Development of coal flue gases denitrification technologies in China

dc.citation.epage96
dc.citation.issue1
dc.citation.journalTitleЕкологічні проблеми
dc.citation.spage88
dc.contributor.affiliationVinnytsia National Technical University
dc.contributor.affiliationJiuquan College of Vocational Technology
dc.contributor.authorLe, Zhang
dc.contributor.authorPolyvianchuk, Andrii
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-11-19T08:51:07Z
dc.date.created2025-02-27
dc.date.issued2025-02-27
dc.description.abstractIn the process of coal burning, a large amount of smoke will be produced, and there is a large amount of NOX in the flue gas, only by removing these substances can the pollution degree of the flue gas be reduced. This paper analyzes the coal consumption and NOX emission in China in recent years, and summarizes the industrial emission sources of NOX. The principle, process flow, research status and development prospect of selective catalytic reduction (SCR), selective non-catalytic reduction (SNCR), ozone oxidation and absorption in traditional flue gas denitrification technology and complex absorption and photocatalytic oxidation in new flue gas denitrification technology are discussed in detail. The denitration rate, advantages and disadvantages of the traditional flue gas denitration technology in the denitration market are summarized. The technological characteristics and economy of the above five flue gas denitration technologies were compared, and the development direction of flue gas denitration technology in China was pointed out.
dc.format.extent88-96
dc.format.pages9
dc.identifier.citationLe Z. Development of coal flue gases denitrification technologies in China / Zhang Le, Andrii Polyvianchuk // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 10. — No 1. — P. 88–96.
dc.identifier.citationenLe Z. Development of coal flue gases denitrification technologies in China / Zhang Le, Andrii Polyvianchuk // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 10. — No 1. — P. 88–96.
dc.identifier.doidoi.org/10.23939/ep2025.01.088
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/120440
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofЕкологічні проблеми, 1 (10), 2025
dc.relation.ispartofEnvironmental Problems, 1 (10), 2025
dc.relation.referencesChunhu, Li, Weiwei Y., Shengnan S., Yu, Z., Xin, Y., Siyi, Z., & Liang, W. (2014). Study on the denitrification performance of flue gas using TiO2-rGO/ASC photocatalyst. Journal of Ocean University of China (Natural Science Edition), 44(10). doi: https://doi.org/10.16441/j.cnki.hdxb.2014.10.013
dc.relation.referencesHe, H., Zhang, Y., & Li, Y. (2021). Recent innovations of silk-derived electrocatalysts for hydrogen evolution reaction, oxygen evolution reaction and oxygen reduction reaction. International Journal of Hydrogen Energy, 46(11), 7848-7865. doi: https://doi.org/10.1360/N032018-00063
dc.relation.referencesJianqiang, Y., Yi, M., & Chi, W. (2017). Current situation and development of wet flue gas denitrification technology. Chemical Industry Progress, 36(2), 695-704. doi: https://doi.org/10.16085/j.issn.1000-6613.2017.02.041
dc.relation.referencesJianhua, D. (2019). Research on NOx reduction and SCR flue gas denitrification technology in thermal power plants. Mechanical and Electrical Information, 20, 31-35. doi: https://doi.org/10.19514/j.cnki.cn32-1628/tm.2019.20.044
dc.relation.referencesJing, Hu. (2017). Effect of absorption spectrum extension on the performance of photocatalytic oxidation of NO. Master's degree thesis. Hangzhou: Zhejiang University. Retrieved from https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201701&filename=1017035015.nh
dc.relation.referencesJun, C., Wu J., Wang, J., Zhang, S., & Jianmeng, C. (2018). A mass-transfer model of nitricoxide removal in a rotating drum biofilter coupled with FeII(EDTA) absorption. Industrial & Engineering Chemistry Research, 57:8144-8151. doi: https://doi.org/10.1021/acs.iecr.8b00966
dc.relation.referencesMinistry of Ecological and Environmental Protection of the People's Republic of China. (2023). Environmental Statistics Annual Report 2022. Beijing: China Environmental Press. Retrieved from https://www.mee.gov.cn/hjzl/sthjzk/sthjtjnb/202312/t20231229_1060181.shtml
dc.relation.referencesNational Bureau of Statistics. (2023). People's Republic of China. Chinese Statistical Yearbook. Beijing: China Statistics Press. Retrieved from https://www.stats.gov.cn/sj/ndsj/2023/indexch.htm
dc.relation.referencesNational Development and Reform Commission of the People's Republic of China. (2024). Action Plan for low-carbon coal power Transformation and Construction (2024-2027). Beijing. Retrieved from https://www.ndrc.gov.cn/xxgk/zcfb/tz/202407/t20240715_1391663.html
dc.relation.referencesShaopeng, G., L., Lv, Jia, Z., Xin, C., Ming T., Wanzhong, K., Yanbo, Z., &Jun, Lu (2015). Simultaneous removal of SO2 and NOX with ammonia combined with gas-phase oxidation of NO using ozone. Chemical Industry & Chemical Engineering Quarterly, 21(2), 305-310. doi: https://doi.org/10.2298/CICEQ140618029G
dc.relation.referencesShuai, Z., Qiang, Y., & Jiawei, Lv. (2018). Research progress of TiO2-based visible light responsive photocatalytic materials. Journal of Donghua University of Technology: Natural Science Edition, 41(1), 94-100.
dc.relation.referencesSun, C, Zhao, N, Wang, H., & Wu, Z. (2015). Simultaneous absorption of NOX and SO2 using magnesia slurry combined with ozone oxidation. Energy & Fuels, 29(5), 3276-3283. doi: https://doi.org/10.1021/acs.energyfuels.5b00229
dc.relation.referencesWang, F. (2015). Experimental study on absorption of NO gas by FeIIEDTA complex method. Taiyuan: North University of China. doi: https://doi.org/10.7666/d.D640515
dc.relation.referencesWu, Y., Peng, X., Liu, J., Kong, Q., Shi, B., & Tong, M. (2002). Study on the integrated membrane processes of dehumidification of compressed air and vapor permeation processes. Journal of Membrane Science, 196(2), 179-183. doi: https://doi.org/10.1016/S0376-7388(01)00564-6
dc.relation.referencesXiaoming, Z., Gan, C., & Chuanxiang, Z. (2018). Progress of oxidative desulfurization and denitrification of coal flue gas. Applied Chemical Industry, 47(2), 375-379. doi: https://doi.org/10.37155/2972-4333-0211-9
dc.relation.referencesYe, Y., Chaoqun, Xu, Yanqun, Zhu, Fawei, L., Qiang, Ma, Zhihua, W., & Kefa, C. (2016). Simultaneous removal of SO2 and NOx by combination of ozone oxidation and Na2S2O3 solution spray. Chinese Journal of Chemical Engineering, 67(5), 2041-2047. doi: https://doi.org/10.11949/j.issn.0438-1157.20151536
dc.relation.referencesYu, Z., Fang, W., & Jiqu, Z. (2017). Characteristics and microbial community analysis of anaerobic reduction process of sulfate and Fe(II)EDTA-NO/Fe(III)EDTA. Environmental Science, 11, 4706-4714. doi: https://doi.org/10.13227/j.hjkx.201704227
dc.relation.referencesenChunhu, Li, Weiwei Y., Shengnan S., Yu, Z., Xin, Y., Siyi, Z., & Liang, W. (2014). Study on the denitrification performance of flue gas using TiO2-rGO/ASC photocatalyst. Journal of Ocean University of China (Natural Science Edition), 44(10). doi: https://doi.org/10.16441/j.cnki.hdxb.2014.10.013
dc.relation.referencesenHe, H., Zhang, Y., & Li, Y. (2021). Recent innovations of silk-derived electrocatalysts for hydrogen evolution reaction, oxygen evolution reaction and oxygen reduction reaction. International Journal of Hydrogen Energy, 46(11), 7848-7865. doi: https://doi.org/10.1360/N032018-00063
dc.relation.referencesenJianqiang, Y., Yi, M., & Chi, W. (2017). Current situation and development of wet flue gas denitrification technology. Chemical Industry Progress, 36(2), 695-704. doi: https://doi.org/10.16085/j.issn.1000-6613.2017.02.041
dc.relation.referencesenJianhua, D. (2019). Research on NOx reduction and SCR flue gas denitrification technology in thermal power plants. Mechanical and Electrical Information, 20, 31-35. doi: https://doi.org/10.19514/j.cnki.cn32-1628/tm.2019.20.044
dc.relation.referencesenJing, Hu. (2017). Effect of absorption spectrum extension on the performance of photocatalytic oxidation of NO. Master's degree thesis. Hangzhou: Zhejiang University. Retrieved from https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201701&filename=1017035015.nh
dc.relation.referencesenJun, C., Wu J., Wang, J., Zhang, S., & Jianmeng, C. (2018). A mass-transfer model of nitricoxide removal in a rotating drum biofilter coupled with FeII(EDTA) absorption. Industrial & Engineering Chemistry Research, 57:8144-8151. doi: https://doi.org/10.1021/acs.iecr.8b00966
dc.relation.referencesenMinistry of Ecological and Environmental Protection of the People's Republic of China. (2023). Environmental Statistics Annual Report 2022. Beijing: China Environmental Press. Retrieved from https://www.mee.gov.cn/hjzl/sthjzk/sthjtjnb/202312/t20231229_1060181.shtml
dc.relation.referencesenNational Bureau of Statistics. (2023). People's Republic of China. Chinese Statistical Yearbook. Beijing: China Statistics Press. Retrieved from https://www.stats.gov.cn/sj/ndsj/2023/indexch.htm
dc.relation.referencesenNational Development and Reform Commission of the People's Republic of China. (2024). Action Plan for low-carbon coal power Transformation and Construction (2024-2027). Beijing. Retrieved from https://www.ndrc.gov.cn/xxgk/zcfb/tz/202407/t20240715_1391663.html
dc.relation.referencesenShaopeng, G., L., Lv, Jia, Z., Xin, C., Ming T., Wanzhong, K., Yanbo, Z., &Jun, Lu (2015). Simultaneous removal of SO2 and NOX with ammonia combined with gas-phase oxidation of NO using ozone. Chemical Industry & Chemical Engineering Quarterly, 21(2), 305-310. doi: https://doi.org/10.2298/CICEQ140618029G
dc.relation.referencesenShuai, Z., Qiang, Y., & Jiawei, Lv. (2018). Research progress of TiO2-based visible light responsive photocatalytic materials. Journal of Donghua University of Technology: Natural Science Edition, 41(1), 94-100.
dc.relation.referencesenSun, C, Zhao, N, Wang, H., & Wu, Z. (2015). Simultaneous absorption of NOX and SO2 using magnesia slurry combined with ozone oxidation. Energy & Fuels, 29(5), 3276-3283. doi: https://doi.org/10.1021/acs.energyfuels.5b00229
dc.relation.referencesenWang, F. (2015). Experimental study on absorption of NO gas by FeIIEDTA complex method. Taiyuan: North University of China. doi: https://doi.org/10.7666/d.D640515
dc.relation.referencesenWu, Y., Peng, X., Liu, J., Kong, Q., Shi, B., & Tong, M. (2002). Study on the integrated membrane processes of dehumidification of compressed air and vapor permeation processes. Journal of Membrane Science, 196(2), 179-183. doi: https://doi.org/10.1016/S0376-7388(01)00564-6
dc.relation.referencesenXiaoming, Z., Gan, C., & Chuanxiang, Z. (2018). Progress of oxidative desulfurization and denitrification of coal flue gas. Applied Chemical Industry, 47(2), 375-379. doi: https://doi.org/10.37155/2972-4333-0211-9
dc.relation.referencesenYe, Y., Chaoqun, Xu, Yanqun, Zhu, Fawei, L., Qiang, Ma, Zhihua, W., & Kefa, C. (2016). Simultaneous removal of SO2 and NOx by combination of ozone oxidation and Na2S2O3 solution spray. Chinese Journal of Chemical Engineering, 67(5), 2041-2047. doi: https://doi.org/10.11949/j.issn.0438-1157.20151536
dc.relation.referencesenYu, Z., Fang, W., & Jiqu, Z. (2017). Characteristics and microbial community analysis of anaerobic reduction process of sulfate and Fe(II)EDTA-NO/Fe(III)EDTA. Environmental Science, 11, 4706-4714. doi: https://doi.org/10.13227/j.hjkx.201704227
dc.relation.urihttps://doi.org/10.16441/j.cnki.hdxb.2014.10.013
dc.relation.urihttps://doi.org/10.1360/N032018-00063
dc.relation.urihttps://doi.org/10.16085/j.issn.1000-6613.2017.02.041
dc.relation.urihttps://doi.org/10.19514/j.cnki.cn32-1628/tm.2019.20.044
dc.relation.urihttps://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201701&filename=1017035015.nh
dc.relation.urihttps://doi.org/10.1021/acs.iecr.8b00966
dc.relation.urihttps://www.mee.gov.cn/hjzl/sthjzk/sthjtjnb/202312/t20231229_1060181.shtml
dc.relation.urihttps://www.stats.gov.cn/sj/ndsj/2023/indexch.htm
dc.relation.urihttps://www.ndrc.gov.cn/xxgk/zcfb/tz/202407/t20240715_1391663.html
dc.relation.urihttps://doi.org/10.2298/CICEQ140618029G
dc.relation.urihttps://doi.org/10.1021/acs.energyfuels.5b00229
dc.relation.urihttps://doi.org/10.7666/d.D640515
dc.relation.urihttps://doi.org/10.1016/S0376-7388(01)00564-6
dc.relation.urihttps://doi.org/10.37155/2972-4333-0211-9
dc.relation.urihttps://doi.org/10.11949/j.issn.0438-1157.20151536
dc.relation.urihttps://doi.org/10.13227/j.hjkx.201704227
dc.rights.holder© Національний університет “Львівська політехніка”, 2025
dc.rights.holder© Le Z., Polyvianchuk A., 2025
dc.subjectcoal-fired boilers
dc.subjectnitrogen oxides
dc.subjectemissions
dc.subjectdenitration technology
dc.subjectcatalyst
dc.titleDevelopment of coal flue gases denitrification technologies in China
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2025v10n1_Le_Z-Development_of_coal_flue_gases_88-96.pdf
Size:
2.12 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2025v10n1_Le_Z-Development_of_coal_flue_gases_88-96__COVER.png
Size:
1.03 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.76 KB
Format:
Plain Text
Description: