Environmental assessment of wet-handled coal bottom ash application for cement production

dc.citation.epage57
dc.citation.issue1
dc.citation.journalTitleТеорія та будівельна практика
dc.citation.spage49
dc.citation.volume7
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorМарущак, Р. Д.
dc.contributor.authorСоболь, Х. С.
dc.contributor.authorMarushchak, Roman
dc.contributor.authorSobol, Khrystyna
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2026-01-26T08:05:27Z
dc.date.created2025-02-27
dc.date.issued2025-02-27
dc.description.abstractПортландцемент є одним з найенергоємніших матеріалів зі значним вуглецевим слідом його виробництва. Курс на зниження вмісту портландцементного клінкеру у в’яжучих є запорукою отримання стійких екологічних матеріалів. Найпоширенішою мінеральною добавкою під час виготовлення в’яжучих був доменний гранульований шлак, проте через прогнозовану обмежену його доступність у майбутньому виникає необхідність розширення сировинної бази неклінкерних компонентів. З погляду зниження впливу на довкілля практичний інтерес становить використання відходів. Вугільна зола мокрого видалення характеризується високою розмелювальною здатністю, у разі введення у в’яжучі в оптимальній кількості забезпечує перебіг пуцоланових реакцій за їх гідратації, не потребує значних енергетичних затрат для досягнення їх необхідних властивостей. Основним недоліком вугільної золи є її висока вологість, що вимагає додаткових енергетичних затрат на сушіння. Для сушіння матеріалів із високою вологістю перспективним є використання теплоти відхідних газів, утворених за сухого способу виробництва портландцементного клінкеру. Згідно з виконаними розрахунками використання вугільної золи як для часткової заміни доменного гранульованого шлаку у в’яжучому, так і для заміни портландцементного клінкеру доцільне з погляду питомої витрати енергоносіїв та викидів вуглекислого газу. В’яжуче із частковою заміною доменного гранульованого шлаку на вугільну золу характеризується таким самим питомим показником викидів вуглекислого газу, як і у разі використання тільки доменного гранульованого шлаку (0,63 т СО2/т в’яжучого), водночас у разі заміни портландцементного клінкеру на вугільну золу показник викидів вуглекислого газу становить 0,55 т СО2/т в’яжучого. Результати цього дослідження можуть допомогти у розробленні політики підвищення стійкості випуску в’яжучих із використанням різних типів мінеральних добавок.
dc.description.abstractThe production of Portland cements with a reduced clinker content corresponds to the strategy of decarbonization of building materials, aimed at reducing the negative impact on the environment and climate changes. This direction of development of the cement industry requires the use of more mineral additives. The application of waste-derived materials as the main non-clinker component is promising. The advantage of using wet-handled coal bottom ash is its pozzolanic effect and high grindability, but the main disadvantage is increased moisture. The introduction of wet-handled coal bottom ash in the cement industry requires an integrated approach that covers aspects of technology, economics, and ecology. The article investigates the feasibility of using wet-handled coal bottom ash as an additive to binders in terms of environmental performance while ensuring the required strength indicators of Portland cement.
dc.format.extent49-57
dc.format.pages9
dc.identifier.citationMarushchak R. Environmental assessment of wet-handled coal bottom ash application for cement production / Roman Marushchak, Khrystyna Sobol // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 7. — No 1. — P. 49–57.
dc.identifier.citationenMarushchak R. Environmental assessment of wet-handled coal bottom ash application for cement production / Roman Marushchak, Khrystyna Sobol // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 7. — No 1. — P. 49–57.
dc.identifier.doidoi.org/10.23939/jtbp2025.01.049
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/124484
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofТеорія та будівельна практика, 1 (7), 2025
dc.relation.ispartofTheory and Building Practice, 1 (7), 2025
dc.relation.referencesCheng, D., Reiner, D.M., Yang, F., Cui, C., Meng, J., Shan, Y. … Guan, D. (2023). Projecting future carbon emissions from cement production in developing countries. Nature Communications, 14, 8213. doi.org/10.1038/s41467-023-43660-x
dc.relation.referencesSroda, B. (2020). The cement industry on the road to the Green Deal. Construction, Architecture Technologies, 3, 68-74 (in Polish). bwmeta1.element.baztech-8fe7721f-eadb-432d-b91d-8997cc14e7d6
dc.relation.referencesNiu, L., Wu, S., Andrew, R. M., Shao, Z., Wang, J., & Xi, F. (2024). Global and National CO2 Uptake by Cement Carbonation from 1928 to 2024 [preprint]. Earth System Science Data. doi.org/10.5194/essd-2024-437.
dc.relation.referencesWorld Business Council for Sustainable Development (WBCSD)/International Energy Agency (IEA). 2009. Cement Technology Roadmap 2009 - Carbon emissions reductions up to 2050. Available at www.iea.org/papers/2009/Cement_Roadmap.pdf.
dc.relation.referencesPamenter, S., & Myers, R. J. (2021). Decarbonizing the cementitious materials cycle: a whole-systems review of measures to decarbonize the cement supply chain in the UK and European contexts. Journal of Industrial Ecology, 25, 359-376. doi.org/10.1111/jiec.13105
dc.relation.referencesDecarbonizing Cement and Concrete: A CO2 Roadmap for the German cement industry (2020). . https://www.vdzonline.de/fileadmin/wissensportal/publikationen/zementindustrie/Executive_Summary_VDZ_Study_Decarbonising_Cement_and_Concrete_2020.pdf
dc.relation.referencesBatog, M., Bakalarz, J., Synowiec, K., & Dziuk, D. (2022). The use of multi-component cements in construction. Construction, Architecture Technologies, 3, 66-73. (in Polish) https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-643bff65-215f-466b-801f-61c02b3f98a5bwmeta1.element.baztech-643bff65-215f-466b-801f-61c02b3f98a5
dc.relation.referencesShah, I.H., Miller, S.A., Jiang, D., & Myers, R. J. (2022). Cement substitution with secondary materials can reduce annual global CO2 emissions by up to 1.3 gigatons. Nature Communications, 13, 5758. doi.org/10.1038/s41467-022-33289-7
dc.relation.referenceshttps://doi.org/10.1038/s41467-022-33289-7
dc.relation.referencesScrivener, K.L., John, V.M., & Gartner, E. M. (2018). Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cement and Concrete Research, 114, 2-26. https://doi.org/10.1016/j.cemconres.2018.03.015.
dc.relation.referencesSanytsky, M., Kropyvnytska, T., Fic, S., & Ivashchyshyn, H. (2020). Sustainable low-carbon binders and concretes. E3S Web of Conferences, 166, 06007. https://doi.org/10.1051/e3sconf/202016606007
dc.relation.referencesAscensão, G., Farinini, E., Ferreira, V. M., & Leardi, R. (2024). Development of eco-efficient limestone calcined clay cement (LC3) mortars by a multi-step experimental design. Chemometrics and Intelligent Laboratory Systems, 253, 105195. doi.org/10.1016/j.chemolab.2024.105195.
dc.relation.referencesSobol, K., Solodkyy, S., Petrovska, N., Belov, S., Hunyak, O., & Hidei, V. (2020). Chemical composition and hydraulic properties of incinerated wastepaper sludge. Chemistry & Chemical Technology, 14(4), 538-544. https://doi.org/10.23939/chcht14.04.538
dc.relation.referencesHunyak, O., Hidei, V., Sobol, K. & Petrovska, N. (2023). Valorization of Wastepaper Sludge Ash as Supplementary Cementitious Material in Concrete. Lecture Notes in Civil Engineering, 290, 94-100. doi:10.1007/978-3-031-14141-6_10.
dc.relation.referencesYevropeiska biznes asotsiatsiia. (2021). Vykorystannia zoloshlakovykh produktiv i hirnychoi porody v dorozhnomu budivnytstvi. Yevropeiskyi dosvid i mozhlyvosti dlia Ukrainy. URL: https://eba.com.ua/wpcontent/uploads/2021/05/White_Paper_Slag-_in_road_construction.pdf
dc.relation.referencesCheeratot, R., & Jaturapitakkul, C. (2004). A Study of Disposed Fly Ash from Landfill to Replace Portland Cement. Waste Management, 24, 7, 701-709. doi:10.1016/j.wasman.2004.02.003.
dc.relation.referencesSobol, K., & Marushchak, R. (2024). Оpportunities of wet-handled coal bottom ash use in binding materials: а review. Theory and Building Practice, 7, 1, 17-24. doi.org/10.23939/jtbp2024.01.017
dc.relation.referencesTirkeş, S. (2021). Utilization of wet-handled and dry-handled coal bottom ashes in Portland cement based composites. M.S. -Master of Science, Middle East Technical University. https://hdl.handle.net/11511/94324.
dc.relation.referencesPermatasari, R., Sodri, A., & Gustina, H.A. (2023). Utilization of Fly Ash Waste in the Cement Industry and its Environmental Impact: A Review. Journal Penelitian Pendidikan IPA, 9(9), 569-579. https://doi.org/10.29303/jppipa.v9i9.4504
dc.relation.referencesSanytsky, M. A., Kropyvnytska, T. P., & Hevyuk, I. M. (2021). Rapid-hardening clinker-efficient cements and concretes. Lviv: Prostir-M (in Ukrainian).
dc.relation.referencesOndova, M., & Stevulova, N. (2013). Environmental assessment of fly ash concrete. Chemical Engineering Transactions, 35, 841-846. DOI:10.3303/CET1335140.
dc.relation.referencesTait, M. W., & Wai, M. C. (2016). A comparative cradle-to-gate life cycle assessment of three concrete mix designs. Life cycle sustainability assessment, 21, 847-860. doi 10.1007/s11367-016-1045-5
dc.relation.referencesBribián, I.Z., Capilla A.V., & Usón, A.A. (2011). Life cycle assessment of building materials: comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Building and Environment, 46(5), 1133-1140. https://doi.org/10.1016/j.buildenv.2010.12.002
dc.relation.referencesSchorcht, F., Kourti, I., Scalet, B. M., Roudier, S., & Sancho L. D. (2013). Best Available Techniques (BAT) Cement and Lime Reference Document for the Production of Cement, Lime and Magnesium Oxide Luxembourg: Publications Office of the European Union. DOI: 10.2788/12850 https://eippcb.jrc.ec.europa.eu/sites/default/files/201911/CLM_Published_def_0.pdf
dc.relation.referencesLocher F.-M. (2006). Cement - principles of production and use. Dusseldorf: Verlag Bau+Technic GmbH
dc.relation.referencesHolderbank Engineering Book (2000). Holderbank Management & Consulting
dc.relation.referencesAtmaca, A., & Atmaca, N. (2016). Determination of correlation between specific energy consumption and vibration of a raw mill in cement industry. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, 17(1), 209-219. https://doi.org/10.18038/btda.11251.
dc.relation.referencesGuidance Document on CBAM Implementation for installation operators outside the EU (2023). https://taxationcustoms.ec.europa.eu/document/download/2980287c-dca2-4a4b-aff3db6374806cf7_en?filename=Guidance%20document%20on%20CBAM%20implementation%20for%20installation%20operators%20outside%20the%20EU.pdf
dc.relation.referencesGreenhouse gas emission factors and net calorific values (NCVs) of fuels per unit mass used in the "National Inventory of Anthropogenic Emissions by Sources and Removals by Sinks of Greenhouse Gases in Ukraine for 1990-2021" (for monitoring in 2024). (2023). . https://mepr.gov.ua/diyalnist/napryamky/zmina-klimatu/monitoryng-zvitnist-ta-veryfikatsiya-vykydiv-parnykovyh-gaziv-mzv/koefitsiyenty-vykydiv-parnykovyh-gaziv-ta-znachennya-nyzhchyh-teplotvornyh-zdatnostej-ntz-palyv-na-odynytsyu-masy/
dc.relation.referencesEnergy profiles. Ukraine / Irena International Renewable Agency. (2024). https://www.irena.org//media/Files/IRENA/Agency/Statistics/statistical_profiles/europe/ukraine_europe_re_sp.pdf
dc.relation.referencesHammond, G., & Jones, C. (2011). Embodied carbon: the inventory of carbon and energy (ICE). BSRIA: Bracknell.
dc.relation.referencesenCheng, D., Reiner, D.M., Yang, F., Cui, C., Meng, J., Shan, Y. … Guan, D. (2023). Projecting future carbon emissions from cement production in developing countries. Nature Communications, 14, 8213. doi.org/10.1038/s41467-023-43660-x
dc.relation.referencesenSroda, B. (2020). The cement industry on the road to the Green Deal. Construction, Architecture Technologies, 3, 68-74 (in Polish). bwmeta1.element.baztech-8fe7721f-eadb-432d-b91d-8997cc14e7d6
dc.relation.referencesenNiu, L., Wu, S., Andrew, R. M., Shao, Z., Wang, J., & Xi, F. (2024). Global and National CO2 Uptake by Cement Carbonation from 1928 to 2024 [preprint]. Earth System Science Data. doi.org/10.5194/essd-2024-437.
dc.relation.referencesenWorld Business Council for Sustainable Development (WBCSD)/International Energy Agency (IEA). 2009. Cement Technology Roadmap 2009 - Carbon emissions reductions up to 2050. Available at www.iea.org/papers/2009/Cement_Roadmap.pdf.
dc.relation.referencesenPamenter, S., & Myers, R. J. (2021). Decarbonizing the cementitious materials cycle: a whole-systems review of measures to decarbonize the cement supply chain in the UK and European contexts. Journal of Industrial Ecology, 25, 359-376. doi.org/10.1111/jiec.13105
dc.relation.referencesenDecarbonizing Cement and Concrete: A CO2 Roadmap for the German cement industry (2020). . https://www.vdzonline.de/fileadmin/wissensportal/publikationen/zementindustrie/Executive_Summary_VDZ_Study_Decarbonising_Cement_and_Concrete_2020.pdf
dc.relation.referencesenBatog, M., Bakalarz, J., Synowiec, K., & Dziuk, D. (2022). The use of multi-component cements in construction. Construction, Architecture Technologies, 3, 66-73. (in Polish) https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-643bff65-215f-466b-801f-61c02b3f98a5bwmeta1.element.baztech-643bff65-215f-466b-801f-61c02b3f98a5
dc.relation.referencesenShah, I.H., Miller, S.A., Jiang, D., & Myers, R. J. (2022). Cement substitution with secondary materials can reduce annual global CO2 emissions by up to 1.3 gigatons. Nature Communications, 13, 5758. doi.org/10.1038/s41467-022-33289-7
dc.relation.referencesenhttps://doi.org/10.1038/s41467-022-33289-7
dc.relation.referencesenScrivener, K.L., John, V.M., & Gartner, E. M. (2018). Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cement and Concrete Research, 114, 2-26. https://doi.org/10.1016/j.cemconres.2018.03.015.
dc.relation.referencesenSanytsky, M., Kropyvnytska, T., Fic, S., & Ivashchyshyn, H. (2020). Sustainable low-carbon binders and concretes. E3S Web of Conferences, 166, 06007. https://doi.org/10.1051/e3sconf/202016606007
dc.relation.referencesenAscensão, G., Farinini, E., Ferreira, V. M., & Leardi, R. (2024). Development of eco-efficient limestone calcined clay cement (LC3) mortars by a multi-step experimental design. Chemometrics and Intelligent Laboratory Systems, 253, 105195. doi.org/10.1016/j.chemolab.2024.105195.
dc.relation.referencesenSobol, K., Solodkyy, S., Petrovska, N., Belov, S., Hunyak, O., & Hidei, V. (2020). Chemical composition and hydraulic properties of incinerated wastepaper sludge. Chemistry & Chemical Technology, 14(4), 538-544. https://doi.org/10.23939/chcht14.04.538
dc.relation.referencesenHunyak, O., Hidei, V., Sobol, K. & Petrovska, N. (2023). Valorization of Wastepaper Sludge Ash as Supplementary Cementitious Material in Concrete. Lecture Notes in Civil Engineering, 290, 94-100. doi:10.1007/978-3-031-14141-6_10.
dc.relation.referencesenYevropeiska biznes asotsiatsiia. (2021). Vykorystannia zoloshlakovykh produktiv i hirnychoi porody v dorozhnomu budivnytstvi. Yevropeiskyi dosvid i mozhlyvosti dlia Ukrainy. URL: https://eba.com.ua/wpcontent/uploads/2021/05/White_Paper_Slag-_in_road_construction.pdf
dc.relation.referencesenCheeratot, R., & Jaturapitakkul, C. (2004). A Study of Disposed Fly Ash from Landfill to Replace Portland Cement. Waste Management, 24, 7, 701-709. doi:10.1016/j.wasman.2004.02.003.
dc.relation.referencesenSobol, K., & Marushchak, R. (2024). Opportunities of wet-handled coal bottom ash use in binding materials: a review. Theory and Building Practice, 7, 1, 17-24. doi.org/10.23939/jtbp2024.01.017
dc.relation.referencesenTirkeş, S. (2021). Utilization of wet-handled and dry-handled coal bottom ashes in Portland cement based composites. M.S. -Master of Science, Middle East Technical University. https://hdl.handle.net/11511/94324.
dc.relation.referencesenPermatasari, R., Sodri, A., & Gustina, H.A. (2023). Utilization of Fly Ash Waste in the Cement Industry and its Environmental Impact: A Review. Journal Penelitian Pendidikan IPA, 9(9), 569-579. https://doi.org/10.29303/jppipa.v9i9.4504
dc.relation.referencesenSanytsky, M. A., Kropyvnytska, T. P., & Hevyuk, I. M. (2021). Rapid-hardening clinker-efficient cements and concretes. Lviv: Prostir-M (in Ukrainian).
dc.relation.referencesenOndova, M., & Stevulova, N. (2013). Environmental assessment of fly ash concrete. Chemical Engineering Transactions, 35, 841-846. DOI:10.3303/CET1335140.
dc.relation.referencesenTait, M. W., & Wai, M. C. (2016). A comparative cradle-to-gate life cycle assessment of three concrete mix designs. Life cycle sustainability assessment, 21, 847-860. doi 10.1007/s11367-016-1045-5
dc.relation.referencesenBribián, I.Z., Capilla A.V., & Usón, A.A. (2011). Life cycle assessment of building materials: comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Building and Environment, 46(5), 1133-1140. https://doi.org/10.1016/j.buildenv.2010.12.002
dc.relation.referencesenSchorcht, F., Kourti, I., Scalet, B. M., Roudier, S., & Sancho L. D. (2013). Best Available Techniques (BAT) Cement and Lime Reference Document for the Production of Cement, Lime and Magnesium Oxide Luxembourg: Publications Office of the European Union. DOI: 10.2788/12850 https://eippcb.jrc.ec.europa.eu/sites/default/files/201911/CLM_Published_def_0.pdf
dc.relation.referencesenLocher F.-M. (2006). Cement - principles of production and use. Dusseldorf: Verlag Bau+Technic GmbH
dc.relation.referencesenHolderbank Engineering Book (2000). Holderbank Management & Consulting
dc.relation.referencesenAtmaca, A., & Atmaca, N. (2016). Determination of correlation between specific energy consumption and vibration of a raw mill in cement industry. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, 17(1), 209-219. https://doi.org/10.18038/btda.11251.
dc.relation.referencesenGuidance Document on CBAM Implementation for installation operators outside the EU (2023). https://taxationcustoms.ec.europa.eu/document/download/2980287c-dca2-4a4b-aff3db6374806cf7_en?filename=Guidance%20document%20on%20CBAM%20implementation%20for%20installation%20operators%20outside%20the%20EU.pdf
dc.relation.referencesenGreenhouse gas emission factors and net calorific values (NCVs) of fuels per unit mass used in the "National Inventory of Anthropogenic Emissions by Sources and Removals by Sinks of Greenhouse Gases in Ukraine for 1990-2021" (for monitoring in 2024). (2023). . https://mepr.gov.ua/diyalnist/napryamky/zmina-klimatu/monitoryng-zvitnist-ta-veryfikatsiya-vykydiv-parnykovyh-gaziv-mzv/koefitsiyenty-vykydiv-parnykovyh-gaziv-ta-znachennya-nyzhchyh-teplotvornyh-zdatnostej-ntz-palyv-na-odynytsyu-masy/
dc.relation.referencesenEnergy profiles. Ukraine, Irena International Renewable Agency. (2024). https://www.irena.org//media/Files/IRENA/Agency/Statistics/statistical_profiles/europe/ukraine_europe_re_sp.pdf
dc.relation.referencesenHammond, G., & Jones, C. (2011). Embodied carbon: the inventory of carbon and energy (ICE). BSRIA: Bracknell.
dc.relation.urihttps://www.vdzonline.de/fileadmin/wissensportal/publikationen/zementindustrie/Executive_Summary_VDZ_Study_Decarbonising_Cement_and_Concrete_2020.pdf
dc.relation.urihttps://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-643bff65-215f-466b-801f-61c02b3f98a5bwmeta1.element.baztech-643bff65-215f-466b-801f-61c02b3f98a5
dc.relation.urihttps://doi.org/10.1038/s41467-022-33289-7
dc.relation.urihttps://doi.org/10.1016/j.cemconres.2018.03.015
dc.relation.urihttps://doi.org/10.1051/e3sconf/202016606007
dc.relation.urihttps://doi.org/10.23939/chcht14.04.538
dc.relation.urihttps://eba.com.ua/wpcontent/uploads/2021/05/White_Paper_Slag-_in_road_construction.pdf
dc.relation.urihttps://hdl.handle.net/11511/94324
dc.relation.urihttps://doi.org/10.29303/jppipa.v9i9.4504
dc.relation.urihttps://doi.org/10.1016/j.buildenv.2010.12.002
dc.relation.urihttps://eippcb.jrc.ec.europa.eu/sites/default/files/201911/CLM_Published_def_0.pdf
dc.relation.urihttps://doi.org/10.18038/btda.11251
dc.relation.urihttps://taxationcustoms.ec.europa.eu/document/download/2980287c-dca2-4a4b-aff3db6374806cf7_en?filename=Guidance%20document%20on%20CBAM%20implementation%20for%20installation%20operators%20outside%20the%20EU.pdf
dc.relation.urihttps://mepr.gov.ua/diyalnist/napryamky/zmina-klimatu/monitoryng-zvitnist-ta-veryfikatsiya-vykydiv-parnykovyh-gaziv-mzv/koefitsiyenty-vykydiv-parnykovyh-gaziv-ta-znachennya-nyzhchyh-teplotvornyh-zdatnostej-ntz-palyv-na-odynytsyu-masy/
dc.relation.urihttps://www.irena.org//media/Files/IRENA/Agency/Statistics/statistical_profiles/europe/ukraine_europe_re_sp.pdf
dc.rights.holder© Національний університет “Львівська політехніка”, 2025
dc.rights.holder© Marushchak R., Sobol K., 2025
dc.subjectпортландцемент
dc.subjectзолошлаковий матеріал
dc.subjectекологічний показник
dc.subjectвикиди CO2
dc.subjectпитомі витрати теплової енергії
dc.subjectпитомі витрати електричної енергії
dc.subjectPortland cement
dc.subjectwet-handled coal bottom ash
dc.subjectenvironmental performance
dc.subjectCO2-emission
dc.subjectspecific heat energy consumption
dc.subjectspecific electricity consumption
dc.titleEnvironmental assessment of wet-handled coal bottom ash application for cement production
dc.title.alternativeЕкологічна оцінка застосування золошлакових продуктів для виробництва цементу
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2025v7n1_Marushchak_R-Environmental_assessment_49-57.pdf
Size:
458.62 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2025v7n1_Marushchak_R-Environmental_assessment_49-57__COVER.png
Size:
465.51 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.81 KB
Format:
Plain Text
Description: