Вплив кальцію карбонату на експлуатаційні властивості полілактидних композитів
dc.citation.epage | 185 | |
dc.citation.issue | 1 | |
dc.citation.spage | 180 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Масюк, А. С. | |
dc.contributor.author | Левицький, В. Є. | |
dc.contributor.author | Кечур, Д. І. | |
dc.contributor.author | Куліш, Б. І. | |
dc.contributor.author | Катрук, Д. С. | |
dc.contributor.author | Masyuk, A. S. | |
dc.contributor.author | Levytskyi, V. Ye. | |
dc.contributor.author | Kechur, D. I. | |
dc.contributor.author | Kulish, B. I. | |
dc.contributor.author | Katruk, D. S. | |
dc.coverage.placename | Lviv | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-22T09:22:50Z | |
dc.date.available | 2024-01-22T09:22:50Z | |
dc.date.created | 2020-02-21 | |
dc.date.issued | 2020-02-21 | |
dc.description.abstract | Розроблено полілактидні композиційні матеріали із неорганічним наповнювачем – кальцію карбонатом, які модифіковано епоксидованою соєвою олією та гліцерином. На підставі модульно-деформаційного методу розрахунку визначено пружно-пластичні властивості розроблених полілактидних матеріалів і коефіцієнт структури. Виявлено зміну модуля деформації, модуля пружності, поверхневої твердості, теплостійкості за Віка і термомеханічних характеристик полілактидних композитів | |
dc.description.abstract | Polylactide composite materials with inorganic filler – calcium carbonate which have been modified with epoxidized soybean oil and glycerin have been developed. On the basis of the modular-deformation method of calculation the elastic-plastic properties of the developed polylactide materials and the coefficient of structure are determined. The change of the modulus of deformation, modulus of elasticity, surface hardness, Vicat softening point and thermomechanical characteristics of polylactide composites is revealed. | |
dc.format.extent | 180-185 | |
dc.format.pages | 6 | |
dc.identifier.citation | Вплив кальцію карбонату на експлуатаційні властивості полілактидних композитів / А. С. Масюк, В. Є. Левицький, Д. І. Кечур, Б. І. Куліш, Д. С. Катрук // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Том 5. — № 1. — С. 180–185. | |
dc.identifier.citationen | The effect of calcium carbonate on the performance properties of polylactide composites / A. S. Masyuk, V. Ye. Levytskyi, D. I. Kechur, B. I. Kulish, D. S. Katruk // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 5. — No 1. — P. 180–185. | |
dc.identifier.doi | doi.org/10.23939/ctas2022.01.180 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60929 | |
dc.language.iso | uk | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 1 (5), 2022 | |
dc.relation.references | 1. Agassant, J.-F., Avenas, P., Carreau, P. J., Vergnes, B., Vincent, M. (2017). Polymer Processing Principles and Modellin. Munich: Hanser, 320 p. | |
dc.relation.references | 2. Bouzouita, A., Notta-Cuvier, D., Delille, R., Lauro, F., Raquez, J.-M., Dubois, P. (2017). Design of toughened PLA based material for application in structuressubjected to severe loading conditions. Part 2. Quasi-static tensile tests and dynamic mechanical analysis at ambient and moderately high temperature, Polymer Testing, 57, 235–244. DOI: 10.1016/j.polymertesting. 2016.07.020 | |
dc.relation.references | 3. Hao, X., Kaschta, J., Schubert, D. W. (2016). Viscous and elastic properties of polylactide melts filled with silica particles: Effect of particle size and concentration, Composites Part B-Engineering, 89, 44–53. https://doi.org/10.1016/j.compositesb.2015.11.030 | |
dc.relation.references | 4. Armentano, I., Dottori, M., Fortunati, E., Mattioli, S., Kenny, J. M. (2010). Biodegradable polymer matrix nanocomposites for tissue engineering: A review, Polymer Degradation and Stability, 95, 2126–2146. https://doi.org/10.1016/j.polymdegradstab.2010.06.007. | |
dc.relation.references | 5. Auras, R., Harte, B., Selke, S. (2004). An overview of polylactides as packaging materials, Macromol. Biosci, 4, 835–864. DOI: 10.1002/mabi.200400043. | |
dc.relation.references | 6. Lopes, M. S., Jardini, A. L., Filho, R. M. (2012). Poly(lactic acid) production for tissue engineering Applications, Procedia Eng., 42, 1402–1413. https://doi.org/10.1016/j.proeng.2012.07.534. | |
dc.relation.references | 7. Ana Nazareth Silva, Talita Cipriano, H. M. da F. Thomé da Asilva, Gustavo Monteiro (2014). Thermal, Rheological and Morphological Properties of Poly(Lactic Acid) (PLA) and Talc Composites, Polímeros, 24, 276–282. DOI: 10.4322/polimeros.2014.067 | |
dc.relation.references | 8. Levytskyi, V. Ye., Masyuk, A. S., Katruk, D. S., Boyko, M. V. (2021). Tekhnolohichni osoblyvosti oderzhannya ekstruziynykh vyrobiv z polilaktyd, Chemistry, Technology and Application of Substances, 4, 179–185. https://doi.org/10.23939/ctas2021.02.179 | |
dc.relation.references | 9. Masyuk, А. S., Levytskyi, V. E., Kysil, K. V., Bilyi, L. М., Humenetskyi, T. V. (2021). Influence of Calcium Phosphates on the Morphology and Properties of Polylactide Composites. Materials Science, 56, 870–876. https://doi.org/10.1007/s11003-021-00506-5. | |
dc.relation.references | 10. Xingxun, Liu, Tongxin, Wang, Laurence, C. Chow, Mingshu Yang, and James, W. Mitchell (2014). Effects of Inorganic Fillers on the Thermal and Mechanical Properties of Poly(lactic acid). International Journal of Polymer Science, 1–8. https://doi.org/10.1155/2014/827028. | |
dc.relation.references | 11. Shanshan, Lv, Xiaojing, Liu, Jiyou, Gu, Yang, Jiang, Haiyan, Tan, Yanhua, Zhang (2017). Effect of glycerol introduced into PLA based composites on the UV weathering behavior, Construction and Building Materials, 144, 525–531. https://doi.org/10.1016/j.conbuildmat.2017.03.209. | |
dc.relation.references | 12. Zhu, Xiong, Yong, Yang, Jianxiang, Feng, Xiaomin, Zhang, Chuanzhi, Zhang, Zhaobin, Tang, Jin, Zhu (2013). Preparation and characterization of poly(lactic acid)/starch composites toughened with epoxidized soybean oil, Carbohydrate Polymers, 92, 810–816. https://doi.org/10.1016/j.carbpol.2012.09.007. | |
dc.relation.references | 13. Guo, J., Wang, J., He, Y., Sun, H., Chen, X., Zheng, Q., Xie, H. (2020). Triply Biobased Thermoplastic Composites of Polylactide/Succinylated Lignin/Epoxidized Soybean Oil. Polymers (Basel), 12, 632–639. DOI: 10.3390/polym12030632 | |
dc.relation.references | 14. Levytskyi, V. E., Маsyuk, A. S., Bilyi, L. М., Bialopiotrowicz, T., Humenetskyi, T. V. & Shybanova, A. М. (2020). Influence of Silicate Nucleation Agent Modified with Polyvinylpyrrolidone on the Morphology and Properties of Polypropylene. Materials Science, 55, 555–562. | |
dc.relation.references | 15. Liyv, E. (1983). Metodika opredeleniya fizikomehanicheskih svoystv polimernyih kompozitov putem vnedreniya konusoobraznogo indentora, Tallyn: еstNYYNTY, 27 p. | |
dc.relation.referencesen | 1. Agassant, J.-F., Avenas, P., Carreau, P. J., Vergnes, B., Vincent, M. (2017). Polymer Processing Principles and Modellin. Munich: Hanser, 320 p. | |
dc.relation.referencesen | 2. Bouzouita, A., Notta-Cuvier, D., Delille, R., Lauro, F., Raquez, J.-M., Dubois, P. (2017). Design of toughened PLA based material for application in structuressubjected to severe loading conditions. Part 2. Quasi-static tensile tests and dynamic mechanical analysis at ambient and moderately high temperature, Polymer Testing, 57, 235–244. DOI: 10.1016/j.polymertesting. 2016.07.020 | |
dc.relation.referencesen | 3. Hao, X., Kaschta, J., Schubert, D. W. (2016). Viscous and elastic properties of polylactide melts filled with silica particles: Effect of particle size and concentration, Composites Part B-Engineering, 89, 44–53. https://doi.org/10.1016/j.compositesb.2015.11.030 | |
dc.relation.referencesen | 4. Armentano, I., Dottori, M., Fortunati, E., Mattioli, S., Kenny, J. M. (2010). Biodegradable polymer matrix nanocomposites for tissue engineering: A review, Polymer Degradation and Stability, 95, 2126–2146. https://doi.org/10.1016/j.polymdegradstab.2010.06.007. | |
dc.relation.referencesen | 5. Auras, R., Harte, B., Selke, S. (2004). An overview of polylactides as packaging materials, Macromol. Biosci, 4, 835–864. DOI: 10.1002/mabi.200400043. | |
dc.relation.referencesen | 6. Lopes, M. S., Jardini, A. L., Filho, R. M. (2012). Poly(lactic acid) production for tissue engineering Applications, Procedia Eng., 42, 1402–1413. https://doi.org/10.1016/j.proeng.2012.07.534. | |
dc.relation.referencesen | 7. Ana Nazareth Silva, Talita Cipriano, H. M. da F. Thomé da Asilva, Gustavo Monteiro (2014). Thermal, Rheological and Morphological Properties of Poly(Lactic Acid) (PLA) and Talc Composites, Polímeros, 24, 276–282. DOI: 10.4322/polimeros.2014.067 | |
dc.relation.referencesen | 8. Levytskyi, V. Ye., Masyuk, A. S., Katruk, D. S., Boyko, M. V. (2021). Tekhnolohichni osoblyvosti oderzhannya ekstruziynykh vyrobiv z polilaktyd, Chemistry, Technology and Application of Substances, 4, 179–185. https://doi.org/10.23939/ctas2021.02.179 | |
dc.relation.referencesen | 9. Masyuk, A. S., Levytskyi, V. E., Kysil, K. V., Bilyi, L. M., Humenetskyi, T. V. (2021). Influence of Calcium Phosphates on the Morphology and Properties of Polylactide Composites. Materials Science, 56, 870–876. https://doi.org/10.1007/s11003-021-00506-5. | |
dc.relation.referencesen | 10. Xingxun, Liu, Tongxin, Wang, Laurence, C. Chow, Mingshu Yang, and James, W. Mitchell (2014). Effects of Inorganic Fillers on the Thermal and Mechanical Properties of Poly(lactic acid). International Journal of Polymer Science, 1–8. https://doi.org/10.1155/2014/827028. | |
dc.relation.referencesen | 11. Shanshan, Lv, Xiaojing, Liu, Jiyou, Gu, Yang, Jiang, Haiyan, Tan, Yanhua, Zhang (2017). Effect of glycerol introduced into PLA based composites on the UV weathering behavior, Construction and Building Materials, 144, 525–531. https://doi.org/10.1016/j.conbuildmat.2017.03.209. | |
dc.relation.referencesen | 12. Zhu, Xiong, Yong, Yang, Jianxiang, Feng, Xiaomin, Zhang, Chuanzhi, Zhang, Zhaobin, Tang, Jin, Zhu (2013). Preparation and characterization of poly(lactic acid)/starch composites toughened with epoxidized soybean oil, Carbohydrate Polymers, 92, 810–816. https://doi.org/10.1016/j.carbpol.2012.09.007. | |
dc.relation.referencesen | 13. Guo, J., Wang, J., He, Y., Sun, H., Chen, X., Zheng, Q., Xie, H. (2020). Triply Biobased Thermoplastic Composites of Polylactide/Succinylated Lignin/Epoxidized Soybean Oil. Polymers (Basel), 12, 632–639. DOI: 10.3390/polym12030632 | |
dc.relation.referencesen | 14. Levytskyi, V. E., Masyuk, A. S., Bilyi, L. M., Bialopiotrowicz, T., Humenetskyi, T. V. & Shybanova, A. M. (2020). Influence of Silicate Nucleation Agent Modified with Polyvinylpyrrolidone on the Morphology and Properties of Polypropylene. Materials Science, 55, 555–562. | |
dc.relation.referencesen | 15. Liyv, E. (1983). Metodika opredeleniya fizikomehanicheskih svoystv polimernyih kompozitov putem vnedreniya konusoobraznogo indentora, Tallyn: estNYYNTY, 27 p. | |
dc.relation.uri | https://doi.org/10.1016/j.compositesb.2015.11.030 | |
dc.relation.uri | https://doi.org/10.1016/j.polymdegradstab.2010.06.007 | |
dc.relation.uri | https://doi.org/10.1016/j.proeng.2012.07.534 | |
dc.relation.uri | https://doi.org/10.23939/ctas2021.02.179 | |
dc.relation.uri | https://doi.org/10.1007/s11003-021-00506-5 | |
dc.relation.uri | https://doi.org/10.1155/2014/827028 | |
dc.relation.uri | https://doi.org/10.1016/j.conbuildmat.2017.03.209 | |
dc.relation.uri | https://doi.org/10.1016/j.carbpol.2012.09.007 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.subject | полілактид | |
dc.subject | кальцію карбонат | |
dc.subject | композит | |
dc.subject | епоксидована соєва олія | |
dc.subject | polylactide | |
dc.subject | calcium carbonate | |
dc.subject | composite | |
dc.subject | epoxidized soybean oil | |
dc.title | Вплив кальцію карбонату на експлуатаційні властивості полілактидних композитів | |
dc.title.alternative | The effect of calcium carbonate on the performance properties of polylactide composites | |
dc.type | Article |
Files
License bundle
1 - 1 of 1