Вибір масообмінного апарата для деферизації підземних вод

dc.citation.epage35
dc.citation.issue1
dc.citation.spage29
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorКалимон, Я. А.
dc.contributor.authorГелеш, А. Б.
dc.contributor.authorСлюзар, А. В.
dc.contributor.authorКурилець, О. Г.
dc.contributor.authorKalymon, Ya. A.
dc.contributor.authorHelesh, A. B.
dc.contributor.authorSlyuzar, A. V.
dc.contributor.authorKurylets, O. H.
dc.coverage.placenameLviv
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T09:22:53Z
dc.date.available2024-01-22T09:22:53Z
dc.date.created2020-02-21
dc.date.issued2020-02-21
dc.description.abstractДосліджено абсорбцію кисню у горизонтальному абсорбері із ковшоподібними диспергаторами (ГАКД) та у вертикальному апараті з барботажним шаром (ВАБШ). Показано, що ці процеси відбуваються за законом реакцій першого порядку. Встановлено, що за газовмісту 0,05 та діаметра бульбашок 0,002 м константа швидкості абсорбції у 46,5 разу більша у ГАКД, ніж у ВАБШ. Рекомендовано для деферизації води за pH < 6 використовувати апарат із суцільним барботажним шаром, а за pH більше ніж 6,0 – ГАКД.
dc.description.abstractThe absorption of air oxygen by water in the horizontal absorber with bucket-shaped dispersants (HABD) and the vertical apparatus with a continuous bubbling layer (VABL) was studied. It is shown that these processes occur according to the law of First-Order Reactions. It was found that the constant absorption rate is 46.5 times higher in HABD than in VABL at a gas content of 0.05 and a bubble diameter of 0.002 m. It is recommended to use the VABL device for water deironing at pH < 6, and for pH greater than 6.0 – HABD.
dc.format.extent29-35
dc.format.pages7
dc.identifier.citationВибір масообмінного апарата для деферизації підземних вод / Я. А. Калимон, А. Б. Гелеш, А. В. Слюзар, О. Г. Курилець // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Том 5. — № 1. — С. 29–35.
dc.identifier.citationenChoice of mass exchange apparatus for groundwater deironing / Ya. A. Kalymon, A. B. Helesh, A. V. Slyuzar, O. H. Kurylets // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 5. — No 1. — P. 29–35.
dc.identifier.doidoi.org/10.23939/ctas2022.01.029
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60936
dc.language.isouk
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 1 (5), 2022
dc.relation.references1. Yavorsʹkyy, V. T., Savchuk, L. V., Rubay, O. I. (2011). Perspektyvni napryamky ochyshchennya sverdlovynnykh vod vid spoluk Ferumu [Promising directions of well water purification from iron compounds]. Visnyk NU “Lʹvivsʹka politekhnika”, Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya, No. 70, 50–54 (in Ukrainian).
dc.relation.references2. Morgan, B., Lahav, О. (2007). The effect of pH on the kinetics of spontaneous Fe(II) oxidation by O2 in aqueous solution – basic principles and a simple heuristic description. Chemosphere. Vol. 68, No. 11, 2080–2084. https://doi.org/10.1016/j.chemosphere.2007.02.015
dc.relation.references3. Gunnars, A., Blomqvist, S., Johansson, P., Andersson, C. (2002). Formation of Fe(III) oxyhydroxide colloids in freshwater and brackish seawater, with incorporation of phosphate and calcium. Geochimica et Cosmochimica Acta, Vol. 66, No. 5, 745–758.
dc.relation.references4. Аverina, Y. М. (2016). Intensifikacyya processa aeracii pri udalenii ionov geleza iz vody [Intensification of the aeration process during the removal of iron ions from water] (Extended abstract of candidate’s thesis). Russian University of Chemical Technology named after D. I. Mendeleev. Moskwa (in Russia).
dc.relation.references5. Yavorskiy, V., Kalymon, Ya., Rubai, O. (2015). Kinetics of ferrum (II) ions oxidation by air oxygen in water in horizontal absorber withbucket-like dispersers. Chemistry & Chemical Technology, Vol. 9, No. 4, 503–507. https://doi.org/10.23939/chcht09.04.503.
dc.relation.references6. Zolotova, Ye. F., Ass, G. Yu. (1975). Ochistka vody ot zheleza, margantsa, ftora i serovodoroda [Water purification from iron, manganese, fluorine and hydrogen sulfide]. Moskwa: Stroyizdat, 176 p. (in Russia).
