Challenges of temperature measurement during the friction stir welding process

dc.citation.epage38
dc.citation.issue1
dc.citation.spage34
dc.contributor.affiliationTechnical University
dc.contributor.authorAugustin, Silke
dc.contributor.authorFröhlich, Thomas
dc.contributor.authorKrapf, Gunter
dc.contributor.authorBergmann, Jean-Pierre
dc.contributor.authorGrätzel, Michael
dc.contributor.authorGerken, Jan Ansgar
dc.contributor.authorSchmidt, Kiril
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2021-01-21T08:32:29Z
dc.date.available2021-01-21T08:32:29Z
dc.date.created2020-02-24
dc.date.issued2020-02-24
dc.description.abstractThe exact determination of the process zone temperature can be considered as an increasingly important role in the control and monitoring of the friction stir welding process (FSW). At present, temperature measurement is carried out with the aid of a temperature sensor integrated into the tool (usually thermocouples). Since these cannot be attached directly to the joining area, heat dissipation within the tool and to the environment cause measurement deviations as well as a time delay in the temperature measurement. The article describes a process and the challenges that arise in this process, how a direct temperature measurement during the process can be achieved by exploiting the thermoelectric effect between tool and workpiece, without changing the tool by introducing additional temperature sensors.
dc.format.extent34-38
dc.format.pages5
dc.identifier.citationChallenges of temperature measurement during the friction stir welding process / Silke Augustin, Thomas Fröhlich, Gunter Krapf, Jean-Pierre Bergmann, Michael Grätzel, Jan Ansgar Gerken, Kiril Schmidt // Measuring equipment and metrology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 81. — No 1. — P. 34–38.
dc.identifier.citationenChallenges of temperature measurement during the friction stir welding process / Silke Augustin, Thomas Fröhlich, Gunter Krapf, Jean-Pierre Bergmann, Michael Grätzel, Jan Ansgar Gerken, Kiril Schmidt // Measuring equipment and metrology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 81. — No 1. — P. 34–38.
dc.identifier.doidoi.org/10.23939/istcmtm2020.01.034
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/55951
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofMeasuring equipment and metrology, 1 (81), 2020
dc.relation.references[1] D. Schmid: Reibrührschweißen von Aluminiumlegierungen mit Stählen für die Automobilindustrie, Dissertation, TU München, Herbert Utz Verlag GmbH, 2015
dc.relation.references[2] A. Fehrenbacher, C. Smith, N. Duffie, N. Ferrier, F. Pferfferkorn, M. Zinn: Combined Temperature and Force Control for Robotic Friction Stir Welding, ASME, J. Manuf. Sci. Eng 136(2), 021007 (Jan 15, 2014), Paper No: MANU-12-1357; DOI: 10.1115/1.4025912
dc.relation.references[3] A.C.F. Silva, J. De Backer, G. Bolmsjö: Temperature measurements during friction stir welding, University West, Trollhättan, Sweden, Springerlink.com, 2016, DOI 10.1007/s00170-016-9007-4
dc.relation.references[4] E. Cole, A. Fehrenbacher, N. Duffie, M. Zinn, F. Pfefferkorn, N. Ferrier: Weld temperature effects during friction stir welding of dissimilar aluminum alloys 6061-t6 and 7075-t6, Int J Adv Manuf Technol (2014) 71:643–652 DOI 10.1007/s00170-013-5485-9
dc.relation.references[5] A. Fehrenbacher, N. Duffie, N. Ferrier, F. Pfefferkorn, M. Zinn: Effects of tool-workpiece interface temperature on weld quality and quality improvements through temperature control in friction stir welding, The Int. Journ. Adv. Manuf. Techn., vol. 71, pp. 165–179, 2014/03/01, 2014.
dc.relation.references[6] F. Bernhard (Hrsg.): Handbuch der Technischen Temperaturmessung, 2. Auflage, Springer-Verlag, 2014
dc.relation.references[7] M. Javurek, A. Mittermair: Wo in einem Thermoelement herrscht die gemessene Temperatur? Analyse mittels FESimulation, Technisches Messen, Heft 11, 2016, De Gruyter Oldenbourg, DOI 10.1515/teme-2016-0028
dc.relation.references[8] P. Germanow: Messtechnische Untersuchung der Kennlinienstabilität von Thermoelementen, TU Ilmenau, Masterarbeit, 2019
dc.relation.references[9] E. S. Webster: Low-Temperature Drift in MIMS Base-MetalThermocouples, Springer Verlag, Int J Thermophys (2014) 35:574–595. DOI 10.1007/s10765-014-1581-9
dc.relation.references[10] A. D. Greenen, E. S. Webster: Thermal Recovery from Cold-Working in Type K Bare-Wire Thermocouples, Springer Verlag, Int J Thermophys (2017) 38:179. DOI 10.1007/s10765-017-2316-5
dc.relation.references[11] M. Baranowski, K. Schmidt, M. K. Stobrawa: Anwendung des Seebeck-Effekts zur Messung der Prozesszonentemperatur beim Reibrührschweißen, Dokumentation Projektseminar, TU Ilmenau, 2018.
dc.relation.references[12] M. Z. H. Khandkar, J. A. Khan, A. P. Reynolds: Prediction of temperature distribution and thermal history during friction stir welding: input torque based model, Sc. and Techn. of Welding & Joining, 8(3):165-174, 2003, DOI: 10.1179/136217103225010943
dc.relation.referencesen[1] D. Schmid: Reibrührschweißen von Aluminiumlegierungen mit Stählen für die Automobilindustrie, Dissertation, TU München, Herbert Utz Verlag GmbH, 2015
dc.relation.referencesen[2] A. Fehrenbacher, C. Smith, N. Duffie, N. Ferrier, F. Pferfferkorn, M. Zinn: Combined Temperature and Force Control for Robotic Friction Stir Welding, ASME, J. Manuf. Sci. Eng 136(2), 021007 (Jan 15, 2014), Paper No: MANU-12-1357; DOI: 10.1115/1.4025912
dc.relation.referencesen[3] A.C.F. Silva, J. De Backer, G. Bolmsjö: Temperature measurements during friction stir welding, University West, Trollhättan, Sweden, Springerlink.com, 2016, DOI 10.1007/s00170-016-9007-4
dc.relation.referencesen[4] E. Cole, A. Fehrenbacher, N. Duffie, M. Zinn, F. Pfefferkorn, N. Ferrier: Weld temperature effects during friction stir welding of dissimilar aluminum alloys 6061-t6 and 7075-t6, Int J Adv Manuf Technol (2014) 71:643–652 DOI 10.1007/s00170-013-5485-9
dc.relation.referencesen[5] A. Fehrenbacher, N. Duffie, N. Ferrier, F. Pfefferkorn, M. Zinn: Effects of tool-workpiece interface temperature on weld quality and quality improvements through temperature control in friction stir welding, The Int. Journ. Adv. Manuf. Techn., vol. 71, pp. 165–179, 2014/03/01, 2014.
dc.relation.referencesen[6] F. Bernhard (Hrsg.): Handbuch der Technischen Temperaturmessung, 2. Auflage, Springer-Verlag, 2014
dc.relation.referencesen[7] M. Javurek, A. Mittermair: Wo in einem Thermoelement herrscht die gemessene Temperatur? Analyse mittels FESimulation, Technisches Messen, Heft 11, 2016, De Gruyter Oldenbourg, DOI 10.1515/teme-2016-0028
dc.relation.referencesen[8] P. Germanow: Messtechnische Untersuchung der Kennlinienstabilität von Thermoelementen, TU Ilmenau, Masterarbeit, 2019
dc.relation.referencesen[9] E. S. Webster: Low-Temperature Drift in MIMS Base-MetalThermocouples, Springer Verlag, Int J Thermophys (2014) 35:574–595. DOI 10.1007/s10765-014-1581-9
dc.relation.referencesen[10] A. D. Greenen, E. S. Webster: Thermal Recovery from Cold-Working in Type K Bare-Wire Thermocouples, Springer Verlag, Int J Thermophys (2017) 38:179. DOI 10.1007/s10765-017-2316-5
dc.relation.referencesen[11] M. Baranowski, K. Schmidt, M. K. Stobrawa: Anwendung des Seebeck-Effekts zur Messung der Prozesszonentemperatur beim Reibrührschweißen, Dokumentation Projektseminar, TU Ilmenau, 2018.
dc.relation.referencesen[12] M. Z. H. Khandkar, J. A. Khan, A. P. Reynolds: Prediction of temperature distribution and thermal history during friction stir welding: input torque based model, Sc. and Techn. of Welding & Joining, 8(3):165-174, 2003, DOI: 10.1179/136217103225010943
dc.rights.holder© Національний університет “Львівська політехніка”, 2020
dc.subjectFriction stir welding
dc.subjectDirect temperature measurement
dc.subjectSeebeck-Effect
dc.subjectMeasurement errors
dc.titleChallenges of temperature measurement during the friction stir welding process
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2020v81n1_Augustin_S-Challenges_of_temperature_34-38.pdf
Size:
438.6 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2020v81n1_Augustin_S-Challenges_of_temperature_34-38__COVER.png
Size:
1.33 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.04 KB
Format:
Plain Text
Description: