| dc.relation.references | World Business Council for Sustainable Development (WBCSD)/International Energy Agency (IEA). 2009. Cement Technology Roadmap 2009 - Carbon emissions reductions up to 2050. Available at www.iea.org/papers/2009/Cement_Roadmap.pdf. | |
| dc.relation.references | Pamenter, S., & Myers, R. J. (2021). Decarbonizing the cementitious materials cycle: a whole-systems review of measures to decarbonize the cement supply chain in the UK and European contexts. Journal of Industrial Ecology, 25, 359-376. doi.org/10.1111/jiec.13105 | |
| dc.relation.references | Decarbonizing Cement and Concrete: A CO2 Roadmap for the German cement industry (2020). . https://www.vdzonline.de/fileadmin/wissensportal/publikationen/zementindustrie/Executive_Summary_VDZ_Study_Decarbonising_Cement_and_Concrete_2020.pdf | |
| dc.relation.references | Batog, M., Bakalarz, J., Synowiec, K., & Dziuk, D. (2022). The use of multi-component cements in construction. Construction, Architecture Technologies, 3, 66-73. (in Polish) https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-643bff65-215f-466b-801f-61c02b3f98a5bwmeta1.element.baztech-643bff65-215f-466b-801f-61c02b3f98a5 | |
| dc.relation.references | Shah, I.H., Miller, S.A., Jiang, D., & Myers, R. J. (2022). Cement substitution with secondary materials can reduce annual global CO2 emissions by up to 1.3 gigatons. Nature Communications, 13, 5758. doi.org/10.1038/s41467-022-33289-7 | |
| dc.relation.references | https://doi.org/10.1038/s41467-022-33289-7 | |
| dc.relation.references | Scrivener, K.L., John, V.M., & Gartner, E. M. (2018). Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cement and Concrete Research, 114, 2-26. https://doi.org/10.1016/j.cemconres.2018.03.015. | |
| dc.relation.references | Sanytsky, M., Kropyvnytska, T., Fic, S., & Ivashchyshyn, H. (2020). Sustainable low-carbon binders and concretes. E3S Web of Conferences, 166, 06007. https://doi.org/10.1051/e3sconf/202016606007 | |
| dc.relation.references | Ascensão, G., Farinini, E., Ferreira, V. M., & Leardi, R. (2024). Development of eco-efficient limestone calcined clay cement (LC3) mortars by a multi-step experimental design. Chemometrics and Intelligent Laboratory Systems, 253, 105195. doi.org/10.1016/j.chemolab.2024.105195. | |
| dc.relation.references | Sobol, K., Solodkyy, S., Petrovska, N., Belov, S., Hunyak, O., & Hidei, V. (2020). Chemical composition and hydraulic properties of incinerated wastepaper sludge. Chemistry & Chemical Technology, 14(4), 538-544. https://doi.org/10.23939/chcht14.04.538 | |
| dc.relation.references | Hunyak, O., Hidei, V., Sobol, K. & Petrovska, N. (2023). Valorization of Wastepaper Sludge Ash as Supplementary Cementitious Material in Concrete. Lecture Notes in Civil Engineering, 290, 94-100. doi:10.1007/978-3-031-14141-6_10. | |
| dc.relation.references | Yevropeiska biznes asotsiatsiia. (2021). Vykorystannia zoloshlakovykh produktiv i hirnychoi porody v dorozhnomu budivnytstvi. Yevropeiskyi dosvid i mozhlyvosti dlia Ukrainy. URL: https://eba.com.ua/wpcontent/uploads/2021/05/White_Paper_Slag-_in_road_construction.pdf | |
| dc.relation.references | Cheeratot, R., & Jaturapitakkul, C. (2004). A Study of Disposed Fly Ash from Landfill to Replace Portland Cement. Waste Management, 24, 7, 701-709. doi:10.1016/j.wasman.2004.02.003. | |
| dc.relation.references | Sobol, K., & Marushchak, R. (2024). Оpportunities of wet-handled coal bottom ash use in binding materials: а review. Theory and Building Practice, 7, 1, 17-24. doi.org/10.23939/jtbp2024.01.017 | |
| dc.relation.references | Tirkeş, S. (2021). Utilization of wet-handled and dry-handled coal bottom ashes in Portland cement based composites. M.S. -Master of Science, Middle East Technical University. https://hdl.handle.net/11511/94324. | |
| dc.relation.references | Permatasari, R., Sodri, A., & Gustina, H.A. (2023). Utilization of Fly Ash Waste in the Cement Industry and its Environmental Impact: A Review. Journal Penelitian Pendidikan IPA, 9(9), 569-579. https://doi.org/10.29303/jppipa.v9i9.4504 | |
| dc.relation.references | Sanytsky, M. A., Kropyvnytska, T. P., & Hevyuk, I. M. (2021). Rapid-hardening clinker-efficient cements and concretes. Lviv: Prostir-M (in Ukrainian). | |
| dc.relation.references | Ondova, M., & Stevulova, N. (2013). Environmental assessment of fly ash concrete. Chemical Engineering Transactions, 35, 841-846. DOI:10.3303/CET1335140. | |
| dc.relation.references | Tait, M. W., & Wai, M. C. (2016). A comparative cradle-to-gate life cycle assessment of three concrete mix designs. Life cycle sustainability assessment, 21, 847-860. doi 10.1007/s11367-016-1045-5 | |
| dc.relation.references | Bribián, I.Z., Capilla A.V., & Usón, A.A. (2011). Life cycle assessment of building materials: comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Building and Environment, 46(5), 1133-1140. https://doi.org/10.1016/j.buildenv.2010.12.002 | |
| dc.relation.references | Schorcht, F., Kourti, I., Scalet, B. M., Roudier, S., & Sancho L. D. (2013). Best Available Techniques (BAT) Cement and Lime Reference Document for the Production of Cement, Lime and Magnesium Oxide Luxembourg: Publications Office of the European Union. DOI: 10.2788/12850 https://eippcb.jrc.ec.europa.eu/sites/default/files/201911/CLM_Published_def_0.pdf | |
| dc.relation.references | Locher F.-M. (2006). Cement - principles of production and use. Dusseldorf: Verlag Bau+Technic GmbH | |
| dc.relation.references | Holderbank Engineering Book (2000). Holderbank Management & Consulting | |
| dc.relation.references | Atmaca, A., & Atmaca, N. (2016). Determination of correlation between specific energy consumption and vibration of a raw mill in cement industry. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, 17(1), 209-219. https://doi.org/10.18038/btda.11251. | |
| dc.relation.references | Guidance Document on CBAM Implementation for installation operators outside the EU (2023). https://taxationcustoms.ec.europa.eu/document/download/2980287c-dca2-4a4b-aff3db6374806cf7_en?filename=Guidance%20document%20on%20CBAM%20implementation%20for%20installation%20operators%20outside%20the%20EU.pdf | |
| dc.relation.references | Greenhouse gas emission factors and net calorific values (NCVs) of fuels per unit mass used in the "National Inventory of Anthropogenic Emissions by Sources and Removals by Sinks of Greenhouse Gases in Ukraine for 1990-2021" (for monitoring in 2024). (2023). . https://mepr.gov.ua/diyalnist/napryamky/zmina-klimatu/monitoryng-zvitnist-ta-veryfikatsiya-vykydiv-parnykovyh-gaziv-mzv/koefitsiyenty-vykydiv-parnykovyh-gaziv-ta-znachennya-nyzhchyh-teplotvornyh-zdatnostej-ntz-palyv-na-odynytsyu-masy/ | |
| dc.relation.references | Energy profiles. Ukraine / Irena International Renewable Agency. (2024). https://www.irena.org//media/Files/IRENA/Agency/Statistics/statistical_profiles/europe/ukraine_europe_re_sp.pdf | |
| dc.relation.references | Hammond, G., & Jones, C. (2011). Embodied carbon: the inventory of carbon and energy (ICE). BSRIA: Bracknell. | |
| dc.relation.referencesen | Cheng, D., Reiner, D.M., Yang, F., Cui, C., Meng, J., Shan, Y. … Guan, D. (2023). Projecting future carbon emissions from cement production in developing countries. Nature Communications, 14, 8213. doi.org/10.1038/s41467-023-43660-x | |
| dc.relation.referencesen | Sroda, B. (2020). The cement industry on the road to the Green Deal. Construction, Architecture Technologies, 3, 68-74 (in Polish). bwmeta1.element.baztech-8fe7721f-eadb-432d-b91d-8997cc14e7d6 | |
| dc.relation.referencesen | Niu, L., Wu, S., Andrew, R. M., Shao, Z., Wang, J., & Xi, F. (2024). Global and National CO2 Uptake by Cement Carbonation from 1928 to 2024 [preprint]. Earth System Science Data. doi.org/10.5194/essd-2024-437. | |
| dc.relation.referencesen | World Business Council for Sustainable Development (WBCSD)/International Energy Agency (IEA). 2009. Cement Technology Roadmap 2009 - Carbon emissions reductions up to 2050. Available at www.iea.org/papers/2009/Cement_Roadmap.pdf. | |
| dc.relation.referencesen | Pamenter, S., & Myers, R. J. (2021). Decarbonizing the cementitious materials cycle: a whole-systems review of measures to decarbonize the cement supply chain in the UK and European contexts. Journal of Industrial Ecology, 25, 359-376. doi.org/10.1111/jiec.13105 | |
| dc.relation.referencesen | Decarbonizing Cement and Concrete: A CO2 Roadmap for the German cement industry (2020). . https://www.vdzonline.de/fileadmin/wissensportal/publikationen/zementindustrie/Executive_Summary_VDZ_Study_Decarbonising_Cement_and_Concrete_2020.pdf | |
| dc.relation.referencesen | Batog, M., Bakalarz, J., Synowiec, K., & Dziuk, D. (2022). The use of multi-component cements in construction. Construction, Architecture Technologies, 3, 66-73. (in Polish) https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-643bff65-215f-466b-801f-61c02b3f98a5bwmeta1.element.baztech-643bff65-215f-466b-801f-61c02b3f98a5 | |
| dc.relation.referencesen | Shah, I.H., Miller, S.A., Jiang, D., & Myers, R. J. (2022). Cement substitution with secondary materials can reduce annual global CO2 emissions by up to 1.3 gigatons. Nature Communications, 13, 5758. doi.org/10.1038/s41467-022-33289-7 | |
| dc.relation.referencesen | https://doi.org/10.1038/s41467-022-33289-7 | |
| dc.relation.referencesen | Scrivener, K.L., John, V.M., & Gartner, E. M. (2018). Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cement and Concrete Research, 114, 2-26. https://doi.org/10.1016/j.cemconres.2018.03.015. | |
| dc.relation.referencesen | Sanytsky, M., Kropyvnytska, T., Fic, S., & Ivashchyshyn, H. (2020). Sustainable low-carbon binders and concretes. E3S Web of Conferences, 166, 06007. https://doi.org/10.1051/e3sconf/202016606007 | |
| dc.relation.referencesen | Ascensão, G., Farinini, E., Ferreira, V. M., & Leardi, R. (2024). Development of eco-efficient limestone calcined clay cement (LC3) mortars by a multi-step experimental design. Chemometrics and Intelligent Laboratory Systems, 253, 105195. doi.org/10.1016/j.chemolab.2024.105195. | |
| dc.relation.referencesen | Sobol, K., Solodkyy, S., Petrovska, N., Belov, S., Hunyak, O., & Hidei, V. (2020). Chemical composition and hydraulic properties of incinerated wastepaper sludge. Chemistry & Chemical Technology, 14(4), 538-544. https://doi.org/10.23939/chcht14.04.538 | |
| dc.relation.referencesen | Hunyak, O., Hidei, V., Sobol, K. & Petrovska, N. (2023). Valorization of Wastepaper Sludge Ash as Supplementary Cementitious Material in Concrete. Lecture Notes in Civil Engineering, 290, 94-100. doi:10.1007/978-3-031-14141-6_10. | |
| dc.relation.referencesen | Yevropeiska biznes asotsiatsiia. (2021). Vykorystannia zoloshlakovykh produktiv i hirnychoi porody v dorozhnomu budivnytstvi. Yevropeiskyi dosvid i mozhlyvosti dlia Ukrainy. URL: https://eba.com.ua/wpcontent/uploads/2021/05/White_Paper_Slag-_in_road_construction.pdf | |
| dc.relation.referencesen | Cheeratot, R., & Jaturapitakkul, C. (2004). A Study of Disposed Fly Ash from Landfill to Replace Portland Cement. Waste Management, 24, 7, 701-709. doi:10.1016/j.wasman.2004.02.003. | |
| dc.relation.referencesen | Sobol, K., & Marushchak, R. (2024). Opportunities of wet-handled coal bottom ash use in binding materials: a review. Theory and Building Practice, 7, 1, 17-24. doi.org/10.23939/jtbp2024.01.017 | |
| dc.relation.referencesen | Tirkeş, S. (2021). Utilization of wet-handled and dry-handled coal bottom ashes in Portland cement based composites. M.S. -Master of Science, Middle East Technical University. https://hdl.handle.net/11511/94324. | |
| dc.relation.referencesen | Permatasari, R., Sodri, A., & Gustina, H.A. (2023). Utilization of Fly Ash Waste in the Cement Industry and its Environmental Impact: A Review. Journal Penelitian Pendidikan IPA, 9(9), 569-579. https://doi.org/10.29303/jppipa.v9i9.4504 | |
| dc.relation.referencesen | Sanytsky, M. A., Kropyvnytska, T. P., & Hevyuk, I. M. (2021). Rapid-hardening clinker-efficient cements and concretes. Lviv: Prostir-M (in Ukrainian). | |
| dc.relation.referencesen | Ondova, M., & Stevulova, N. (2013). Environmental assessment of fly ash concrete. Chemical Engineering Transactions, 35, 841-846. DOI:10.3303/CET1335140. | |
| dc.relation.referencesen | Tait, M. W., & Wai, M. C. (2016). A comparative cradle-to-gate life cycle assessment of three concrete mix designs. Life cycle sustainability assessment, 21, 847-860. doi 10.1007/s11367-016-1045-5 | |
| dc.relation.referencesen | Bribián, I.Z., Capilla A.V., & Usón, A.A. (2011). Life cycle assessment of building materials: comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Building and Environment, 46(5), 1133-1140. https://doi.org/10.1016/j.buildenv.2010.12.002 | |
| dc.relation.referencesen | Schorcht, F., Kourti, I., Scalet, B. M., Roudier, S., & Sancho L. D. (2013). Best Available Techniques (BAT) Cement and Lime Reference Document for the Production of Cement, Lime and Magnesium Oxide Luxembourg: Publications Office of the European Union. DOI: 10.2788/12850 https://eippcb.jrc.ec.europa.eu/sites/default/files/201911/CLM_Published_def_0.pdf | |
| dc.relation.referencesen | Locher F.-M. (2006). Cement - principles of production and use. Dusseldorf: Verlag Bau+Technic GmbH | |
| dc.relation.referencesen | Holderbank Engineering Book (2000). Holderbank Management & Consulting | |
| dc.relation.referencesen | Atmaca, A., & Atmaca, N. (2016). Determination of correlation between specific energy consumption and vibration of a raw mill in cement industry. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, 17(1), 209-219. https://doi.org/10.18038/btda.11251. | |
| dc.relation.referencesen | Guidance Document on CBAM Implementation for installation operators outside the EU (2023). https://taxationcustoms.ec.europa.eu/document/download/2980287c-dca2-4a4b-aff3db6374806cf7_en?filename=Guidance%20document%20on%20CBAM%20implementation%20for%20installation%20operators%20outside%20the%20EU.pdf | |
| dc.relation.referencesen | Greenhouse gas emission factors and net calorific values (NCVs) of fuels per unit mass used in the "National Inventory of Anthropogenic Emissions by Sources and Removals by Sinks of Greenhouse Gases in Ukraine for 1990-2021" (for monitoring in 2024). (2023). . https://mepr.gov.ua/diyalnist/napryamky/zmina-klimatu/monitoryng-zvitnist-ta-veryfikatsiya-vykydiv-parnykovyh-gaziv-mzv/koefitsiyenty-vykydiv-parnykovyh-gaziv-ta-znachennya-nyzhchyh-teplotvornyh-zdatnostej-ntz-palyv-na-odynytsyu-masy/ | |
| dc.relation.referencesen | Energy profiles. Ukraine, Irena International Renewable Agency. (2024). https://www.irena.org//media/Files/IRENA/Agency/Statistics/statistical_profiles/europe/ukraine_europe_re_sp.pdf | |
| dc.relation.referencesen | Hammond, G., & Jones, C. (2011). Embodied carbon: the inventory of carbon and energy (ICE). BSRIA: Bracknell. | |
| dc.relation.uri | https://www.vdzonline.de/fileadmin/wissensportal/publikationen/zementindustrie/Executive_Summary_VDZ_Study_Decarbonising_Cement_and_Concrete_2020.pdf | |
| dc.relation.uri | https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-643bff65-215f-466b-801f-61c02b3f98a5bwmeta1.element.baztech-643bff65-215f-466b-801f-61c02b3f98a5 | |
| dc.relation.uri | https://doi.org/10.1038/s41467-022-33289-7 | |
| dc.relation.uri | https://doi.org/10.1016/j.cemconres.2018.03.015 | |
| dc.relation.uri | https://doi.org/10.1051/e3sconf/202016606007 | |
| dc.relation.uri | https://doi.org/10.23939/chcht14.04.538 | |
| dc.relation.uri | https://eba.com.ua/wpcontent/uploads/2021/05/White_Paper_Slag-_in_road_construction.pdf | |
| dc.relation.uri | https://hdl.handle.net/11511/94324 | |
| dc.relation.uri | https://doi.org/10.29303/jppipa.v9i9.4504 | |
| dc.relation.uri | https://doi.org/10.1016/j.buildenv.2010.12.002 | |
| dc.relation.uri | https://eippcb.jrc.ec.europa.eu/sites/default/files/201911/CLM_Published_def_0.pdf | |
| dc.relation.uri | https://doi.org/10.18038/btda.11251 | |
| dc.relation.uri | https://taxationcustoms.ec.europa.eu/document/download/2980287c-dca2-4a4b-aff3db6374806cf7_en?filename=Guidance%20document%20on%20CBAM%20implementation%20for%20installation%20operators%20outside%20the%20EU.pdf | |
| dc.relation.uri | https://mepr.gov.ua/diyalnist/napryamky/zmina-klimatu/monitoryng-zvitnist-ta-veryfikatsiya-vykydiv-parnykovyh-gaziv-mzv/koefitsiyenty-vykydiv-parnykovyh-gaziv-ta-znachennya-nyzhchyh-teplotvornyh-zdatnostej-ntz-palyv-na-odynytsyu-masy/ | |
| dc.relation.uri | https://www.irena.org//media/Files/IRENA/Agency/Statistics/statistical_profiles/europe/ukraine_europe_re_sp.pdf | |
| dc.rights.holder | © Національний університет “Львівська політехніка”, 2025 | |
| dc.rights.holder | © Marushchak R., Sobol K., 2025 | |
| dc.subject | портландцемент | |
| dc.subject | золошлаковий матеріал | |
| dc.subject | екологічний показник | |
| dc.subject | викиди CO2 | |
| dc.subject | питомі витрати теплової енергії | |
| dc.subject | питомі витрати електричної енергії | |
| dc.subject | Portland cement | |
| dc.subject | wet-handled coal bottom ash | |
| dc.subject | environmental performance | |
| dc.subject | CO2-emission | |
| dc.subject | specific heat energy consumption | |
| dc.subject | specific electricity consumption | |
| dc.title | Environmental assessment of wet-handled coal bottom ash application for cement production | |
| dc.title.alternative | Екологічна оцінка застосування золошлакових продуктів для виробництва цементу | |
| dc.type | Article |
Files
Original bundle
License bundle
1 - 1 of 1