Bioelectric parameters of Pinus silvestris forest ecosystems

dc.citation.epage63
dc.citation.issue2
dc.citation.spage59
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorRusyn, Iryna
dc.contributor.authorDyachok, Vasil
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-05-02T07:05:23Z
dc.date.available2023-05-02T07:05:23Z
dc.date.created2021-06-01
dc.date.issued2021-06-01
dc.description.abstractThe article presents the study of the bioelectric potential of forest biotopes of Pinus silvestris to evaluate the possibility of their usage as a bioelectricity source. The increase of bioelectric potential in dry soils independent of moisture level was revealed. The positive effect of soil humidity on the generation of bioelectric potential was shown. Insignificant daily and seasonal fluctuations of bioelectric parameters of forest biotopes open their prospects as an important source of renewable energy.
dc.format.extent59-63
dc.format.pages5
dc.identifier.citationRusyn I. Bioelectric parameters of Pinus silvestris forest ecosystems / Iryna Rusyn, Vasil Dyachok // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 6. — No 2. — P. 59–63.
dc.identifier.citationenRusyn I. Bioelectric parameters of Pinus silvestris forest ecosystems / Iryna Rusyn, Vasil Dyachok // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 6. — No 2. — P. 59–63.
dc.identifier.doidoi.org/10.23939/ep2021.02.059
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/58973
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofEnvironmental Problems, 2 (6), 2021
dc.relation.referencesAuсina, A., Rudawska, M., Leski, T., Skridaila, A., Riepsas, E., &
dc.relation.referencesIwanski, M. (2007). Growth and mycorrhizal community
dc.relation.referencesstructure of Pinus sylvestris seedlings following the
dc.relation.referencesaddition of forest litter. Applied and environmental
dc.relation.referencesmicrobiology, 73(15), 4867–4873. doi: https://doi.org/10.1128/AEM.00584-07
dc.relation.referencesBarvinskyi, A. V., & Tykhenko, R. V. (2015). Otsinka i
dc.relation.referencesprohnoz yakosti zemel [Land quality assessment and
dc.relation.referencesforecast]. Kyiv: Medinform [in Ukrainian].
dc.relation.referencesBodnar, V. O. (2016, April 1). Zahalna kharakterystyka lisiv ta
dc.relation.referenceslisovoho hospodarstva Ukrainy [General characteristics of
dc.relation.referencesUkraine forests]. Public report of the State Agency of
dc.relation.referencesForest Resources of Ukraine [in Ukrainian]. Retrieved
dc.relation.referencesfrom http://dklg.kmu.gov.ua/forest/control/uk/publish/article?art_id=62921
dc.relation.referencesCrow, P. (2005). The influence of soils and species on tree root
dc.relation.referencesdepth. Forestry Commission, Edinburgh.
dc.relation.referencesDai, J., Wang, J.-J., Chow, A. T., & Conner, W. H. (2015).
dc.relation.referencesElectrical energy production from forest detritus in a
dc.relation.referencesforested wetland using microbial fuel cells. Global Change
dc.relation.referencesBiology Bioenergy, 7, 244–252. doi: https://doi.org/10.1111/gcbb.12117
dc.relation.referencesEshel, A., & Beeckman, T. (2013). Plant Roots: The Hidden
dc.relation.referencesHalf (Fourth Edition). CRC Press, Boca Raton.
dc.relation.referencesFedoniuk, S., Kawalko, B., Kielbinska-Ryn, Z., Kowerski, M.,
dc.relation.referencesKuczabski, A., Malska, M., Matkowski, S., Miszczuk, A.,
dc.relation.referencesMolas, W., Trochimczuk, S., & Zuchowski, W. (2005).
dc.relation.referencesPogranicze Polsko-Ukrainskie. Srodowisko. Spoleczenstwo.
dc.relation.referencesGospodarka [Polish-Ukrainian borderland. Environment.
dc.relation.referencesSociety. Economy]. Zamosc: Wyzsza Szkola Zarzdzania i
dc.relation.referencesAdministracji w Zamosciu [in Polish].
dc.relation.referencesGanatsas, P., & Spanos, I. (2005). Root system asymmetry of
dc.relation.referencesMediterranean pines. Plant and Soil, 278, 75–83. doi:
dc.relation.referenceshttps://doi.org/10.1007/s11104-005-1092-3
dc.relation.referencesIndex Mundi. (2019, December 28). Forest area (% of land
dc.relation.referencesarea) – Country Ranking. Retrieved from https://www.indexmundi.com/facts/indicators/AG.LND.FRST.ZS/rankings
dc.relation.referencesKabutey, F. T., Zhao, Q., Wei, L., Ding, J., Antwi, P.,
dc.relation.referencesQuashie, F. K., & Wang, W. (2019). An overview of plant
dc.relation.referencesmicrobial fuel cells (PMFCs): Configurations and applications.
dc.relation.referencesRenewable and Sustainable Energy Reviews, 110(C), 402–414. doi: https://doi.org/10.1016/j.rser.2019.05.016
dc.relation.referencesKaku, N., Yonezawa, N., Kodama, Y., & Watanabe, K. (2008).
dc.relation.referencesPlant/microbe cooperation for electricity generation in a
dc.relation.referencesrice paddy field. Applied Microbiology and Biotechnology, 79(1), 43–49. doi: https://doi.org/10.1007/s00253-008-1410-9
dc.relation.referencesKouzuma, A., Kasai, T., Nakagawa, G., Yamamuro, A., Abe, T.,
dc.relation.references& Watanabe, K. (2013). Comparative metagenomics of
dc.relation.referencesanode-associated microbiomes developed in rice paddyfield microbial fuel cells. PLoS One, 8(11), Article e77443.
dc.relation.referencesdoi: https://doi.org/10.1371/journal.pone.0077443
dc.relation.referencesMunzenberger, B., Golldack, J., Ullrich, A., Schmincke, B., &
dc.relation.referencesHuttl, R. F. (2004). Abundance, diversity, and vitality of
dc.relation.referencesmycorrhizae of Scots pine (Pinus sylvestris L.) in lignite
dc.relation.referencesrecultivation sites. Mycorrhiza, 14(3), 193–202. doi:
dc.relation.referenceshttps://doi.org/10.1007/s00572-003-0257-2
dc.relation.referencesRaudaskoski, M., & Salo, V. (2008). Dichotomization of
dc.relation.referencesmycorrhizal and NPA-treated short roots in Pinus
dc.relation.referencessylvestris. Plant Signaling & Behavior, 3(2), 113–115. doi:
dc.relation.referenceshttps://doi.org/10.4161/psb.3.2.4972
dc.relation.referencesRusyn, I. B., & Medvediev, O. V. (2016). UA Patent No.112093. Ukrainskyi instytut intelektualnoi vlasnosti
dc.relation.references(Ukrpatent).
dc.relation.referencesRusyn, I. B., & Hamkalo, Кh. R. (2019). Bioelectricity
dc.relation.referencesproduction in an indoor plant-microbial biotechnological
dc.relation.referencessystem with Alisma plantago-aquatica. Acta Biologica
dc.relation.referencesSzegediensis, 62(2), 170–179. doi: https://doi.org/10.14232/abs.2018.2.170-179
dc.relation.referencesStrik, D. P. B. T. B., Hamelers, H. V. M., Snel, J. F. H., &
dc.relation.referencesBuisman, C. J. (2008). International Journal of Energy
dc.relation.referencesResearch, 32(9), 870–876. doi: https://doi.org/10.1002/er.1397
dc.relation.referencesSudirjo, E., de Jager, P., Buisman, C. J. N., & Strik, D. P. B. T. B.
dc.relation.references(2019). Performance and Long Distance Data Acquisition
dc.relation.referencesvia LoRa Technology of a Tubular Plant Microbial Fuel
dc.relation.referencesCell Located in a Paddy Field in West Kalimantan.
dc.relation.referencesIndonesia Sensors, 19, 4647, 1–18. doi: https://doi.org/10.3390/s19214647
dc.relation.referencesTakanezawa, K., Nishio, K., Kato, S., Hashimoto, K., &
dc.relation.referencesWatanabe, K. (2010). Factors affecting electric output
dc.relation.referencesfrom rice-paddy microbial fuel cells. Bioscience,
dc.relation.referencesBiotechnology & Biochemistry, 74, 1271–1273. doi:
dc.relation.referenceshttps://doi.org/10.1271/bbb.90852
dc.relation.referencesTou, I., Azri, Y. M., Sadi, M. H., Lounici, H., & КebboucheGana, S. (2019). Chlorophytum microbial fuel cell
dc.relation.referencescharacterization. International Journal of Green Energy, 16(12), 1–13. doi: https://doi.org/10.1080/15435075.2019.1650049
dc.relation.referencesUeoka, N., Sese, N., Sue, M., Kouzuma, A., & Watanabe, K.
dc.relation.references(2016). Sizes of Anode and Cathode Affect Electricity
dc.relation.referencesGeneration in Rice Paddy-Field Microbial Fuel Cells.
dc.relation.referencesJournal of Sustainable Bioenergy Systems, 06(01), 10–15.
dc.relation.referencesdoi: https://doi.org/10.4236/jsbs.2016.61002
dc.relation.referencesZinchenko, O. I., Salatenko, V. N., & Bilonozhko, M. A.
dc.relation.references(2001). Roslynnytstvo [Plant Growing]. Kyiv: Ahrarna
dc.relation.referencesosvita. [in Ukrainian
dc.relation.referencesenAusina, A., Rudawska, M., Leski, T., Skridaila, A., Riepsas, E., &
dc.relation.referencesenIwanski, M. (2007). Growth and mycorrhizal community
dc.relation.referencesenstructure of Pinus sylvestris seedlings following the
dc.relation.referencesenaddition of forest litter. Applied and environmental
dc.relation.referencesenmicrobiology, 73(15), 4867–4873. doi: https://doi.org/10.1128/AEM.00584-07
dc.relation.referencesenBarvinskyi, A. V., & Tykhenko, R. V. (2015). Otsinka i
dc.relation.referencesenprohnoz yakosti zemel [Land quality assessment and
dc.relation.referencesenforecast]. Kyiv: Medinform [in Ukrainian].
dc.relation.referencesenBodnar, V. O. (2016, April 1). Zahalna kharakterystyka lisiv ta
dc.relation.referencesenlisovoho hospodarstva Ukrainy [General characteristics of
dc.relation.referencesenUkraine forests]. Public report of the State Agency of
dc.relation.referencesenForest Resources of Ukraine [in Ukrainian]. Retrieved
dc.relation.referencesenfrom http://dklg.kmu.gov.ua/forest/control/uk/publish/article?art_id=62921
dc.relation.referencesenCrow, P. (2005). The influence of soils and species on tree root
dc.relation.referencesendepth. Forestry Commission, Edinburgh.
dc.relation.referencesenDai, J., Wang, J.-J., Chow, A. T., & Conner, W. H. (2015).
dc.relation.referencesenElectrical energy production from forest detritus in a
dc.relation.referencesenforested wetland using microbial fuel cells. Global Change
dc.relation.referencesenBiology Bioenergy, 7, 244–252. doi: https://doi.org/10.1111/gcbb.12117
dc.relation.referencesenEshel, A., & Beeckman, T. (2013). Plant Roots: The Hidden
dc.relation.referencesenHalf (Fourth Edition). CRC Press, Boca Raton.
dc.relation.referencesenFedoniuk, S., Kawalko, B., Kielbinska-Ryn, Z., Kowerski, M.,
dc.relation.referencesenKuczabski, A., Malska, M., Matkowski, S., Miszczuk, A.,
dc.relation.referencesenMolas, W., Trochimczuk, S., & Zuchowski, W. (2005).
dc.relation.referencesenPogranicze Polsko-Ukrainskie. Srodowisko. Spoleczenstwo.
dc.relation.referencesenGospodarka [Polish-Ukrainian borderland. Environment.
dc.relation.referencesenSociety. Economy]. Zamosc: Wyzsza Szkola Zarzdzania i
dc.relation.referencesenAdministracji w Zamosciu [in Polish].
dc.relation.referencesenGanatsas, P., & Spanos, I. (2005). Root system asymmetry of
dc.relation.referencesenMediterranean pines. Plant and Soil, 278, 75–83. doi:
dc.relation.referencesenhttps://doi.org/10.1007/s11104-005-1092-3
dc.relation.referencesenIndex Mundi. (2019, December 28). Forest area (% of land
dc.relation.referencesenarea) – Country Ranking. Retrieved from https://www.indexmundi.com/facts/indicators/AG.LND.FRST.ZS/rankings
dc.relation.referencesenKabutey, F. T., Zhao, Q., Wei, L., Ding, J., Antwi, P.,
dc.relation.referencesenQuashie, F. K., & Wang, W. (2019). An overview of plant
dc.relation.referencesenmicrobial fuel cells (PMFCs): Configurations and applications.
dc.relation.referencesenRenewable and Sustainable Energy Reviews, 110(C), 402–414. doi: https://doi.org/10.1016/j.rser.2019.05.016
dc.relation.referencesenKaku, N., Yonezawa, N., Kodama, Y., & Watanabe, K. (2008).
dc.relation.referencesenPlant/microbe cooperation for electricity generation in a
dc.relation.referencesenrice paddy field. Applied Microbiology and Biotechnology, 79(1), 43–49. doi: https://doi.org/10.1007/s00253-008-1410-9
dc.relation.referencesenKouzuma, A., Kasai, T., Nakagawa, G., Yamamuro, A., Abe, T.,
dc.relation.referencesen& Watanabe, K. (2013). Comparative metagenomics of
dc.relation.referencesenanode-associated microbiomes developed in rice paddyfield microbial fuel cells. PLoS One, 8(11), Article e77443.
dc.relation.referencesendoi: https://doi.org/10.1371/journal.pone.0077443
dc.relation.referencesenMunzenberger, B., Golldack, J., Ullrich, A., Schmincke, B., &
dc.relation.referencesenHuttl, R. F. (2004). Abundance, diversity, and vitality of
dc.relation.referencesenmycorrhizae of Scots pine (Pinus sylvestris L.) in lignite
dc.relation.referencesenrecultivation sites. Mycorrhiza, 14(3), 193–202. doi:
dc.relation.referencesenhttps://doi.org/10.1007/s00572-003-0257-2
dc.relation.referencesenRaudaskoski, M., & Salo, V. (2008). Dichotomization of
dc.relation.referencesenmycorrhizal and NPA-treated short roots in Pinus
dc.relation.referencesensylvestris. Plant Signaling & Behavior, 3(2), 113–115. doi:
dc.relation.referencesenhttps://doi.org/10.4161/psb.3.2.4972
dc.relation.referencesenRusyn, I. B., & Medvediev, O. V. (2016). UA Patent No.112093. Ukrainskyi instytut intelektualnoi vlasnosti
dc.relation.referencesen(Ukrpatent).
dc.relation.referencesenRusyn, I. B., & Hamkalo, Kh. R. (2019). Bioelectricity
dc.relation.referencesenproduction in an indoor plant-microbial biotechnological
dc.relation.referencesensystem with Alisma plantago-aquatica. Acta Biologica
dc.relation.referencesenSzegediensis, 62(2), 170–179. doi: https://doi.org/10.14232/abs.2018.2.170-179
dc.relation.referencesenStrik, D. P. B. T. B., Hamelers, H. V. M., Snel, J. F. H., &
dc.relation.referencesenBuisman, C. J. (2008). International Journal of Energy
dc.relation.referencesenResearch, 32(9), 870–876. doi: https://doi.org/10.1002/er.1397
dc.relation.referencesenSudirjo, E., de Jager, P., Buisman, C. J. N., & Strik, D. P. B. T. B.
dc.relation.referencesen(2019). Performance and Long Distance Data Acquisition
dc.relation.referencesenvia LoRa Technology of a Tubular Plant Microbial Fuel
dc.relation.referencesenCell Located in a Paddy Field in West Kalimantan.
dc.relation.referencesenIndonesia Sensors, 19, 4647, 1–18. doi: https://doi.org/10.3390/s19214647
dc.relation.referencesenTakanezawa, K., Nishio, K., Kato, S., Hashimoto, K., &
dc.relation.referencesenWatanabe, K. (2010). Factors affecting electric output
dc.relation.referencesenfrom rice-paddy microbial fuel cells. Bioscience,
dc.relation.referencesenBiotechnology & Biochemistry, 74, 1271–1273. doi:
dc.relation.referencesenhttps://doi.org/10.1271/bbb.90852
dc.relation.referencesenTou, I., Azri, Y. M., Sadi, M. H., Lounici, H., & KebboucheGana, S. (2019). Chlorophytum microbial fuel cell
dc.relation.referencesencharacterization. International Journal of Green Energy, 16(12), 1–13. doi: https://doi.org/10.1080/15435075.2019.1650049
dc.relation.referencesenUeoka, N., Sese, N., Sue, M., Kouzuma, A., & Watanabe, K.
dc.relation.referencesen(2016). Sizes of Anode and Cathode Affect Electricity
dc.relation.referencesenGeneration in Rice Paddy-Field Microbial Fuel Cells.
dc.relation.referencesenJournal of Sustainable Bioenergy Systems, 06(01), 10–15.
dc.relation.referencesendoi: https://doi.org/10.4236/jsbs.2016.61002
dc.relation.referencesenZinchenko, O. I., Salatenko, V. N., & Bilonozhko, M. A.
dc.relation.referencesen(2001). Roslynnytstvo [Plant Growing]. Kyiv: Ahrarna
dc.relation.referencesenosvita. [in Ukrainian
dc.relation.urihttps://doi.org/10.1128/AEM.00584-07
dc.relation.urihttp://dklg.kmu.gov.ua/forest/control/uk/publish/article?art_id=62921
dc.relation.urihttps://doi.org/10.1111/gcbb.12117
dc.relation.urihttps://doi.org/10.1007/s11104-005-1092-3
dc.relation.urihttps://www.indexmundi.com/facts/indicators/AG.LND.FRST.ZS/rankings
dc.relation.urihttps://doi.org/10.1016/j.rser.2019.05.016
dc.relation.urihttps://doi.org/10.1007/s00253-008-1410-9
dc.relation.urihttps://doi.org/10.1371/journal.pone.0077443
dc.relation.urihttps://doi.org/10.1007/s00572-003-0257-2
dc.relation.urihttps://doi.org/10.4161/psb.3.2.4972
dc.relation.urihttps://doi.org/10.14232/abs.2018.2.170-179
dc.relation.urihttps://doi.org/10.1002/er.1397
dc.relation.urihttps://doi.org/10.3390/s19214647
dc.relation.urihttps://doi.org/10.1271/bbb.90852
dc.relation.urihttps://doi.org/10.1080/15435075.2019.1650049
dc.relation.urihttps://doi.org/10.4236/jsbs.2016.61002
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.rights.holder© Rusyn I., Dyachok V., 2021
dc.subjectrenewable energy
dc.subjectbioelectricity
dc.subjectelectrode
dc.subjectbiotope
dc.subjectrhizospheric microorganism
dc.subjectplant
dc.titleBioelectric parameters of Pinus silvestris forest ecosystems
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2021v6n2_Rusyn_I-Bioelectric_parameters_of_Pinus_59-63.pdf
Size:
1.28 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2021v6n2_Rusyn_I-Bioelectric_parameters_of_Pinus_59-63__COVER.png
Size:
420.82 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Plain Text
Description: