Measurement and analysis of agricultural field state using cloud-based data processing pipeline Preventing potential robbery crimes using deep learning algorithm of data processing
dc.citation.epage | 10 | |
dc.citation.issue | 3 | |
dc.citation.journalTitle | Вимірювальна техніка та метрологія | |
dc.citation.spage | 5 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Prodan, Roman | |
dc.contributor.author | Shutka, Denys | |
dc.contributor.author | Tataryn, Vasyl | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-03-11T09:15:12Z | |
dc.date.available | 2024-03-11T09:15:12Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | The increasing demand for precision agriculture has prompted the integration of advanced technologies to optimize agricultural practices. This article presents an approach to agricultural field data processing using a cloud-based data pipeline. The system leverages data from various sensors deployed in the fields to collect real-time information on key parameters such as soil moisture, temperature, humidity, etc. The collected data is transmitted to the cloud where it undergoes a series of data processing and analysis stages. The article demonstrates the effectiveness of the cloud-based data pipeline in enhancing agricultural resilience. It facilitates prompt decision-making by farmers and stakeholders based on real-time data analysis. Additionally, the system offers a valuable tool for monitoring and optimizing irrigation strategies, resource allocation, and crop management practices. This research highlights the potential of cloud-based data pipelines in revolutionizing precision agriculture. The ability to measure and analyze agricultural field data accurately and efficiently opens new avenues for sustainable farming practices and mitigating risks related to wildfires and droughts. | |
dc.format.extent | 5-10 | |
dc.format.pages | 6 | |
dc.identifier.citation | Prodan R. Measurement and analysis of agricultural field state using cloud-based data processing pipeline Preventing potential robbery crimes using deep learning algorithm of data processing / Roman Prodan, Denys Shutka, Vasyl Tataryn // Measuring Equipment and Metrology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 84. — No 3. — P. 5–10. | |
dc.identifier.citationen | Prodan R. Measurement and analysis of agricultural field state using cloud-based data processing pipeline Preventing potential robbery crimes using deep learning algorithm of data processing / Roman Prodan, Denys Shutka, Vasyl Tataryn // Measuring Equipment and Metrology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 84. — No 3. — P. 5–10. | |
dc.identifier.doi | doi.org/10.23939/istcmtm2023.03.005 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61437 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Вимірювальна техніка та метрологія, 3 (84), 2023 | |
dc.relation.ispartof | Measuring Equipment and Metrology, 3 (84), 2023 | |
dc.relation.references | [1] E. Fukase, W. Martin, “Economic growth, convergence, and world food demand and supply”, World Development, Vol. 132, 2020. DOI: https://doi.org/10.1016/j.worlddev.2020.104954 | |
dc.relation.references | [2] S. P. Poznyak, “Black soils of Ukraine: geography, genesis and current state”, 2016. DOI: https://doi.org/10.15407/ugz2016.01.009 | |
dc.relation.references | [3] [3]M. S. Alkatheiri, “Artificial intelligence assisted improved human-computer interactions for computer systems”, Computers and Electrical Engineering, Vol. 101, 2022. DOI: https://doi.org/10.1016/j.compeleceng.2022.107950 | |
dc.relation.references | [4] H. E. Pence, “What is Big Data and Why is it Important?”, Journal of Educational Technology Systems, 43(2), 159–171, 2014. DOI: https://doi.org/10.2190/ET.43.2.d | |
dc.relation.references | [5] M. B. Hoy (2015), “The ‘Internet of Things’: What It Is and What It Means for Libraries”, Medical Reference Services Quarterly, 34:3, 353–358. DOI: 10.1080/02763869.2015.1052699 | |
dc.relation.references | [6] N. Biswas, “A new approach for conceptual extractiontransformation-loading process modeling”, International Journal of Ambient Computing and Intelligence 10.1, 30–45, 2019. DOI:DOI: 10.4018/IJACI.2019010102 | |
dc.relation.references | [7] A. Gupta, P. Goswami, N. Chaudhary, R. Bansal, “Deploying an Application using Google Cloud Platform”, 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA), 2020, 236–239. DOI: https://doi.org/10.1109/ICIMIA48430.2020.9074911 | |
dc.relation.references | [8] G. van Dongen, D. van den Poel, “Evaluation of Stream Processing Frameworks”, IEEE Transactions on Parallel and Distributed Systems, Vol. 31, No. 8, 1845–1858, 2020. DOI: https://doi.org/10.1109/TPDS.2020.2978480 | |
dc.relation.references | [9] B. Grados, H. Bedon. “Software Components of an IoT Monitoring Platform in Google Cloud Platform: A Descriptive Research and an Architectural Proposal”, Communications in Computer and Information Science, Vol. 1193, 2019. DOI: https://doi.org/10.1007/978-3-030-42517-3_12 | |
dc.relation.references | [10] Z. Dobesova, “Programming language Python for data processing”, 2011 International Conference on Electrical and Control Engineering, 2011, 4866–4869. DOI: 10.1109/ICECENG.2011.6057428 | |
dc.relation.references | [11] J. Shah and D. Dubaria, “Building Modern Clouds: Using Docker, Kubernetes & Google Cloud Platform”, IEEE 9th Annual Computing and Communication Workshop and Conference, 2019, 0184–0189, DOI: https://doi.org/10.1109/CCWC.2019.8666479 | |
dc.relation.references | [12] F. Bergsma, B. Dowling, F. Kohlar, J. Schwenk, D. Stebila, “Multi-Ciphersuite Security of the Secure Shell (SSH) Protocol”, 2014 ACM SIGSAC Conference on Computer and Communications Security, 369–381, 2014. DOI https://doi.org/10.1145/2660267.2660286 | |
dc.relation.references | [13] J. Gascon-Samson, F.-P. Garcia, B. Kemme, J. Kienzle, “Dynamoth: A Scalable Pub/Sub Middleware for Latency-Constrained Applications in the Cloud”, 2015 IEEE 35th International Conference on Distributed Computing Systems, 2015, 486–496. DOI: https://doi.org/10.1109/ ICDCS.2015.56 | |
dc.relation.references | [14] J. Sreemathy, R. Brindha, M. Selva Nagalakshmi, N. Suvekha, N. Karthick Ragul andM. Praveennandha, “Overview of ETL Tools and Talend-Data Integratio”, 2021 7th International Conference on Advanced Computing and Communication Systems, 2021, 1650–1654. DOI: https://doi.org/10.1109/ICACCS51430.2021.9441984 | |
dc.relation.references | [15] D. Dzulhikam, M. E. Rana, “A Critical Review of Cloud Computing Environment for Big Data Analytics”, 2022 International Conference on Decision Aid Sciences and Applications, 2022, 76–81. DOI: https://doi.org/10.1109/DASA54658.2022.9765168 | |
dc.relation.references | [16] S. M. Ali, N. Gupta, G. K. Nayak, R. K. Lenka, “Big data visualization: Tools and challenges”, 2016 2nd International Conference on Contemporary Computing and Informatics, 2016, 656–660. DOI: https://doi.org/10.1109/IC3I.2016.7918044 | |
dc.relation.references | [17] B. Xia, P. Gong, “Review of business intelligence through data analysis”, Benchmarking: An International Journal, 21. 300–311, 2014. DOI: https://doi.org/10.1108/BIJ-08-2012-0050. | |
dc.relation.references | [18] M. S. Gounder, V. V. Iyer, A. Al Mazyad, “A survey on business intelligence tools for university dashboard development”, 2016 3rd MEC International Conference on Big Data and Smart City, 2016, 1–7. DOI: https://doi.org/10.1109/ICBDSC.2016.7460347 | |
dc.relation.referencesen | [1] E. Fukase, W. Martin, "Economic growth, convergence, and world food demand and supply", World Development, Vol. 132, 2020. DOI: https://doi.org/10.1016/j.worlddev.2020.104954 | |
dc.relation.referencesen | [2] S. P. Poznyak, "Black soils of Ukraine: geography, genesis and current state", 2016. DOI: https://doi.org/10.15407/ugz2016.01.009 | |
dc.relation.referencesen | [3] [3]M. S. Alkatheiri, "Artificial intelligence assisted improved human-computer interactions for computer systems", Computers and Electrical Engineering, Vol. 101, 2022. DOI: https://doi.org/10.1016/j.compeleceng.2022.107950 | |
dc.relation.referencesen | [4] H. E. Pence, "What is Big Data and Why is it Important?", Journal of Educational Technology Systems, 43(2), 159–171, 2014. DOI: https://doi.org/10.2190/ET.43.2.d | |
dc.relation.referencesen | [5] M. B. Hoy (2015), "The ‘Internet of Things’: What It Is and What It Means for Libraries", Medical Reference Services Quarterly, 34:3, 353–358. DOI: 10.1080/02763869.2015.1052699 | |
dc.relation.referencesen | [6] N. Biswas, "A new approach for conceptual extractiontransformation-loading process modeling", International Journal of Ambient Computing and Intelligence 10.1, 30–45, 2019. DOI:DOI: 10.4018/IJACI.2019010102 | |
dc.relation.referencesen | [7] A. Gupta, P. Goswami, N. Chaudhary, R. Bansal, "Deploying an Application using Google Cloud Platform", 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA), 2020, 236–239. DOI: https://doi.org/10.1109/ICIMIA48430.2020.9074911 | |
dc.relation.referencesen | [8] G. van Dongen, D. van den Poel, "Evaluation of Stream Processing Frameworks", IEEE Transactions on Parallel and Distributed Systems, Vol. 31, No. 8, 1845–1858, 2020. DOI: https://doi.org/10.1109/TPDS.2020.2978480 | |
dc.relation.referencesen | [9] B. Grados, H. Bedon. "Software Components of an IoT Monitoring Platform in Google Cloud Platform: A Descriptive Research and an Architectural Proposal", Communications in Computer and Information Science, Vol. 1193, 2019. DOI: https://doi.org/10.1007/978-3-030-42517-3_12 | |
dc.relation.referencesen | [10] Z. Dobesova, "Programming language Python for data processing", 2011 International Conference on Electrical and Control Engineering, 2011, 4866–4869. DOI: 10.1109/ICECENG.2011.6057428 | |
dc.relation.referencesen | [11] J. Shah and D. Dubaria, "Building Modern Clouds: Using Docker, Kubernetes & Google Cloud Platform", IEEE 9th Annual Computing and Communication Workshop and Conference, 2019, 0184–0189, DOI: https://doi.org/10.1109/CCWC.2019.8666479 | |
dc.relation.referencesen | [12] F. Bergsma, B. Dowling, F. Kohlar, J. Schwenk, D. Stebila, "Multi-Ciphersuite Security of the Secure Shell (SSH) Protocol", 2014 ACM SIGSAC Conference on Computer and Communications Security, 369–381, 2014. DOI https://doi.org/10.1145/2660267.2660286 | |
dc.relation.referencesen | [13] J. Gascon-Samson, F.-P. Garcia, B. Kemme, J. Kienzle, "Dynamoth: A Scalable Pub/Sub Middleware for Latency-Constrained Applications in the Cloud", 2015 IEEE 35th International Conference on Distributed Computing Systems, 2015, 486–496. DOI: https://doi.org/10.1109/ ICDCS.2015.56 | |
dc.relation.referencesen | [14] J. Sreemathy, R. Brindha, M. Selva Nagalakshmi, N. Suvekha, N. Karthick Ragul andM. Praveennandha, "Overview of ETL Tools and Talend-Data Integratio", 2021 7th International Conference on Advanced Computing and Communication Systems, 2021, 1650–1654. DOI: https://doi.org/10.1109/ICACCS51430.2021.9441984 | |
dc.relation.referencesen | [15] D. Dzulhikam, M. E. Rana, "A Critical Review of Cloud Computing Environment for Big Data Analytics", 2022 International Conference on Decision Aid Sciences and Applications, 2022, 76–81. DOI: https://doi.org/10.1109/DASA54658.2022.9765168 | |
dc.relation.referencesen | [16] S. M. Ali, N. Gupta, G. K. Nayak, R. K. Lenka, "Big data visualization: Tools and challenges", 2016 2nd International Conference on Contemporary Computing and Informatics, 2016, 656–660. DOI: https://doi.org/10.1109/IC3I.2016.7918044 | |
dc.relation.referencesen | [17] B. Xia, P. Gong, "Review of business intelligence through data analysis", Benchmarking: An International Journal, 21. 300–311, 2014. DOI: https://doi.org/10.1108/BIJ-08-2012-0050. | |
dc.relation.referencesen | [18] M. S. Gounder, V. V. Iyer, A. Al Mazyad, "A survey on business intelligence tools for university dashboard development", 2016 3rd MEC International Conference on Big Data and Smart City, 2016, 1–7. DOI: https://doi.org/10.1109/ICBDSC.2016.7460347 | |
dc.relation.uri | https://doi.org/10.1016/j.worlddev.2020.104954 | |
dc.relation.uri | https://doi.org/10.15407/ugz2016.01.009 | |
dc.relation.uri | https://doi.org/10.1016/j.compeleceng.2022.107950 | |
dc.relation.uri | https://doi.org/10.2190/ET.43.2.d | |
dc.relation.uri | https://doi.org/10.1109/ICIMIA48430.2020.9074911 | |
dc.relation.uri | https://doi.org/10.1109/TPDS.2020.2978480 | |
dc.relation.uri | https://doi.org/10.1007/978-3-030-42517-3_12 | |
dc.relation.uri | https://doi.org/10.1109/CCWC.2019.8666479 | |
dc.relation.uri | https://doi.org/10.1145/2660267.2660286 | |
dc.relation.uri | https://doi.org/10.1109/ | |
dc.relation.uri | https://doi.org/10.1109/ICACCS51430.2021.9441984 | |
dc.relation.uri | https://doi.org/10.1109/DASA54658.2022.9765168 | |
dc.relation.uri | https://doi.org/10.1109/IC3I.2016.7918044 | |
dc.relation.uri | https://doi.org/10.1108/BIJ-08-2012-0050 | |
dc.relation.uri | https://doi.org/10.1109/ICBDSC.2016.7460347 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.subject | Data Processing | |
dc.subject | ETL | |
dc.subject | Data Analysis | |
dc.subject | Monitoring and Measurement | |
dc.subject | Internet of Things | |
dc.subject | Agriculture | |
dc.subject | Cloud Technologies | |
dc.title | Measurement and analysis of agricultural field state using cloud-based data processing pipeline Preventing potential robbery crimes using deep learning algorithm of data processing | |
dc.type | Article |
Files
License bundle
1 - 1 of 1