Вибір масообмінного апарата для деферизації підземних вод
dc.citation.epage | 35 | |
dc.citation.issue | 1 | |
dc.citation.spage | 29 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Калимон, Я. А. | |
dc.contributor.author | Гелеш, А. Б. | |
dc.contributor.author | Слюзар, А. В. | |
dc.contributor.author | Курилець, О. Г. | |
dc.contributor.author | Kalymon, Ya. A. | |
dc.contributor.author | Helesh, A. B. | |
dc.contributor.author | Slyuzar, A. V. | |
dc.contributor.author | Kurylets, O. H. | |
dc.coverage.placename | Lviv | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-22T09:22:53Z | |
dc.date.available | 2024-01-22T09:22:53Z | |
dc.date.created | 2020-02-21 | |
dc.date.issued | 2020-02-21 | |
dc.description.abstract | Досліджено абсорбцію кисню у горизонтальному абсорбері із ковшоподібними диспергаторами (ГАКД) та у вертикальному апараті з барботажним шаром (ВАБШ). Показано, що ці процеси відбуваються за законом реакцій першого порядку. Встановлено, що за газовмісту 0,05 та діаметра бульбашок 0,002 м константа швидкості абсорбції у 46,5 разу більша у ГАКД, ніж у ВАБШ. Рекомендовано для деферизації води за pH < 6 використовувати апарат із суцільним барботажним шаром, а за pH більше ніж 6,0 – ГАКД. | |
dc.description.abstract | The absorption of air oxygen by water in the horizontal absorber with bucket-shaped dispersants (HABD) and the vertical apparatus with a continuous bubbling layer (VABL) was studied. It is shown that these processes occur according to the law of First-Order Reactions. It was found that the constant absorption rate is 46.5 times higher in HABD than in VABL at a gas content of 0.05 and a bubble diameter of 0.002 m. It is recommended to use the VABL device for water deironing at pH < 6, and for pH greater than 6.0 – HABD. | |
dc.format.extent | 29-35 | |
dc.format.pages | 7 | |
dc.identifier.citation | Вибір масообмінного апарата для деферизації підземних вод / Я. А. Калимон, А. Б. Гелеш, А. В. Слюзар, О. Г. Курилець // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Том 5. — № 1. — С. 29–35. | |
dc.identifier.citationen | Choice of mass exchange apparatus for groundwater deironing / Ya. A. Kalymon, A. B. Helesh, A. V. Slyuzar, O. H. Kurylets // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 5. — No 1. — P. 29–35. | |
dc.identifier.doi | doi.org/10.23939/ctas2022.01.029 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60936 | |
dc.language.iso | uk | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 1 (5), 2022 | |
dc.relation.references | 1. Yavorsʹkyy, V. T., Savchuk, L. V., Rubay, O. I. (2011). Perspektyvni napryamky ochyshchennya sverdlovynnykh vod vid spoluk Ferumu [Promising directions of well water purification from iron compounds]. Visnyk NU “Lʹvivsʹka politekhnika”, Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya, No. 70, 50–54 (in Ukrainian). | |
dc.relation.references | 2. Morgan, B., Lahav, О. (2007). The effect of pH on the kinetics of spontaneous Fe(II) oxidation by O2 in aqueous solution – basic principles and a simple heuristic description. Chemosphere. Vol. 68, No. 11, 2080–2084. https://doi.org/10.1016/j.chemosphere.2007.02.015 | |
dc.relation.references | 3. Gunnars, A., Blomqvist, S., Johansson, P., Andersson, C. (2002). Formation of Fe(III) oxyhydroxide colloids in freshwater and brackish seawater, with incorporation of phosphate and calcium. Geochimica et Cosmochimica Acta, Vol. 66, No. 5, 745–758. | |
dc.relation.references | 4. Аverina, Y. М. (2016). Intensifikacyya processa aeracii pri udalenii ionov geleza iz vody [Intensification of the aeration process during the removal of iron ions from water] (Extended abstract of candidate’s thesis). Russian University of Chemical Technology named after D. I. Mendeleev. Moskwa (in Russia). | |
dc.relation.references | 5. Yavorskiy, V., Kalymon, Ya., Rubai, O. (2015). Kinetics of ferrum (II) ions oxidation by air oxygen in water in horizontal absorber withbucket-like dispersers. Chemistry & Chemical Technology, Vol. 9, No. 4, 503–507. https://doi.org/10.23939/chcht09.04.503. | |
dc.relation.references | 6. Zolotova, Ye. F., Ass, G. Yu. (1975). Ochistka vody ot zheleza, margantsa, ftora i serovodoroda [Water purification from iron, manganese, fluorine and hydrogen sulfide]. Moskwa: Stroyizdat, 176 p. (in Russia). | |
dc.relation.references | 7. Golovin, V. L. (2003) Problemy ochistki podzemnykh vod ot ustoychivykh form zheleza [Problems of groundwater treatment from stable forms of iron]. Melioratsiya i vodnoye khozyaystvo, No. 6, 39–41 (in Russia). | |
dc.relation.references | 8. Orlov, V., Kvartenko, O., Martynov, S., Hordiyenko, Yu. (2003). Znezaliznennya pidzemnykh vod dlya pytnykh tsiley [Deironing of groundwater for drinking purposes. UDUVGP, Exactly]. UDUVHP, Rivne (in Ukrainian). | |
dc.relation.references | 9. Howe, K., Hand, D., Crittendenetal, J. (2012). Principles of water treatment. Hoboken, New Jersey: John Wiley & Sons, Inc., 674 p. | |
dc.relation.references | 10. Dzyubo, V. V., Alferova, L. I. (2002). Izucheniye kineticheskikh parametrov protsessa aeratsiidegazatsii podzemnykh vod [Study of the kinetic parameters of the process of aeration-degassing of groundwater] Vesti Tomskogo gos. arkh.-str. un-ta: Tomsk, No. 1 (6), 171–181 (in Russia). | |
dc.relation.references | 11. Gomelya, M., Tverdokhlib, M., Shabliy, T., Radovenchyk, V., Linyucheva, O. (2021). Sorbent-Catalyst for Acceleration of The Iron Oxidation. Journal of Ecological Engineering, 22(3), 221–230. DOI: 10.12911/22998993/133030. | |
dc.relation.references | 12. Averina, J. M., Zhukov, D. Y., Kurbatov, A. Y., Kaliakina, G. E., Panfilov, V. I. (2018). Methods of intensification of iron-containing natural water purification processes. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 18, 345–350. | |
dc.relation.references | 13. Yavorskiy, V., Helesh, A. (2015). Theoretical analysis of efficiency of horizontal apparatus with bucketlike dispersers in the dust trapping system. Chemistry & Chemical Technology, Vol. 9, No. 4, 471–478. https://doi.org/10.23939/chcht09.04.471. | |
dc.relation.references | 14. DSTU ISO 633262003 “Spektrometrychnyy metod vyznachennya ferumu z vykorystannyam 1,10 fenantrolinu” [“Spectrometric method for the determination of iron using 1.10 phenanthroline”] (in Ukrainian). | |
dc.relation.references | 15. Kalymon, Ya. A., Znak, Z. O., Helesh, A. B., Savchuk, L. V. (2018). Doslidzhennya doslidzhennya protsesu pohlynannya v aparati z sutsilʹnym barbotazhnym sharom [Research study of the absorption process in the apparatus with a continuous bubbling layer]. Voprosy Khimii i Khimicheskoi Tekhnologii, No. (5), 102–110 (in Ukrainian). | |
dc.relation.referencesen | 1. Yavorsʹkyy, V. T., Savchuk, L. V., Rubay, O. I. (2011). Perspektyvni napryamky ochyshchennya sverdlovynnykh vod vid spoluk Ferumu [Promising directions of well water purification from iron compounds]. Visnyk NU "Lʹvivsʹka politekhnika", Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya, No. 70, 50–54 (in Ukrainian). | |
dc.relation.referencesen | 2. Morgan, B., Lahav, O. (2007). The effect of pH on the kinetics of spontaneous Fe(II) oxidation by O2 in aqueous solution – basic principles and a simple heuristic description. Chemosphere. Vol. 68, No. 11, 2080–2084. https://doi.org/10.1016/j.chemosphere.2007.02.015 | |
dc.relation.referencesen | 3. Gunnars, A., Blomqvist, S., Johansson, P., Andersson, C. (2002). Formation of Fe(III) oxyhydroxide colloids in freshwater and brackish seawater, with incorporation of phosphate and calcium. Geochimica et Cosmochimica Acta, Vol. 66, No. 5, 745–758. | |
dc.relation.referencesen | 4. Averina, Y. M. (2016). Intensifikacyya processa aeracii pri udalenii ionov geleza iz vody [Intensification of the aeration process during the removal of iron ions from water] (Extended abstract of candidate’s thesis). Russian University of Chemical Technology named after D. I. Mendeleev. Moskwa (in Russia). | |
dc.relation.referencesen | 5. Yavorskiy, V., Kalymon, Ya., Rubai, O. (2015). Kinetics of ferrum (II) ions oxidation by air oxygen in water in horizontal absorber withbucket-like dispersers. Chemistry & Chemical Technology, Vol. 9, No. 4, 503–507. https://doi.org/10.23939/chcht09.04.503. | |
dc.relation.referencesen | 6. Zolotova, Ye. F., Ass, G. Yu. (1975). Ochistka vody ot zheleza, margantsa, ftora i serovodoroda [Water purification from iron, manganese, fluorine and hydrogen sulfide]. Moskwa: Stroyizdat, 176 p. (in Russia). | |
dc.relation.referencesen | 7. Golovin, V. L. (2003) Problemy ochistki podzemnykh vod ot ustoychivykh form zheleza [Problems of groundwater treatment from stable forms of iron]. Melioratsiya i vodnoye khozyaystvo, No. 6, 39–41 (in Russia). | |
dc.relation.referencesen | 8. Orlov, V., Kvartenko, O., Martynov, S., Hordiyenko, Yu. (2003). Znezaliznennya pidzemnykh vod dlya pytnykh tsiley [Deironing of groundwater for drinking purposes. UDUVGP, Exactly]. UDUVHP, Rivne (in Ukrainian). | |
dc.relation.referencesen | 9. Howe, K., Hand, D., Crittendenetal, J. (2012). Principles of water treatment. Hoboken, New Jersey: John Wiley & Sons, Inc., 674 p. | |
dc.relation.referencesen | 10. Dzyubo, V. V., Alferova, L. I. (2002). Izucheniye kineticheskikh parametrov protsessa aeratsiidegazatsii podzemnykh vod [Study of the kinetic parameters of the process of aeration-degassing of groundwater] Vesti Tomskogo gos. arkh.-str. un-ta: Tomsk, No. 1 (6), 171–181 (in Russia). | |
dc.relation.referencesen | 11. Gomelya, M., Tverdokhlib, M., Shabliy, T., Radovenchyk, V., Linyucheva, O. (2021). Sorbent-Catalyst for Acceleration of The Iron Oxidation. Journal of Ecological Engineering, 22(3), 221–230. DOI: 10.12911/22998993/133030. | |
dc.relation.referencesen | 12. Averina, J. M., Zhukov, D. Y., Kurbatov, A. Y., Kaliakina, G. E., Panfilov, V. I. (2018). Methods of intensification of iron-containing natural water purification processes. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 18, 345–350. | |
dc.relation.referencesen | 13. Yavorskiy, V., Helesh, A. (2015). Theoretical analysis of efficiency of horizontal apparatus with bucketlike dispersers in the dust trapping system. Chemistry & Chemical Technology, Vol. 9, No. 4, 471–478. https://doi.org/10.23939/chcht09.04.471. | |
dc.relation.referencesen | 14. DSTU ISO 633262003 "Spektrometrychnyy metod vyznachennya ferumu z vykorystannyam 1,10 fenantrolinu" ["Spectrometric method for the determination of iron using 1.10 phenanthroline"] (in Ukrainian). | |
dc.relation.referencesen | 15. Kalymon, Ya. A., Znak, Z. O., Helesh, A. B., Savchuk, L. V. (2018). Doslidzhennya doslidzhennya protsesu pohlynannya v aparati z sutsilʹnym barbotazhnym sharom [Research study of the absorption process in the apparatus with a continuous bubbling layer]. Voprosy Khimii i Khimicheskoi Tekhnologii, No. (5), 102–110 (in Ukrainian). | |
dc.relation.uri | https://doi.org/10.1016/j.chemosphere.2007.02.015 | |
dc.relation.uri | https://doi.org/10.23939/chcht09.04.503 | |
dc.relation.uri | https://doi.org/10.23939/chcht09.04.471 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.subject | абсорбція | |
dc.subject | кисень | |
dc.subject | підземні води | |
dc.subject | деферизація | |
dc.subject | масообмінна апаратура | |
dc.subject | absorption | |
dc.subject | oxygen | |
dc.subject | groundwater | |
dc.subject | deironing | |
dc.subject | mass exchange apparatus | |
dc.title | Вибір масообмінного апарата для деферизації підземних вод | |
dc.title.alternative | Choice of mass exchange apparatus for groundwater deironing | |
dc.type | Article |
Files
License bundle
1 - 1 of 1