Analysis of limonene and eugenol integration into the fixative as a characteristic of a sustained-release complex

dc.citation.epage132
dc.citation.issue2
dc.citation.spage126
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorНаконечний, В. І.
dc.contributor.authorГавриляк, В. В.
dc.contributor.authorNakonechnyi, V. I.
dc.contributor.authorHavryliak, V. V.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2026-01-15T13:53:22Z
dc.date.created2024-10-10
dc.date.issued2024-10-10
dc.description.abstractДосліджено ефективність використання β-циклодекстрину (β-CD) як засобу пролонгованого вивільнення ефірних олій, зокрема d-лімонену та евгенолу, в біорозкладних системах доставки. Комплекси включення отримано методом копреципітації та проаналізовано за допомогою інфрачервоної спектроскопії із перетворенням Фур’є. ІЧ-спектроскопічний аналіз підтвердив інкапсуляцію d-лімонену, на що вказує зсув коливань групи О-Н β-CD та зменшення інтенсивності коливань групи С-Н d-лімонену. Кількісна оцінка показала, що корисне навантаження комплексу β-CD d-лімоненом становить 2–5 %; спостерігається збільшення площі піків C-H зв’язків між 850–900 cm–1 на 6–10 %. Для евгенолу ефективність інтеграції у β-CD становила 37,5 %. β-CD забезпечує краще корисне навантаження порівняно з цеолітом, що підкреслює його потенціал для підвищення стабільності та ефективності ефірних олій у різних сферах застосування.
dc.description.abstractThis study explores the effectiveness of β-cyclodextrin (β-CD) as a carrier for essential oils (EOs), specifically d-limonene, and eugenol, within biodegradable delivery systems. Inclusion complexes were prepared via coprecipitation and analyzed using Fourier-transform infrared spectroscopy. FTIR analysis confirmed the encapsulation, indicated by the shift in the O-H stretching vibrations of β-CD and a reduction in the intensity of the C-H stretching vibrations of d-limonene, which suggests successful molecular inclusion. Quantitative assessments revealed that β-CD complexes achieved a d-limonene payload of approximately 2–5 %, with an observed increase in peak areas of C-H bonds between 850–900 cm–1 by up to 6–10 %. For eugenol, the efficiency of integration into β-CD was 37.5%.
dc.format.extent126-132
dc.format.pages7
dc.identifier.citationNakonechnyi V. I. Analysis of limonene and eugenol integration into the fixative as a characteristic of a sustained-release complex / V. I. Nakonechnyi, V. V. Havryliak // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 7. — No 2. — P. 126–132.
dc.identifier.citation2015Nakonechnyi V. I., Havryliak V. V. Analysis of limonene and eugenol integration into the fixative as a characteristic of a sustained-release complex // Chemistry, Technology and Application of Substances, Lviv. 2024. Vol 7. No 2. P. 126–132.
dc.identifier.citationenAPANakonechnyi, V. I., & Havryliak, V. V. (2024). Analysis of limonene and eugenol integration into the fixative as a characteristic of a sustained-release complex. Chemistry, Technology and Application of Substances, 7(2), 126-132. Lviv Politechnic Publishing House..
dc.identifier.citationenCHICAGONakonechnyi V. I., Havryliak V. V. (2024) Analysis of limonene and eugenol integration into the fixative as a characteristic of a sustained-release complex. Chemistry, Technology and Application of Substances (Lviv), vol. 7, no 2, pp. 126-132.
dc.identifier.doihttps://doi.org/10.23939/ctas2024.02.126
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/124446
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (7), 2024
dc.relation.references1. Żukowska, G., Durczyńska, Z. (2024). Properties and Applications of Essential Oils: A Review. Journal of Ecological Engineering, 25(2), 333–340.
dc.relation.references2. Almasi, H., Jahanbakhsh, M., Saleh O., Saleh, A.(2020). A review on techniques utilized for design of controlled release food active packaging. Critical Reviews in Food Science and Nutrition. DOI:10.1080/10408398.2020.1783199.
dc.relation.references3. Prisa, D. (2023). Study and evaluation of natural zeolite and dried zeolite for the cultivation of friggitello pepper. World Journal of Advanced Research and Reviews, 19(02), 632–641.
dc.relation.references4. Jiang, L., Liu, X., Xuan, G. (2020). Preparation of pH-Sensitive β-Cyclodextrin Derivatives and Evalua-tion of Their Drug-Loading Properties. DOI:10.1088/1757-899X/774/1/012009
dc.relation.references5. Miller, K., Upadhyaya, S., Krochta, J. (1998). Permeability of d-Limonene in Whey Protein Films. Journal of food sciencе, 63, No. 2.
dc.relation.references6. Kobayashi, M., Kanno, T., Hanada, K. (1995). Permeability and Diffusivity of d-Limonene Vapor in Polymeric Sealant Films. DOI: 10.1111/j.1365-2621.1995.tb05638.x
dc.relation.references7. Tehe, G., Vos, L., Lean, Kleyn, T., Mapholi, Z.(2023). Development of an ultrasound-assisted pretreatment strategy for the extraction of d-Limonene toward the production of bioethanol from citrus peel waste (CPW). Bioprocess and biosystems engineering,Vol. 46, 1627–1637.
dc.relation.references8. Negro, V., Mancini, G., Ruggeri B., Fino, D. (2016). Recovery of D-limonene through moderate temperature extraction and pyrolytic products from orange peels. Journal of Chemical Technology and Biotechnology, 92(6). DOI: 10.1002/jctb.5107
dc.relation.references9. Toan, T., Truc, T., Le, X., Quyen, N. (2020). Study on extraction process and analysis of components in essential oils of Vietnamese orange peel (Citrus sinensis) by microwave assisted hydrodistillation extraction. DOI: 10.1088/1757-899X/991/1/012125
dc.relation.references10. Siddiqui, S., Pahmeyer, M., Jafari, S. (2022). Extraction and purification of d-limonene from orange peel wastes: Recent advances. Industrial Crops and Products, 177(97):114484. DOI: 10.1016/j.indcrop.2021.114484
dc.relation.references11. Yamamoto, C., Neoh, T., Honbou, H., Yoshii, H., Furuta, T. (2012). Kinetic Analysis and Evaluation of Controlled Release of D-Limonene Encapsulated in Spray-Dried Cyclodextrin Powder under Linearly Ramped Humidity. An International Journal, 30:11–12,1283–1291. DOI: 10.1080/07373937.2012.681089
dc.relation.references12. Barbara, C., Euginoa, A., Mate, J. (2015). Preparation and characterization of β-cyclodextrin inclusion complexes as a tool of a controlled antimicrobial release in whey protein edible films. LWT – Food Science and Technology, Vol. 64, Iss. 2, December2015, 1362–1369. DOI: 10.1016/j.lwt.2015.07.060
dc.relation.references13. Petrovic, G., Stojanovic, G., Radulovic, N.(2010). Encapsulation of cinnamon oil in β-cyclodextrin.J. Med. Plant Res., 4: 1382–1390.
dc.relation.references14. Bhandari, B.,, D'Arc, B., Bich, L. (1998). Lemon Oil to β-Cyclodextrin Ratio Effect on the Inclusion Efficiency of β-Cyclodextrin and the Retention of Oil Volatiles in the Complex. J. Agric. Food Chem.,46, 4, 1494–1499. DOI: 10.1021/jf970605n
dc.relation.referencesen1. Żukowska, G., Durczyńska, Z. (2024). Properties and Applications of Essential Oils: A Review. Journal of Ecological Engineering, 25(2), 333–340.
dc.relation.referencesen2. Almasi, H., Jahanbakhsh, M., Saleh O., Saleh, A.(2020). A review on techniques utilized for design of controlled release food active packaging. Critical Reviews in Food Science and Nutrition. DOI:10.1080/10408398.2020.1783199.
dc.relation.referencesen3. Prisa, D. (2023). Study and evaluation of natural zeolite and dried zeolite for the cultivation of friggitello pepper. World Journal of Advanced Research and Reviews, 19(02), 632–641.
dc.relation.referencesen4. Jiang, L., Liu, X., Xuan, G. (2020). Preparation of pH-Sensitive b-Cyclodextrin Derivatives and Evalua-tion of Their Drug-Loading Properties. DOI:10.1088/1757-899X/774/1/012009
dc.relation.referencesen5. Miller, K., Upadhyaya, S., Krochta, J. (1998). Permeability of d-Limonene in Whey Protein Films. Journal of food science, 63, No. 2.
dc.relation.referencesen6. Kobayashi, M., Kanno, T., Hanada, K. (1995). Permeability and Diffusivity of d-Limonene Vapor in Polymeric Sealant Films. DOI: 10.1111/j.1365-2621.1995.tb05638.x
dc.relation.referencesen7. Tehe, G., Vos, L., Lean, Kleyn, T., Mapholi, Z.(2023). Development of an ultrasound-assisted pretreatment strategy for the extraction of d-Limonene toward the production of bioethanol from citrus peel waste (CPW). Bioprocess and biosystems engineering,Vol. 46, 1627–1637.
dc.relation.referencesen8. Negro, V., Mancini, G., Ruggeri B., Fino, D. (2016). Recovery of D-limonene through moderate temperature extraction and pyrolytic products from orange peels. Journal of Chemical Technology and Biotechnology, 92(6). DOI: 10.1002/jctb.5107
dc.relation.referencesen9. Toan, T., Truc, T., Le, X., Quyen, N. (2020). Study on extraction process and analysis of components in essential oils of Vietnamese orange peel (Citrus sinensis) by microwave assisted hydrodistillation extraction. DOI: 10.1088/1757-899X/991/1/012125
dc.relation.referencesen10. Siddiqui, S., Pahmeyer, M., Jafari, S. (2022). Extraction and purification of d-limonene from orange peel wastes: Recent advances. Industrial Crops and Products, 177(97):114484. DOI: 10.1016/j.indcrop.2021.114484
dc.relation.referencesen11. Yamamoto, C., Neoh, T., Honbou, H., Yoshii, H., Furuta, T. (2012). Kinetic Analysis and Evaluation of Controlled Release of D-Limonene Encapsulated in Spray-Dried Cyclodextrin Powder under Linearly Ramped Humidity. An International Journal, 30:11–12,1283–1291. DOI: 10.1080/07373937.2012.681089
dc.relation.referencesen12. Barbara, C., Euginoa, A., Mate, J. (2015). Preparation and characterization of b-cyclodextrin inclusion complexes as a tool of a controlled antimicrobial release in whey protein edible films. LWT – Food Science and Technology, Vol. 64, Iss. 2, December2015, 1362–1369. DOI: 10.1016/j.lwt.2015.07.060
dc.relation.referencesen13. Petrovic, G., Stojanovic, G., Radulovic, N.(2010). Encapsulation of cinnamon oil in b-cyclodextrin.J. Med. Plant Res., 4: 1382–1390.
dc.relation.referencesen14. Bhandari, B.,, D'Arc, B., Bich, L. (1998). Lemon Oil to b-Cyclodextrin Ratio Effect on the Inclusion Efficiency of b-Cyclodextrin and the Retention of Oil Volatiles in the Complex. J. Agric. Food Chem.,46, 4, 1494–1499. DOI: 10.1021/jf970605n
dc.rights.holder© Національний університет „Львівська політехніка“, 2024
dc.subjectносії
dc.subjectFTIR-спектроскопія
dc.subjectβ-циклодекстрин
dc.subjectефірні олії
dc.subjectкомплекс вклю- чення
dc.subjectd-лімонен
dc.subjectевгенол
dc.subjectпролонговане вивільнення
dc.subjectcarriers
dc.subjectFTIR-spectroscopy
dc.subjectβ-cyclodextrin
dc.subjectessential oils
dc.subjectinclusion complex
dc.subjectd-limonene
dc.subjecteugenol
dc.subjectprolonged release
dc.titleAnalysis of limonene and eugenol integration into the fixative as a characteristic of a sustained-release complex
dc.title.alternativeАналіз інтеграції лімонену та евгенолу у фіксатор як характеристика комплексу з пролонгованим вивільненням
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2024v7n2_Nakonechnyi_V_I-Analysis_of_limonene_126-132.pdf
Size:
467.12 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.8 KB
Format:
Plain Text
Description: