Obtaining and Using Substrates with Sewage Sludge

dc.citation.epage162
dc.citation.issue3
dc.citation.spage154
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorMalovanyy, Myroslav
dc.contributor.authorStoroshchuk, Uliana
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-05-09T07:38:54Z
dc.date.available2023-05-09T07:38:54Z
dc.date.created2022-03-01
dc.date.issued2022-03-01
dc.description.abstractThe article is devoted to the study of the prospects of using compost with sewage sludge in the raw material for the recultivation of disturbed lands. A special installation was used for bio-composting, which allowed controlling of the process parameters. The results of bio-indication of composts obtained under different conditions of compositions of the raw material mixture are given. Based on the analysis of the results of bioindication, the optimal composition of the raw material mixture using “fresh” and “old” sewage sludge is established. An analysis of the parameters of the bio-indication process was carried out for this compost of optimal composition, which makes it possible to develop recommendations for the implementation of the process in industrial conditions.
dc.format.extent154-162
dc.format.pages9
dc.identifier.citationMalovanyy M. Obtaining and Using Substrates with Sewage Sludge / Myroslav Malovanyy, Uliana Storoshchuk // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 7. — No 3. — P. 154–162.
dc.identifier.citationenMalovanyy M. Obtaining and Using Substrates with Sewage Sludge / Myroslav Malovanyy, Uliana Storoshchuk // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 7. — No 3. — P. 154–162.
dc.identifier.doidoi.org/10.23939/ep2022.03.154
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/59042
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofEnvironmental Problems, 3 (7), 2022
dc.relation.referencesAntwi, E. K., Boakye-Danquah, J., Asabere, S. B., Takeuchi, K., &
dc.relation.referencesWiegleb, G. (2014). Land cover transformation in two postmining
dc.relation.referenceslandscapes subjected to different ages of
dc.relation.referencesreclamation since dumping of spoils. Springer Plus, 3(1), 702. doi: https://doi.org/10.1186/2193-1801-3-702
dc.relation.referencesAwasthi,M.K., Pandey, A, K., Khan, J., Bundela, P. S.,Wong, J. W.,
dc.relation.references& Selvam, A. (2014). Evaluation of thermophilic fungal
dc.relation.referencesconsortium for organic municipal solid waste composting.
dc.relation.referencesBioresour. Technol, 168, 214–221. doi: https://doi.org/10.1016/j.biortech.2014.01.048
dc.relation.referencesBanegas, V., Moreno, J. L., Moreno, J .I., García, C., León, G.,
dc.relation.references& Hernández, T. (2007). Composting anaerobic and aerobic
dc.relation.referencessewage sludges using two proportions of sawdust. Waste
dc.relation.referencesManag., 27, 1317–1327. doi: https://doi.org/10.1016/j.wasman.2006.09.008
dc.relation.referencesBernal, M. P., Alburquerque, J. A., & Moral, R. (2009).
dc.relation.referencesComposting of animal manures and chemical criteria for
dc.relation.referencescompost maturity assessment. A review. Bioresour.
dc.relation.referencesTechnol., 100(22), 5444–5453. doi: https://doi.org/10.1016/j.biortech.2008.11.027
dc.relation.referencesBernal, M. P., Sommer, S. G., Chadwick, D., Qing, C., Guoxue, L.,
dc.relation.references& Michel, F. C. (2017). Current approaches and future
dc.relation.referencestrends in compost quality criteria for agronomic, environmental,
dc.relation.referencesand human health benefits. Adv. Agron., 144, 143–233. doi:
dc.relation.referenceshttps://doi.org/10.1016/bs.agron.2017.03.002
dc.relation.referencesBiałobrzewski, I., Mikš, M., Krajnik, Dach, J., Markowski, M.,
dc.relation.references& Czekała, W. (2015). Model of the sewage sludge-straw
dc.relation.referencescomposting process integrating different heat generation
dc.relation.referencescapacities of mesophilic and thermophilic microorganisms.
dc.relation.referencesWaste Manag., 43, 72–83. doi: https://doi.org/10.1016/j.wasman.2015.05.036
dc.relation.referencesChowdhury, A. K., Konstantinou, F., Damati, A., Akratos, C. S.,
dc.relation.referencesVlastos, D., Tekerlekopoulou, A. G., & Voyenas, D. V.
dc.relation.references(2015). Is physicochemical evaluation enough to
dc.relation.referencescharacterize olive mill waste compost as soil amendment?
dc.relation.referencesThe case of genotoxicity and cytotoxicity evaluation.
dc.relation.referencesJ. Clean. Prod., 93, 94–102. doi: https://doi.org/10.1016/%20j.jclepro.2015.01.029
dc.relation.referencesDSTU 8727:2017. Osad stichnykh vod. Pidhotuvannia orhanomineralnoi
dc.relation.referencessumishi z osadu stichnykh vod. Kyiv: DP
dc.relation.references“UkrNDNTs”, 2017.
dc.relation.referencesDSTU ISO 11269-2:2002 Yakist gruntu. Vyznachennia dii
dc.relation.referenceszabrudnykiv na floru gruntu. Chastyna 2: Vplyv khimichnykh
dc.relation.referencesrechovyn na prorostannia ta rist vyshchykh roslyn. Kyiv:
dc.relation.referencesDerzhstandart Ukrainy, 2004.
dc.relation.referencesDSTU ISO 11269-1:2004 Yakist gruntu. Vyznachennia dii
dc.relation.referenceszabrudnykiv na floru gruntu. Chastyna 1: Metod vyznachennia
dc.relation.referencesinhibitornoi dii na rist koreniv. Kyiv: Derzhstandart
dc.relation.referencesUkrainy, 2005.
dc.relation.referencesFijalkowski, K., Rosikon, K., Grobelak, A., Hutchison, D., J., &
dc.relation.referencesKacprzak, M. (2018). Modification of properties of energy
dc.relation.referencescrops under Polish condition as an effect of sewage sludge
dc.relation.referencesapplication onto degraded soil. Journal of Environmental
dc.relation.referencesManagement, 217, 1, 509–519. doi: https://doi.org/10.1016/j.jenvman.2018.03.132
dc.relation.referencesGrekhova, I., & Gilmanova, M. (2016). The usage of sludge
dc.relation.referencesof wastewaterin the composition of the soil for land
dc.relation.referencesreclamation. Procedia Engineering, 165, 794–799. doi:
dc.relation.referenceshttps://doi.org/10.1016/j.proeng.2016.11.777
dc.relation.referencesHermann, B. G., Debeer, L., DeWilde, B., Blok, K., & Patel, M. K.
dc.relation.references(2011). To compost or not to compost: Carbon and energy
dc.relation.referencesfootprints of biodegradable materials' waste treatment.
dc.relation.referencesPolym. Degrad. Stab., 96, 1159–1171.
dc.relation.referencesHorova, A., & Kulyna, S. (2008). Otsinka toksychnosti gruntiv
dc.relation.referenceschervonohradskoho hirnychopromyslovoho raionu za
dc.relation.referencesdopomohoiu rostovoho testu. Visnyk Lvivskoho universytetu.
dc.relation.referencesSeriia biolohichna, 48, 189–194.
dc.relation.referencesHrechanyk, R. M., Malovanyi, M. S., Tymchuk, I. S., &
dc.relation.referencesStoroshchuk, U. Z. (2022). Otsiniuvannia vplyvu mineralnykh
dc.relation.referencesdobryv i kapsulovanykh PET na ahroekosystemy biolohichnoi
dc.relation.referencesrekultyvatsii porushenykh zemel. Naukovyi visnyk NLTU
dc.relation.referencesUkrainy: zbirnyk naukovo-tekhnichnykh prats, 32(2), 40–44. doi: https://doi.org/10.36930/40320206
dc.relation.referencesHueso, S., García, C., & Hernández, T. (2012). Severe drought
dc.relation.referencesconditions modify the microbial community structure,
dc.relation.referencessize and activity in amended and unamended soils.
dc.relation.referencesSoil Biol. Biochem., 50, 167–173. doi: https://doi.org/10.1016/j.soilbio.2012.03.026
dc.relation.referencesIqbal, M. K., Nadeem, A., Sherazi, F., & Khan, R. A. (2015).
dc.relation.referencesOptimization of process parameters for kitchen waste
dc.relation.referencescomposting by response surface methodology. Int. J.
dc.relation.referencesEnviron. Sci. Technol., 12, 5, 1759–1768. doi: https://doi.org/10.1007/s13762-014-0543-x
dc.relation.referencesLiu, J., Xu, X. H., Li, H. T., & Xu, Y. (2011). Effect of
dc.relation.referencesmicrobiological inocula on chemical and physical properties
dc.relation.referencesand microbial community of cow manure compost. Biomass
dc.relation.referencesEnergy, 35, 3433–3439. doi: https://doi.org/10.1016/j.biombioe.2011.03.042
dc.relation.referencesMason, I. G., & Milke, M. W. ( 2005). Physical modelling of the
dc.relation.referencescomposting environment: a review. Part 1: reactor systems.
dc.relation.referencesWaste Management, 25, 481–500. doi: https://doi.org/10.1016/j.wasman.2005.01.015
dc.relation.referencesMaulini-Duran, C., Artola, A., Font, X., & Sánchez, A. (2013).
dc.relation.referencesA systematic study of the gaseous emissions from biosolids
dc.relation.referencescomposting: Raw sludge versus anaerobically digested
dc.relation.referencessludge. Bioresource Technology, 147, 43–51. doi:
dc.relation.referenceshttps://doi.org/10.1016/j.biortech.2013.07.118
dc.relation.referencesMohammad, M., Alam, M., Kabbashi, N. A., & Ahsan, A.
dc.relation.references(2012). Effective composting of oil palmindustrial waste by
dc.relation.referencesfilamentous fungi, a review. Resour. Conserv. Recycl., 58, 69–78. doi: https://doi.org/10.1016/j.resconrec.2011.10.009
dc.relation.referencesQian, X., Shen, G., Wang, Z., Guo, C., Liu, Y., Lei, Z., &
dc.relation.referencesZhang, Z. (2014). Co-composting of livestock manure with
dc.relation.referencesrice straw, Characterization and establishment of maturity
dc.relation.referencesevaluation system. Waste Management, 34, 530–535. doi:
dc.relation.referenceshttps://doi.org/10.1016/j.wasman.2013.10.007
dc.relation.referencesRaut, M. P., William, S. M. P. P., Bhattacharyya, J. K.,
dc.relation.referencesChakrabarti, T., & Devotta, S. (2008). Microbial dynamics
dc.relation.referencesand enzyme activities during rapid composting of municipal
dc.relation.referencessolid waste e a compost maturity analysis perspective.
dc.relation.referencesBioresour. Technol., 99, 6512–6519. doi: https://doi.org/10.1016/j.biortech.2007.11.030
dc.relation.referencesRynk R. (1992). On-Farm Composting Handbook. Northeast
dc.relation.referencesRegional Agricultural Engineering Service. Retrieved from
dc.relation.referenceshttps://campus.extension.org/pluginfile.php/48384/course/section/7167/NRAES%20FarmCompost%20manual%201992.pdf
dc.relation.referencesSeaker, E., & Sopper, W. (1983). Reclamation of deep mine
dc.relation.referencesrefuse banks with municipal sewage sludge. Waste
dc.relation.referencesManagement & Research, 1(4), 309–322.
dc.relation.referencesTiquia S. M., TamaI, N. F. Y, & Hodgkiss, J. (1996). Effects of
dc.relation.referencescomposting on phytotoxicity of spent pig-manure sawdust
dc.relation.referenceslitter. Environmental Pollution, 93(3), 249–256. doi:
dc.relation.referenceshttps://doi.org/10.1016/s0269-7491(96)00052-8
dc.relation.referencesWang, Q, Awasthi, M.K., Ren, X., Zhao, J., Wang, M., Chen, H.,
dc.relation.references& Zhang, Z. (2018). Recent advances in composting of
dc.relation.referencesorganic and hazardous waste: a road map to safer environment,
dc.relation.referencesin: Biosynthetic Technology and Environmental Challenges.
dc.relation.referencesSpringer, Singapore, 307–329. doi: https://doi.org/10.1007/978-981-10-7434-9_17
dc.relation.referencesWang, Y., Ai, P., Cao, H., & Liu, Z. (2015). Prediction of
dc.relation.referencesmoisture variation during composting process: a comparison of
dc.relation.referencesmathematical models. Bioresour. Technol., 193, 200–205.
dc.relation.referencesdoi: https://doi.org/10.1016/j.biortech.2015.06.100
dc.relation.referencesVaverková, M. D., Adamcová, D., Winkler, J., Koda, E.,
dc.relation.referencesPetrželová, L., & Maxianová, A. (2020). Alternative
dc.relation.referencesmethod of composting on a reclaimed municipal waste
dc.relation.referenceslandfill in accordance with the circular economy: Benefits
dc.relation.referencesand risks. Science of The Total Environment, 723, 137971.
dc.relation.referencesdoi: https://doi.org/10.1016/j.scitotenv.2020.137971
dc.relation.referencesZhang, L., & Sun, X. (2014). Changes in physical, chemical,
dc.relation.referencesand microbiological properties during the two-stage cocomposting
dc.relation.referencesof green waste with spent mushroom compost
dc.relation.referencesand biochar. Bioresour. Technol., 171, 274–284. doi:
dc.relation.referenceshttps://doi.org/10.1016/j.biortech.2014.08.079
dc.relation.referencesZhou, H. X., Zhao, Y., Yang, H. Y., Zhu, L. J., Cai, B. Y., Luo, S.,
dc.relation.referencesCao, J. X., & Wei, Z. M. (2018). Transformation of organic
dc.relation.referencesnitrogen fractions with different molecular weights during
dc.relation.referencesdifferent organic wastes composting. Bioresour.
dc.relation.referencesTechnol., 262, 221–228. doi: https://doi.org/10.1016/j.biortech.2018.04.088
dc.relation.referencesZhou, H. B., Chen, T. B., Gao, D., Zheng, G. D., Chen, J., Pan, T. H.,
dc.relation.referencesLiu, H. T., & Gu, R.Y. (2014). Simulation of water removal
dc.relation.referencesprocess and optimization of aeration strategy in sewage
dc.relation.referencessludge composting. Bioresour. Technol., 171, 452–460. doi:
dc.relation.referenceshttps://doi.org/10.1016/j.biortech.2014.07.006
dc.relation.referencesZhou, C., Liu, Z., Huang, Z. L., Dong, M., Yu, X. L., & Ning, P.
dc.relation.references(2015). A new strategy for cocomposting dairy manure with
dc.relation.referencesrice straw: Addition of different inocula at three stages of
dc.relation.referencescomposting. WasteManage., 40, 38–43. doi: https://doi.org/10.1016/j.wasman.2015.03.016
dc.relation.referencesenAntwi, E. K., Boakye-Danquah, J., Asabere, S. B., Takeuchi, K., &
dc.relation.referencesenWiegleb, G. (2014). Land cover transformation in two postmining
dc.relation.referencesenlandscapes subjected to different ages of
dc.relation.referencesenreclamation since dumping of spoils. Springer Plus, 3(1), 702. doi: https://doi.org/10.1186/2193-1801-3-702
dc.relation.referencesenAwasthi,M.K., Pandey, A, K., Khan, J., Bundela, P. S.,Wong, J. W.,
dc.relation.referencesen& Selvam, A. (2014). Evaluation of thermophilic fungal
dc.relation.referencesenconsortium for organic municipal solid waste composting.
dc.relation.referencesenBioresour. Technol, 168, 214–221. doi: https://doi.org/10.1016/j.biortech.2014.01.048
dc.relation.referencesenBanegas, V., Moreno, J. L., Moreno, J .I., García, C., León, G.,
dc.relation.referencesen& Hernández, T. (2007). Composting anaerobic and aerobic
dc.relation.referencesensewage sludges using two proportions of sawdust. Waste
dc.relation.referencesenManag., 27, 1317–1327. doi: https://doi.org/10.1016/j.wasman.2006.09.008
dc.relation.referencesenBernal, M. P., Alburquerque, J. A., & Moral, R. (2009).
dc.relation.referencesenComposting of animal manures and chemical criteria for
dc.relation.referencesencompost maturity assessment. A review. Bioresour.
dc.relation.referencesenTechnol., 100(22), 5444–5453. doi: https://doi.org/10.1016/j.biortech.2008.11.027
dc.relation.referencesenBernal, M. P., Sommer, S. G., Chadwick, D., Qing, C., Guoxue, L.,
dc.relation.referencesen& Michel, F. C. (2017). Current approaches and future
dc.relation.referencesentrends in compost quality criteria for agronomic, environmental,
dc.relation.referencesenand human health benefits. Adv. Agron., 144, 143–233. doi:
dc.relation.referencesenhttps://doi.org/10.1016/bs.agron.2017.03.002
dc.relation.referencesenBiałobrzewski, I., Mikš, M., Krajnik, Dach, J., Markowski, M.,
dc.relation.referencesen& Czekała, W. (2015). Model of the sewage sludge-straw
dc.relation.referencesencomposting process integrating different heat generation
dc.relation.referencesencapacities of mesophilic and thermophilic microorganisms.
dc.relation.referencesenWaste Manag., 43, 72–83. doi: https://doi.org/10.1016/j.wasman.2015.05.036
dc.relation.referencesenChowdhury, A. K., Konstantinou, F., Damati, A., Akratos, C. S.,
dc.relation.referencesenVlastos, D., Tekerlekopoulou, A. G., & Voyenas, D. V.
dc.relation.referencesen(2015). Is physicochemical evaluation enough to
dc.relation.referencesencharacterize olive mill waste compost as soil amendment?
dc.relation.referencesenThe case of genotoxicity and cytotoxicity evaluation.
dc.relation.referencesenJ. Clean. Prod., 93, 94–102. doi: https://doi.org/10.1016/%20j.jclepro.2015.01.029
dc.relation.referencesenDSTU 8727:2017. Osad stichnykh vod. Pidhotuvannia orhanomineralnoi
dc.relation.referencesensumishi z osadu stichnykh vod. Kyiv: DP
dc.relation.referencesen"UkrNDNTs", 2017.
dc.relation.referencesenDSTU ISO 11269-2:2002 Yakist gruntu. Vyznachennia dii
dc.relation.referencesenzabrudnykiv na floru gruntu. Chastyna 2: Vplyv khimichnykh
dc.relation.referencesenrechovyn na prorostannia ta rist vyshchykh roslyn. Kyiv:
dc.relation.referencesenDerzhstandart Ukrainy, 2004.
dc.relation.referencesenDSTU ISO 11269-1:2004 Yakist gruntu. Vyznachennia dii
dc.relation.referencesenzabrudnykiv na floru gruntu. Chastyna 1: Metod vyznachennia
dc.relation.referenceseninhibitornoi dii na rist koreniv. Kyiv: Derzhstandart
dc.relation.referencesenUkrainy, 2005.
dc.relation.referencesenFijalkowski, K., Rosikon, K., Grobelak, A., Hutchison, D., J., &
dc.relation.referencesenKacprzak, M. (2018). Modification of properties of energy
dc.relation.referencesencrops under Polish condition as an effect of sewage sludge
dc.relation.referencesenapplication onto degraded soil. Journal of Environmental
dc.relation.referencesenManagement, 217, 1, 509–519. doi: https://doi.org/10.1016/j.jenvman.2018.03.132
dc.relation.referencesenGrekhova, I., & Gilmanova, M. (2016). The usage of sludge
dc.relation.referencesenof wastewaterin the composition of the soil for land
dc.relation.referencesenreclamation. Procedia Engineering, 165, 794–799. doi:
dc.relation.referencesenhttps://doi.org/10.1016/j.proeng.2016.11.777
dc.relation.referencesenHermann, B. G., Debeer, L., DeWilde, B., Blok, K., & Patel, M. K.
dc.relation.referencesen(2011). To compost or not to compost: Carbon and energy
dc.relation.referencesenfootprints of biodegradable materials' waste treatment.
dc.relation.referencesenPolym. Degrad. Stab., 96, 1159–1171.
dc.relation.referencesenHorova, A., & Kulyna, S. (2008). Otsinka toksychnosti gruntiv
dc.relation.referencesenchervonohradskoho hirnychopromyslovoho raionu za
dc.relation.referencesendopomohoiu rostovoho testu. Visnyk Lvivskoho universytetu.
dc.relation.referencesenSeriia biolohichna, 48, 189–194.
dc.relation.referencesenHrechanyk, R. M., Malovanyi, M. S., Tymchuk, I. S., &
dc.relation.referencesenStoroshchuk, U. Z. (2022). Otsiniuvannia vplyvu mineralnykh
dc.relation.referencesendobryv i kapsulovanykh PET na ahroekosystemy biolohichnoi
dc.relation.referencesenrekultyvatsii porushenykh zemel. Naukovyi visnyk NLTU
dc.relation.referencesenUkrainy: zbirnyk naukovo-tekhnichnykh prats, 32(2), 40–44. doi: https://doi.org/10.36930/40320206
dc.relation.referencesenHueso, S., García, C., & Hernández, T. (2012). Severe drought
dc.relation.referencesenconditions modify the microbial community structure,
dc.relation.referencesensize and activity in amended and unamended soils.
dc.relation.referencesenSoil Biol. Biochem., 50, 167–173. doi: https://doi.org/10.1016/j.soilbio.2012.03.026
dc.relation.referencesenIqbal, M. K., Nadeem, A., Sherazi, F., & Khan, R. A. (2015).
dc.relation.referencesenOptimization of process parameters for kitchen waste
dc.relation.referencesencomposting by response surface methodology. Int. J.
dc.relation.referencesenEnviron. Sci. Technol., 12, 5, 1759–1768. doi: https://doi.org/10.1007/s13762-014-0543-x
dc.relation.referencesenLiu, J., Xu, X. H., Li, H. T., & Xu, Y. (2011). Effect of
dc.relation.referencesenmicrobiological inocula on chemical and physical properties
dc.relation.referencesenand microbial community of cow manure compost. Biomass
dc.relation.referencesenEnergy, 35, 3433–3439. doi: https://doi.org/10.1016/j.biombioe.2011.03.042
dc.relation.referencesenMason, I. G., & Milke, M. W. ( 2005). Physical modelling of the
dc.relation.referencesencomposting environment: a review. Part 1: reactor systems.
dc.relation.referencesenWaste Management, 25, 481–500. doi: https://doi.org/10.1016/j.wasman.2005.01.015
dc.relation.referencesenMaulini-Duran, C., Artola, A., Font, X., & Sánchez, A. (2013).
dc.relation.referencesenA systematic study of the gaseous emissions from biosolids
dc.relation.referencesencomposting: Raw sludge versus anaerobically digested
dc.relation.referencesensludge. Bioresource Technology, 147, 43–51. doi:
dc.relation.referencesenhttps://doi.org/10.1016/j.biortech.2013.07.118
dc.relation.referencesenMohammad, M., Alam, M., Kabbashi, N. A., & Ahsan, A.
dc.relation.referencesen(2012). Effective composting of oil palmindustrial waste by
dc.relation.referencesenfilamentous fungi, a review. Resour. Conserv. Recycl., 58, 69–78. doi: https://doi.org/10.1016/j.resconrec.2011.10.009
dc.relation.referencesenQian, X., Shen, G., Wang, Z., Guo, C., Liu, Y., Lei, Z., &
dc.relation.referencesenZhang, Z. (2014). Co-composting of livestock manure with
dc.relation.referencesenrice straw, Characterization and establishment of maturity
dc.relation.referencesenevaluation system. Waste Management, 34, 530–535. doi:
dc.relation.referencesenhttps://doi.org/10.1016/j.wasman.2013.10.007
dc.relation.referencesenRaut, M. P., William, S. M. P. P., Bhattacharyya, J. K.,
dc.relation.referencesenChakrabarti, T., & Devotta, S. (2008). Microbial dynamics
dc.relation.referencesenand enzyme activities during rapid composting of municipal
dc.relation.referencesensolid waste e a compost maturity analysis perspective.
dc.relation.referencesenBioresour. Technol., 99, 6512–6519. doi: https://doi.org/10.1016/j.biortech.2007.11.030
dc.relation.referencesenRynk R. (1992). On-Farm Composting Handbook. Northeast
dc.relation.referencesenRegional Agricultural Engineering Service. Retrieved from
dc.relation.referencesenhttps://campus.extension.org/pluginfile.php/48384/course/section/7167/NRAES%20FarmCompost%20manual%201992.pdf
dc.relation.referencesenSeaker, E., & Sopper, W. (1983). Reclamation of deep mine
dc.relation.referencesenrefuse banks with municipal sewage sludge. Waste
dc.relation.referencesenManagement & Research, 1(4), 309–322.
dc.relation.referencesenTiquia S. M., TamaI, N. F. Y, & Hodgkiss, J. (1996). Effects of
dc.relation.referencesencomposting on phytotoxicity of spent pig-manure sawdust
dc.relation.referencesenlitter. Environmental Pollution, 93(3), 249–256. doi:
dc.relation.referencesenhttps://doi.org/10.1016/s0269-7491(96)00052-8
dc.relation.referencesenWang, Q, Awasthi, M.K., Ren, X., Zhao, J., Wang, M., Chen, H.,
dc.relation.referencesen& Zhang, Z. (2018). Recent advances in composting of
dc.relation.referencesenorganic and hazardous waste: a road map to safer environment,
dc.relation.referencesenin: Biosynthetic Technology and Environmental Challenges.
dc.relation.referencesenSpringer, Singapore, 307–329. doi: https://doi.org/10.1007/978-981-10-7434-9_17
dc.relation.referencesenWang, Y., Ai, P., Cao, H., & Liu, Z. (2015). Prediction of
dc.relation.referencesenmoisture variation during composting process: a comparison of
dc.relation.referencesenmathematical models. Bioresour. Technol., 193, 200–205.
dc.relation.referencesendoi: https://doi.org/10.1016/j.biortech.2015.06.100
dc.relation.referencesenVaverková, M. D., Adamcová, D., Winkler, J., Koda, E.,
dc.relation.referencesenPetrželová, L., & Maxianová, A. (2020). Alternative
dc.relation.referencesenmethod of composting on a reclaimed municipal waste
dc.relation.referencesenlandfill in accordance with the circular economy: Benefits
dc.relation.referencesenand risks. Science of The Total Environment, 723, 137971.
dc.relation.referencesendoi: https://doi.org/10.1016/j.scitotenv.2020.137971
dc.relation.referencesenZhang, L., & Sun, X. (2014). Changes in physical, chemical,
dc.relation.referencesenand microbiological properties during the two-stage cocomposting
dc.relation.referencesenof green waste with spent mushroom compost
dc.relation.referencesenand biochar. Bioresour. Technol., 171, 274–284. doi:
dc.relation.referencesenhttps://doi.org/10.1016/j.biortech.2014.08.079
dc.relation.referencesenZhou, H. X., Zhao, Y., Yang, H. Y., Zhu, L. J., Cai, B. Y., Luo, S.,
dc.relation.referencesenCao, J. X., & Wei, Z. M. (2018). Transformation of organic
dc.relation.referencesennitrogen fractions with different molecular weights during
dc.relation.referencesendifferent organic wastes composting. Bioresour.
dc.relation.referencesenTechnol., 262, 221–228. doi: https://doi.org/10.1016/j.biortech.2018.04.088
dc.relation.referencesenZhou, H. B., Chen, T. B., Gao, D., Zheng, G. D., Chen, J., Pan, T. H.,
dc.relation.referencesenLiu, H. T., & Gu, R.Y. (2014). Simulation of water removal
dc.relation.referencesenprocess and optimization of aeration strategy in sewage
dc.relation.referencesensludge composting. Bioresour. Technol., 171, 452–460. doi:
dc.relation.referencesenhttps://doi.org/10.1016/j.biortech.2014.07.006
dc.relation.referencesenZhou, C., Liu, Z., Huang, Z. L., Dong, M., Yu, X. L., & Ning, P.
dc.relation.referencesen(2015). A new strategy for cocomposting dairy manure with
dc.relation.referencesenrice straw: Addition of different inocula at three stages of
dc.relation.referencesencomposting. WasteManage., 40, 38–43. doi: https://doi.org/10.1016/j.wasman.2015.03.016
dc.relation.urihttps://doi.org/10.1186/2193-1801-3-702
dc.relation.urihttps://doi.org/10.1016/j.biortech.2014.01.048
dc.relation.urihttps://doi.org/10.1016/j.wasman.2006.09.008
dc.relation.urihttps://doi.org/10.1016/j.biortech.2008.11.027
dc.relation.urihttps://doi.org/10.1016/bs.agron.2017.03.002
dc.relation.urihttps://doi.org/10.1016/j.wasman.2015.05.036
dc.relation.urihttps://doi.org/10.1016/%20j.jclepro.2015.01.029
dc.relation.urihttps://doi.org/10.1016/j.jenvman.2018.03.132
dc.relation.urihttps://doi.org/10.1016/j.proeng.2016.11.777
dc.relation.urihttps://doi.org/10.36930/40320206
dc.relation.urihttps://doi.org/10.1016/j.soilbio.2012.03.026
dc.relation.urihttps://doi.org/10.1007/s13762-014-0543-x
dc.relation.urihttps://doi.org/10.1016/j.biombioe.2011.03.042
dc.relation.urihttps://doi.org/10.1016/j.wasman.2005.01.015
dc.relation.urihttps://doi.org/10.1016/j.biortech.2013.07.118
dc.relation.urihttps://doi.org/10.1016/j.resconrec.2011.10.009
dc.relation.urihttps://doi.org/10.1016/j.wasman.2013.10.007
dc.relation.urihttps://doi.org/10.1016/j.biortech.2007.11.030
dc.relation.urihttps://campus.extension.org/pluginfile.php/48384/course/section/7167/NRAES%20FarmCompost%20manual%201992.pdf
dc.relation.urihttps://doi.org/10.1016/s0269-7491(96)00052-8
dc.relation.urihttps://doi.org/10.1007/978-981-10-7434-9_17
dc.relation.urihttps://doi.org/10.1016/j.biortech.2015.06.100
dc.relation.urihttps://doi.org/10.1016/j.scitotenv.2020.137971
dc.relation.urihttps://doi.org/10.1016/j.biortech.2014.08.079
dc.relation.urihttps://doi.org/10.1016/j.biortech.2018.04.088
dc.relation.urihttps://doi.org/10.1016/j.biortech.2014.07.006
dc.relation.urihttps://doi.org/10.1016/j.wasman.2015.03.016
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.rights.holder© Malovanyy M., Storoshchuk U., 2022
dc.subjectcompost
dc.subjectsewage sludge
dc.subjectbio-indication
dc.subjectraw materials
dc.subjectprocess
dc.subjectrecultivation
dc.subjectzeolite
dc.subjectbio-composting
dc.titleObtaining and Using Substrates with Sewage Sludge
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2022v7n3_Malovanyy_M-Obtaining_and_Using_Substrates_154-162.pdf
Size:
328.43 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2022v7n3_Malovanyy_M-Obtaining_and_Using_Substrates_154-162__COVER.png
Size:
1.11 MB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.77 KB
Format:
Plain Text
Description: