Комбіновані розчини нерозчинних у воді біологічно активних сполук з використанням біосурфактантів
dc.citation.epage | 101 | |
dc.citation.issue | 1 | |
dc.citation.spage | 96 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Інститут фізико-органічної хімії і вуглехімії ім. Л. М. Литвиненка Національної академії наук України | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.affiliation | Institute of Physical-Organic Chemistry and Coal Chemistry named after L. M. Lytvynenko of the National Academy of Sciences of Ukraine | |
dc.contributor.author | Прокопало, А. М. | |
dc.contributor.author | Мазяр, І. В. | |
dc.contributor.author | Заярнюк, Н. Л. | |
dc.contributor.author | Кричковська, А. М. | |
dc.contributor.author | Карпенко, О. В. | |
dc.contributor.author | Лубенець, В. І. | |
dc.contributor.author | Prokopalo, A. M. | |
dc.contributor.author | Maziar, I. V. | |
dc.contributor.author | Zayarnyuk, N. Z. | |
dc.contributor.author | Krychkovska, A. M. | |
dc.contributor.author | Karpenko, O. V. | |
dc.contributor.author | Lubenets, V. I. | |
dc.coverage.placename | Lviv | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-22T09:22:46Z | |
dc.date.available | 2024-01-22T09:22:46Z | |
dc.date.created | 2020-02-21 | |
dc.date.issued | 2020-02-21 | |
dc.description.abstract | Одержано розчини нерозчинних у воді біологічно активних речовин: тіосульфоестерів, похідних антрахінону, піразоліну, із використанням комбінованого розчинника та біогенних поверхнево-активних речовин. Для цього використано рамноліпіди, їх біокомплекс з полісахаридами, синтезований штамом Pseudomonassp. PS-17, трегалозоліпіди штаму Rhodococcuserythropolis Au-1 та комерційний біосурфактант – сурфактин. Одержано також водні дисперсні системи досліджених речовин. Результати досліджень перспективні для застосування у фармації. | |
dc.description.abstract | Solutions of biologically active substances insoluble in water (thiosulfoesters, anthraquinone derivatives, pyrazoline) were obtained using a combined solvent and biogenic surfactants. For this purpose were used rhamnolipids, their biocomplex with polysaccharides synthesized by the Pseudomonas SP strain. PS-17, trehalosolipids of the Rhodococcus erythropolis AU-1 strain, and the commercial biosurfactant surfactant. Aqueous dispersed systems of the studied substances were also obtained. The research results have prospects for use in pharmacy. | |
dc.format.extent | 96-101 | |
dc.format.pages | 6 | |
dc.identifier.citation | Комбіновані розчини нерозчинних у воді біологічно активних сполук з використанням біосурфактантів / А. М. Прокопало, І. В. Мазяр, Н. Л. Заярнюк, А. М. Кричковська, О. В. Карпенко, В. І. Лубенець // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Том 5. — № 1. — С. 96–101. | |
dc.identifier.citationen | Combined solutions using biosurfactants based on water-insolute biologically active compounds / A. M. Prokopalo, I. V. Maziar, N. Z. Zayarnyuk, A. M. Krychkovska, O. V. Karpenko, V. I. Lubenets // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 5. — No 1. — P. 96–101. | |
dc.identifier.doi | doi.org/10.23939/ctas2022.01.096 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60918 | |
dc.language.iso | uk | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 1 (5), 2022 | |
dc.relation.references | 1. Pertsev, I. M., Ruban, O. A. (2015). Dopomizhni rechovyny u vyrobnytstvi likiv. Apteka online. https://www.apteka.ua/article/320536. | |
dc.relation.references | 2. Sivapathasekaran, C. & Sen, R. (2017). Origin, Properties, Production and Purification of Microbial Surfactants as Molecules with Immense Commercial Potential. Tenside Surfactants Detergents, 54(2), 92–107. https://doi.org/10.3139/113.110482. | |
dc.relation.references | 3. Tiso, T., Thies, S., Müller, M., Tsvetanova, L., Carraresi, L., Bröring, S., … Blank, L. M. (2017). Rhamnolipids: Production, Performance, and Application. Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Production of Fuels and Chemicals, Handbook of Hydrocarbon and Lipid Microbiology. Springer, Cham, 1–37. https://doi:10.1007/978-3-319-31421-1_388-1. | |
dc.relation.references | 4. Pokynbroda, T. Ya., Karpenkoo, O. V., Lubenets V. I. et al. (2017). Biosynthesis of surfactants by microorganisms of the genera pseudomonas on soybean oil and investigation of their properties. Visnyk Natsionalnoho universytetu “Lvivska politekhnika”. Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, 868, 222–228. https://ena.lpnu.ua/handle/ntb/40644. | |
dc.relation.references | 5. Rocha e Silva, N. M. P., Rufino, R. D., Luna J. M. et al. (2014). Screening of Pseudomonas species for biosurfactant production using low-cost substrates. Biocatalysis and Agricultural Biotechnology, 3, 132–139. https://doi.org/10.1016/j.bcab.2013.09.005. | |
dc.relation.references | 6. Shu, Q., Lou, H., Wei, T., Liu, X., Chen, Q. (2021). Contributions of Glycolipid Biosurfactants and Glycolipid-Modified Materials to Antimicrobial Strategy: A Review. Pharmaceutics, 13, 227. https://doi.org/10.3390/pharmaceutics13020227. | |
dc.relation.references | 7. Derzhavna farmakopeya Ukrayiny: v 3 t., T. 1 (2015). 2-e vyd. Kharkiv: Derzhavne pidpryyemstvo “Naukovyy farmakopeynyy tsentr yakosti likarsʹkykh zasobiv”. | |
dc.relation.references | 8. Lubenets V., Stadnytska N., Baranovych D. et al. (2019). Thiosulfonates: the prospective substances against fungal infections. Fungal infection: Intech Open. https://doi:10.5772/intechopen.84436. | |
dc.relation.references | 9. Boldyrev, B. G., Kolmakova, L. E., & Pershin G. M. (1968). Esulan is a new remedy for the treatment of foot-and-mouth disease. Chem. Farm Journal, 2 (4), 12–16. | |
dc.relation.references | 10. Zvarych, V., Stasevych, M., Lunin, V. et al. (2016). Synthesis and investigation of antioxidant activity of the dithiocarbamate derivatives of 9,10-anthracenedione. Monatsh Chem, 147, 2093–2101. https://doi.org/10.1007/s00706-016-1839-y. | |
dc.relation.references | 11. Khomʺyak, S. V., Zayarnyuk, N. L., Yaremkevych, O. S. ta insh. (2008). Biolohichna aktyvnistʹ vodnykh rozchyniv 1,3-dyfenil-5-(4-hidroksy-3,5-dy-tret-butylfenil)-pirazolinu-2. Visnyk NU “Lʹvivsʹka politekhnika”. Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya, 609, 120–123. | |
dc.relation.references | 12. Stakhira, P., Khomyak S., Cherpak V. et al. (2012). Blue organic light-emitting diodes based on pyrazoline phenyl derivative. Synthetic Metals. 162, 3(4), 352–355. https://doi:10.1016/j.synthmet.2011.12.017. | |
dc.relation.references | 13. Pokynbroda, T., Karpenko, I., Midyana, H., Karpenko, O. (2019). Isolation of Surfactants Synthesized by the Pseudomonas Bacteria and Study of Their Properties. Innov Biosyst Bioeng, 3(2), 70–76. https://doi:10.20535/ibb.2019.3.2.165838. | |
dc.relation.references | 14. Koretska, N., Karpenko, О., Baranov, V. et al. (2019). Biological Properties of Surface-Active Metabolites of Rhodococcus erythropolis Au-1 and Their Prospects for Crop Technology. Innov Biosyst Bioeng. 3(2), 77–85. http://doi: https://doi.org/10.20535/ibb.2019.3.2.165165. | |
dc.relation.references | 15. Seydlová, G., Svobodová, J. (2008). Review of surfactin chemical properties and the potential biomedical applications. Cent. Eur. J. Med, 3, 123–133. https://doi.org/10.2478/s11536-008-0002-5. | |
dc.relation.references | 16. Singh, P., Cameotra, S. S. (2004). Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol, 22(3), 142–146. https://doi:10.1016/j.tibtech.2004.01.010. PMID: 15036865. | |
dc.relation.references | 17. Kothekar, Shr. C., Ware, A. M., Waghmare, J. T., & Momin, S. A. (2007). Comparative Analysis of the Properties of Tween 20, Tween 60, Tween 80, Arlacel 60, and Arlacel 80. Journal of Dispersion Science and Technology, 28(3), 477–484. https://doi.org/10.1080/01932690601108045. | |
dc.relation.references | 18. Kandadi Prabhakar, Syed Muzammil Afzal, Goparaboina Surender, Veerabrahma Kishan. (2013). Tween 80 containing lipid nanoemulsions for delivery of indinavir to brain. Acta Pharmaceutica Sinica B, 3(5), 345–353. https://doi.org/10.1016/j.apsb.2013.08.001. | |
dc.relation.referencesen | 1. Pertsev, I. M., Ruban, O. A. (2015). Dopomizhni rechovyny u vyrobnytstvi likiv. Apteka online. https://www.apteka.ua/article/320536. | |
dc.relation.referencesen | 2. Sivapathasekaran, C. & Sen, R. (2017). Origin, Properties, Production and Purification of Microbial Surfactants as Molecules with Immense Commercial Potential. Tenside Surfactants Detergents, 54(2), 92–107. https://doi.org/10.3139/113.110482. | |
dc.relation.referencesen | 3. Tiso, T., Thies, S., Müller, M., Tsvetanova, L., Carraresi, L., Bröring, S., … Blank, L. M. (2017). Rhamnolipids: Production, Performance, and Application. Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Production of Fuels and Chemicals, Handbook of Hydrocarbon and Lipid Microbiology. Springer, Cham, 1–37. https://doi:10.1007/978-3-319-31421-1_388-1. | |
dc.relation.referencesen | 4. Pokynbroda, T. Ya., Karpenkoo, O. V., Lubenets V. I. et al. (2017). Biosynthesis of surfactants by microorganisms of the genera pseudomonas on soybean oil and investigation of their properties. Visnyk Natsionalnoho universytetu "Lvivska politekhnika". Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, 868, 222–228. https://ena.lpnu.ua/handle/ntb/40644. | |
dc.relation.referencesen | 5. Rocha e Silva, N. M. P., Rufino, R. D., Luna J. M. et al. (2014). Screening of Pseudomonas species for biosurfactant production using low-cost substrates. Biocatalysis and Agricultural Biotechnology, 3, 132–139. https://doi.org/10.1016/j.bcab.2013.09.005. | |
dc.relation.referencesen | 6. Shu, Q., Lou, H., Wei, T., Liu, X., Chen, Q. (2021). Contributions of Glycolipid Biosurfactants and Glycolipid-Modified Materials to Antimicrobial Strategy: A Review. Pharmaceutics, 13, 227. https://doi.org/10.3390/pharmaceutics13020227. | |
dc.relation.referencesen | 7. Derzhavna farmakopeya Ukrayiny: v 3 t., T. 1 (2015). 2-e vyd. Kharkiv: Derzhavne pidpryyemstvo "Naukovyy farmakopeynyy tsentr yakosti likarsʹkykh zasobiv". | |
dc.relation.referencesen | 8. Lubenets V., Stadnytska N., Baranovych D. et al. (2019). Thiosulfonates: the prospective substances against fungal infections. Fungal infection: Intech Open. https://doi:10.5772/intechopen.84436. | |
dc.relation.referencesen | 9. Boldyrev, B. G., Kolmakova, L. E., & Pershin G. M. (1968). Esulan is a new remedy for the treatment of foot-and-mouth disease. Chem. Farm Journal, 2 (4), 12–16. | |
dc.relation.referencesen | 10. Zvarych, V., Stasevych, M., Lunin, V. et al. (2016). Synthesis and investigation of antioxidant activity of the dithiocarbamate derivatives of 9,10-anthracenedione. Monatsh Chem, 147, 2093–2101. https://doi.org/10.1007/s00706-016-1839-y. | |
dc.relation.referencesen | 11. Khomʺyak, S. V., Zayarnyuk, N. L., Yaremkevych, O. S. ta insh. (2008). Biolohichna aktyvnistʹ vodnykh rozchyniv 1,3-dyfenil-5-(4-hidroksy-3,5-dy-tret-butylfenil)-pirazolinu-2. Visnyk NU "Lʹvivsʹka politekhnika". Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya, 609, 120–123. | |
dc.relation.referencesen | 12. Stakhira, P., Khomyak S., Cherpak V. et al. (2012). Blue organic light-emitting diodes based on pyrazoline phenyl derivative. Synthetic Metals. 162, 3(4), 352–355. https://doi:10.1016/j.synthmet.2011.12.017. | |
dc.relation.referencesen | 13. Pokynbroda, T., Karpenko, I., Midyana, H., Karpenko, O. (2019). Isolation of Surfactants Synthesized by the Pseudomonas Bacteria and Study of Their Properties. Innov Biosyst Bioeng, 3(2), 70–76. https://doi:10.20535/ibb.2019.3.2.165838. | |
dc.relation.referencesen | 14. Koretska, N., Karpenko, O., Baranov, V. et al. (2019). Biological Properties of Surface-Active Metabolites of Rhodococcus erythropolis Au-1 and Their Prospects for Crop Technology. Innov Biosyst Bioeng. 3(2), 77–85. http://doi: https://doi.org/10.20535/ibb.2019.3.2.165165. | |
dc.relation.referencesen | 15. Seydlová, G., Svobodová, J. (2008). Review of surfactin chemical properties and the potential biomedical applications. Cent. Eur. J. Med, 3, 123–133. https://doi.org/10.2478/s11536-008-0002-5. | |
dc.relation.referencesen | 16. Singh, P., Cameotra, S. S. (2004). Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol, 22(3), 142–146. https://doi:10.1016/j.tibtech.2004.01.010. PMID: 15036865. | |
dc.relation.referencesen | 17. Kothekar, Shr. C., Ware, A. M., Waghmare, J. T., & Momin, S. A. (2007). Comparative Analysis of the Properties of Tween 20, Tween 60, Tween 80, Arlacel 60, and Arlacel 80. Journal of Dispersion Science and Technology, 28(3), 477–484. https://doi.org/10.1080/01932690601108045. | |
dc.relation.referencesen | 18. Kandadi Prabhakar, Syed Muzammil Afzal, Goparaboina Surender, Veerabrahma Kishan. (2013). Tween 80 containing lipid nanoemulsions for delivery of indinavir to brain. Acta Pharmaceutica Sinica B, 3(5), 345–353. https://doi.org/10.1016/j.apsb.2013.08.001. | |
dc.relation.uri | https://www.apteka.ua/article/320536 | |
dc.relation.uri | https://doi.org/10.3139/113.110482 | |
dc.relation.uri | https://doi:10.1007/978-3-319-31421-1_388-1 | |
dc.relation.uri | https://ena.lpnu.ua/handle/ntb/40644 | |
dc.relation.uri | https://doi.org/10.1016/j.bcab.2013.09.005 | |
dc.relation.uri | https://doi.org/10.3390/pharmaceutics13020227 | |
dc.relation.uri | https://doi:10.5772/intechopen.84436 | |
dc.relation.uri | https://doi.org/10.1007/s00706-016-1839-y | |
dc.relation.uri | https://doi:10.1016/j.synthmet.2011.12.017 | |
dc.relation.uri | https://doi:10.20535/ibb.2019.3.2.165838 | |
dc.relation.uri | http://doi: | |
dc.relation.uri | https://doi.org/10.20535/ibb.2019.3.2.165165 | |
dc.relation.uri | https://doi.org/10.2478/s11536-008-0002-5 | |
dc.relation.uri | https://doi:10.1016/j.tibtech.2004.01.010 | |
dc.relation.uri | https://doi.org/10.1080/01932690601108045 | |
dc.relation.uri | https://doi.org/10.1016/j.apsb.2013.08.001 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.subject | біосурфактанти | |
dc.subject | рамноліпіди | |
dc.subject | трегалозоліпіди | |
dc.subject | композиції | |
dc.subject | дисперсні системи | |
dc.subject | biosurfactants | |
dc.subject | rhamnolipids | |
dc.subject | trehalosolipids | |
dc.subject | surfactin | |
dc.subject | combined solvent | |
dc.subject | dispersed systems | |
dc.title | Комбіновані розчини нерозчинних у воді біологічно активних сполук з використанням біосурфактантів | |
dc.title.alternative | Combined solutions using biosurfactants based on water-insolute biologically active compounds | |
dc.type | Article |
Files
License bundle
1 - 1 of 1