dc.relation.references7. Golovin, V. L. (2003) Problemy ochistki podzemnykh vod ot ustoychivykh form zheleza [Problems of groundwater treatment from stable forms of iron]. Melioratsiya i vodnoye khozyaystvo, No. 6, 39–41 (in Russia).
dc.relation.references8. Orlov, V., Kvartenko, O., Martynov, S., Hordiyenko, Yu. (2003). Znezaliznennya pidzemnykh vod dlya pytnykh tsiley [Deironing of groundwater for drinking purposes. UDUVGP, Exactly]. UDUVHP, Rivne (in Ukrainian).
dc.relation.references9. Howe, K., Hand, D., Crittendenetal, J. (2012). Principles of water treatment. Hoboken, New Jersey: John Wiley & Sons, Inc., 674 p.
dc.relation.references10. Dzyubo, V. V., Alferova, L. I. (2002). Izucheniye kineticheskikh parametrov protsessa aeratsiidegazatsii podzemnykh vod [Study of the kinetic parameters of the process of aeration-degassing of groundwater] Vesti Tomskogo gos. arkh.-str. un-ta: Tomsk, No. 1 (6), 171–181 (in Russia).
dc.relation.references11. Gomelya, M., Tverdokhlib, M., Shabliy, T., Radovenchyk, V., Linyucheva, O. (2021). Sorbent-Catalyst for Acceleration of The Iron Oxidation. Journal of Ecological Engineering, 22(3), 221–230. DOI: 10.12911/22998993/133030.
dc.relation.references12. Averina, J. M., Zhukov, D. Y., Kurbatov, A. Y., Kaliakina, G. E., Panfilov, V. I. (2018). Methods of intensification of iron-containing natural water purification processes. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 18, 345–350.
dc.relation.references13. Yavorskiy, V., Helesh, A. (2015). Theoretical analysis of efficiency of horizontal apparatus with bucketlike dispersers in the dust trapping system. Chemistry & Chemical Technology, Vol. 9, No. 4, 471–478. https://doi.org/10.23939/chcht09.04.471.
dc.relation.references14. DSTU ISO 633262003 “Spektrometrychnyy metod vyznachennya ferumu z vykorystannyam 1,10 fenantrolinu” [“Spectrometric method for the determination of iron using 1.10 phenanthroline”] (in Ukrainian).
dc.relation.references15. Kalymon, Ya. A., Znak, Z. O., Helesh, A. B., Savchuk, L. V. (2018). Doslidzhennya doslidzhennya protsesu pohlynannya v aparati z sutsilʹnym barbotazhnym sharom [Research study of the absorption process in the apparatus with a continuous bubbling layer]. Voprosy Khimii i Khimicheskoi Tekhnologii, No. (5), 102–110 (in Ukrainian).
dc.relation.referencesen1. Yavorsʹkyy, V. T., Savchuk, L. V., Rubay, O. I. (2011). Perspektyvni napryamky ochyshchennya sverdlovynnykh vod vid spoluk Ferumu [Promising directions of well water purification from iron compounds]. Visnyk NU "Lʹvivsʹka politekhnika", Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya, No. 70, 50–54 (in Ukrainian).
dc.relation.referencesen2. Morgan, B., Lahav, O. (2007). The effect of pH on the kinetics of spontaneous Fe(II) oxidation by O2 in aqueous solution – basic principles and a simple heuristic description. Chemosphere. Vol. 68, No. 11, 2080–2084. https://doi.org/10.1016/j.chemosphere.2007.02.015
dc.relation.referencesen3. Gunnars, A., Blomqvist, S., Johansson, P., Andersson, C. (2002). Formation of Fe(III) oxyhydroxide colloids in freshwater and brackish seawater, with incorporation of phosphate and calcium. Geochimica et Cosmochimica Acta, Vol. 66, No. 5, 745–758.
dc.relation.referencesen4. Averina, Y. M. (2016). Intensifikacyya processa aeracii pri udalenii ionov geleza iz vody [Intensification of the aeration process during the removal of iron ions from water] (Extended abstract of candidate’s thesis). Russian University of Chemical Technology named after D. I. Mendeleev. Moskwa (in Russia).
dc.relation.referencesen5. Yavorskiy, V., Kalymon, Ya., Rubai, O. (2015). Kinetics of ferrum (II) ions oxidation by air oxygen in water in horizontal absorber withbucket-like dispersers. Chemistry & Chemical Technology, Vol. 9, No. 4, 503–507. https://doi.org/10.23939/chcht09.04.503.
dc.relation.referencesen6. Zolotova, Ye. F., Ass, G. Yu. (1975). Ochistka vody ot zheleza, margantsa, ftora i serovodoroda [Water purification from iron, manganese, fluorine and hydrogen sulfide]. Moskwa: Stroyizdat, 176 p. (in Russia).
dc.relation.referencesen7. Golovin, V. L. (2003) Problemy ochistki podzemnykh vod ot ustoychivykh form zheleza [Problems of groundwater treatment from stable forms of iron]. Melioratsiya i vodnoye khozyaystvo, No. 6, 39–41 (in Russia).
dc.relation.referencesen8. Orlov, V., Kvartenko, O., Martynov, S., Hordiyenko, Yu. (2003). Znezaliznennya pidzemnykh vod dlya pytnykh tsiley [Deironing of groundwater for drinking purposes. UDUVGP, Exactly]. UDUVHP, Rivne (in Ukrainian).
dc.relation.referencesen9. Howe, K., Hand, D., Crittendenetal, J. (2012). Principles of water treatment. Hoboken, New Jersey: John Wiley & Sons, Inc., 674 p.
dc.relation.referencesen10. Dzyubo, V. V., Alferova, L. I. (2002). Izucheniye kineticheskikh parametrov protsessa aeratsiidegazatsii podzemnykh vod [Study of the kinetic parameters of the process of aeration-degassing of groundwater] Vesti Tomskogo gos. arkh.-str. un-ta: Tomsk, No. 1 (6), 171–181 (in Russia).
dc.relation.referencesen11. Gomelya, M., Tverdokhlib, M., Shabliy, T., Radovenchyk, V., Linyucheva, O. (2021). Sorbent-Catalyst for Acceleration of The Iron Oxidation. Journal of Ecological Engineering, 22(3), 221–230. DOI: 10.12911/22998993/133030.
dc.relation.referencesen12. Averina, J. M., Zhukov, D. Y., Kurbatov, A. Y., Kaliakina, G. E., Panfilov, V. I. (2018). Methods of intensification of iron-containing natural water purification processes. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 18, 345–350.
dc.relation.referencesen13. Yavorskiy, V., Helesh, A. (2015). Theoretical analysis of efficiency of horizontal apparatus with bucketlike dispersers in the dust trapping system. Chemistry & Chemical Technology, Vol. 9, No. 4, 471–478. https://doi.org/10.23939/chcht09.04.471.
dc.relation.referencesen14. DSTU ISO 633262003 "Spektrometrychnyy metod vyznachennya ferumu z vykorystannyam 1,10 fenantrolinu" ["Spectrometric method for the determination of iron using 1.10 phenanthroline"] (in Ukrainian).
dc.relation.referencesen15. Kalymon, Ya. A., Znak, Z. O., Helesh, A. B., Savchuk, L. V. (2018). Doslidzhennya doslidzhennya protsesu pohlynannya v aparati z sutsilʹnym barbotazhnym sharom [Research study of the absorption process in the apparatus with a continuous bubbling layer]. Voprosy Khimii i Khimicheskoi Tekhnologii, No. (5), 102–110 (in Ukrainian).
dc.relation.urihttps://doi.org/10.1016/j.chemosphere.2007.02.015
dc.relation.urihttps://doi.org/10.23939/chcht09.04.503
dc.relation.urihttps://doi.org/10.23939/chcht09.04.471
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subjectабсорбція
dc.subjectкисень
dc.subjectпідземні води
dc.subjectдеферизація
dc.subjectмасообмінна апаратура
dc.subjectabsorption
dc.subjectoxygen
dc.subjectgroundwater
dc.subjectdeironing
dc.subjectmass exchange apparatus
dc.titleВибір масообмінного апарата для деферизації підземних вод
dc.title.alternativeChoice of mass exchange apparatus for groundwater deironing
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2022v5n1_Kalymon_Ya_A-Choice_of_mass_exchange_29-35.pdf
Size:
654.22 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2022v5n1_Kalymon_Ya_A-Choice_of_mass_exchange_29-35__COVER.png
Size:
463.88 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.88 KB
Format:
Plain Text
Description: