Вплив кальцію карбонату на експлуатаційні властивості полілактидних композитів

dc.citation.epage185
dc.citation.issue1
dc.citation.spage180
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorМасюк, А. С.
dc.contributor.authorЛевицький, В. Є.
dc.contributor.authorКечур, Д. І.
dc.contributor.authorКуліш, Б. І.
dc.contributor.authorКатрук, Д. С.
dc.contributor.authorMasyuk, A. S.
dc.contributor.authorLevytskyi, V. Ye.
dc.contributor.authorKechur, D. I.
dc.contributor.authorKulish, B. I.
dc.contributor.authorKatruk, D. S.
dc.coverage.placenameLviv
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T09:22:50Z
dc.date.available2024-01-22T09:22:50Z
dc.date.created2020-02-21
dc.date.issued2020-02-21
dc.description.abstractРозроблено полілактидні композиційні матеріали із неорганічним наповнювачем – кальцію карбонатом, які модифіковано епоксидованою соєвою олією та гліцерином. На підставі модульно-деформаційного методу розрахунку визначено пружно-пластичні властивості розроблених полілактидних матеріалів і коефіцієнт структури. Виявлено зміну модуля деформації, модуля пружності, поверхневої твердості, теплостійкості за Віка і термомеханічних характеристик полілактидних композитів
dc.description.abstractPolylactide composite materials with inorganic filler – calcium carbonate which have been modified with epoxidized soybean oil and glycerin have been developed. On the basis of the modular-deformation method of calculation the elastic-plastic properties of the developed polylactide materials and the coefficient of structure are determined. The change of the modulus of deformation, modulus of elasticity, surface hardness, Vicat softening point and thermomechanical characteristics of polylactide composites is revealed.
dc.format.extent180-185
dc.format.pages6
dc.identifier.citationВплив кальцію карбонату на експлуатаційні властивості полілактидних композитів / А. С. Масюк, В. Є. Левицький, Д. І. Кечур, Б. І. Куліш, Д. С. Катрук // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Том 5. — № 1. — С. 180–185.
dc.identifier.citationenThe effect of calcium carbonate on the performance properties of polylactide composites / A. S. Masyuk, V. Ye. Levytskyi, D. I. Kechur, B. I. Kulish, D. S. Katruk // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 5. — No 1. — P. 180–185.
dc.identifier.doidoi.org/10.23939/ctas2022.01.180
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60929
dc.language.isouk
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 1 (5), 2022
dc.relation.references1. Agassant, J.-F., Avenas, P., Carreau, P. J., Vergnes, B., Vincent, M. (2017). Polymer Processing Principles and Modellin. Munich: Hanser, 320 p.
dc.relation.references2. Bouzouita, A., Notta-Cuvier, D., Delille, R., Lauro, F., Raquez, J.-M., Dubois, P. (2017). Design of toughened PLA based material for application in structuressubjected to severe loading conditions. Part 2. Quasi-static tensile tests and dynamic mechanical analysis at ambient and moderately high temperature, Polymer Testing, 57, 235–244. DOI: 10.1016/j.polymertesting. 2016.07.020
dc.relation.references3. Hao, X., Kaschta, J., Schubert, D. W. (2016). Viscous and elastic properties of polylactide melts filled with silica particles: Effect of particle size and concentration, Composites Part B-Engineering, 89, 44–53. https://doi.org/10.1016/j.compositesb.2015.11.030
dc.relation.references4. Armentano, I., Dottori, M., Fortunati, E., Mattioli, S., Kenny, J. M. (2010). Biodegradable polymer matrix nanocomposites for tissue engineering: A review, Polymer Degradation and Stability, 95, 2126–2146. https://doi.org/10.1016/j.polymdegradstab.2010.06.007.
dc.relation.references5. Auras, R., Harte, B., Selke, S. (2004). An overview of polylactides as packaging materials, Macromol. Biosci, 4, 835–864. DOI: 10.1002/mabi.200400043.
dc.relation.references6. Lopes, M. S., Jardini, A. L., Filho, R. M. (2012). Poly(lactic acid) production for tissue engineering Applications, Procedia Eng., 42, 1402–1413. https://doi.org/10.1016/j.proeng.2012.07.534.
dc.relation.references7. Ana Nazareth Silva, Talita Cipriano, H. M. da F. Thomé da Asilva, Gustavo Monteiro (2014). Thermal, Rheological and Morphological Properties of Poly(Lactic Acid) (PLA) and Talc Composites, Polímeros, 24, 276–282. DOI: 10.4322/polimeros.2014.067
dc.relation.references8. Levytskyi, V. Ye., Masyuk, A. S., Katruk, D. S., Boyko, M. V. (2021). Tekhnolohichni osoblyvosti oderzhannya ekstruziynykh vyrobiv z polilaktyd, Chemistry, Technology and Application of Substances, 4, 179–185. https://doi.org/10.23939/ctas2021.02.179
dc.relation.references9. Masyuk, А. S., Levytskyi, V. E., Kysil, K. V., Bilyi, L. М., Humenetskyi, T. V. (2021). Influence of Calcium Phosphates on the Morphology and Properties of Polylactide Composites. Materials Science, 56, 870–876. https://doi.org/10.1007/s11003-021-00506-5.
dc.relation.references10. Xingxun, Liu, Tongxin, Wang, Laurence, C. Chow, Mingshu Yang, and James, W. Mitchell (2014). Effects of Inorganic Fillers on the Thermal and Mechanical Properties of Poly(lactic acid). International Journal of Polymer Science, 1–8. https://doi.org/10.1155/2014/827028.
dc.relation.references11. Shanshan, Lv, Xiaojing, Liu, Jiyou, Gu, Yang, Jiang, Haiyan, Tan, Yanhua, Zhang (2017). Effect of glycerol introduced into PLA based composites on the UV weathering behavior, Construction and Building Materials, 144, 525–531. https://doi.org/10.1016/j.conbuildmat.2017.03.209.
dc.relation.references12. Zhu, Xiong, Yong, Yang, Jianxiang, Feng, Xiaomin, Zhang, Chuanzhi, Zhang, Zhaobin, Tang, Jin, Zhu (2013). Preparation and characterization of poly(lactic acid)/starch composites toughened with epoxidized soybean oil, Carbohydrate Polymers, 92, 810–816. https://doi.org/10.1016/j.carbpol.2012.09.007.
dc.relation.references13. Guo, J., Wang, J., He, Y., Sun, H., Chen, X., Zheng, Q., Xie, H. (2020). Triply Biobased Thermoplastic Composites of Polylactide/Succinylated Lignin/Epoxidized Soybean Oil. Polymers (Basel), 12, 632–639. DOI: 10.3390/polym12030632
dc.relation.references14. Levytskyi, V. E., Маsyuk, A. S., Bilyi, L. М., Bialopiotrowicz, T., Humenetskyi, T. V. & Shybanova, A. М. (2020). Influence of Silicate Nucleation Agent Modified with Polyvinylpyrrolidone on the Morphology and Properties of Polypropylene. Materials Science, 55, 555–562.
dc.relation.references15. Liyv, E. (1983). Metodika opredeleniya fizikomehanicheskih svoystv polimernyih kompozitov putem vnedreniya konusoobraznogo indentora, Tallyn: еstNYYNTY, 27 p.
dc.relation.referencesen1. Agassant, J.-F., Avenas, P., Carreau, P. J., Vergnes, B., Vincent, M. (2017). Polymer Processing Principles and Modellin. Munich: Hanser, 320 p.
dc.relation.referencesen2. Bouzouita, A., Notta-Cuvier, D., Delille, R., Lauro, F., Raquez, J.-M., Dubois, P. (2017). Design of toughened PLA based material for application in structuressubjected to severe loading conditions. Part 2. Quasi-static tensile tests and dynamic mechanical analysis at ambient and moderately high temperature, Polymer Testing, 57, 235–244. DOI: 10.1016/j.polymertesting. 2016.07.020
dc.relation.referencesen3. Hao, X., Kaschta, J., Schubert, D. W. (2016). Viscous and elastic properties of polylactide melts filled with silica particles: Effect of particle size and concentration, Composites Part B-Engineering, 89, 44–53. https://doi.org/10.1016/j.compositesb.2015.11.030
dc.relation.referencesen4. Armentano, I., Dottori, M., Fortunati, E., Mattioli, S., Kenny, J. M. (2010). Biodegradable polymer matrix nanocomposites for tissue engineering: A review, Polymer Degradation and Stability, 95, 2126–2146. https://doi.org/10.1016/j.polymdegradstab.2010.06.007.
dc.relation.referencesen5. Auras, R., Harte, B., Selke, S. (2004). An overview of polylactides as packaging materials, Macromol. Biosci, 4, 835–864. DOI: 10.1002/mabi.200400043.
dc.relation.referencesen6. Lopes, M. S., Jardini, A. L., Filho, R. M. (2012). Poly(lactic acid) production for tissue engineering Applications, Procedia Eng., 42, 1402–1413. https://doi.org/10.1016/j.proeng.2012.07.534.
dc.relation.referencesen7. Ana Nazareth Silva, Talita Cipriano, H. M. da F. Thomé da Asilva, Gustavo Monteiro (2014). Thermal, Rheological and Morphological Properties of Poly(Lactic Acid) (PLA) and Talc Composites, Polímeros, 24, 276–282. DOI: 10.4322/polimeros.2014.067
dc.relation.referencesen8. Levytskyi, V. Ye., Masyuk, A. S., Katruk, D. S., Boyko, M. V. (2021). Tekhnolohichni osoblyvosti oderzhannya ekstruziynykh vyrobiv z polilaktyd, Chemistry, Technology and Application of Substances, 4, 179–185. https://doi.org/10.23939/ctas2021.02.179
dc.relation.referencesen9. Masyuk, A. S., Levytskyi, V. E., Kysil, K. V., Bilyi, L. M., Humenetskyi, T. V. (2021). Influence of Calcium Phosphates on the Morphology and Properties of Polylactide Composites. Materials Science, 56, 870–876. https://doi.org/10.1007/s11003-021-00506-5.
dc.relation.referencesen10. Xingxun, Liu, Tongxin, Wang, Laurence, C. Chow, Mingshu Yang, and James, W. Mitchell (2014). Effects of Inorganic Fillers on the Thermal and Mechanical Properties of Poly(lactic acid). International Journal of Polymer Science, 1–8. https://doi.org/10.1155/2014/827028.
dc.relation.referencesen11. Shanshan, Lv, Xiaojing, Liu, Jiyou, Gu, Yang, Jiang, Haiyan, Tan, Yanhua, Zhang (2017). Effect of glycerol introduced into PLA based composites on the UV weathering behavior, Construction and Building Materials, 144, 525–531. https://doi.org/10.1016/j.conbuildmat.2017.03.209.
dc.relation.referencesen12. Zhu, Xiong, Yong, Yang, Jianxiang, Feng, Xiaomin, Zhang, Chuanzhi, Zhang, Zhaobin, Tang, Jin, Zhu (2013). Preparation and characterization of poly(lactic acid)/starch composites toughened with epoxidized soybean oil, Carbohydrate Polymers, 92, 810–816. https://doi.org/10.1016/j.carbpol.2012.09.007.
dc.relation.referencesen13. Guo, J., Wang, J., He, Y., Sun, H., Chen, X., Zheng, Q., Xie, H. (2020). Triply Biobased Thermoplastic Composites of Polylactide/Succinylated Lignin/Epoxidized Soybean Oil. Polymers (Basel), 12, 632–639. DOI: 10.3390/polym12030632
dc.relation.referencesen14. Levytskyi, V. E., Masyuk, A. S., Bilyi, L. M., Bialopiotrowicz, T., Humenetskyi, T. V. & Shybanova, A. M. (2020). Influence of Silicate Nucleation Agent Modified with Polyvinylpyrrolidone on the Morphology and Properties of Polypropylene. Materials Science, 55, 555–562.
dc.relation.referencesen15. Liyv, E. (1983). Metodika opredeleniya fizikomehanicheskih svoystv polimernyih kompozitov putem vnedreniya konusoobraznogo indentora, Tallyn: estNYYNTY, 27 p.
dc.relation.urihttps://doi.org/10.1016/j.compositesb.2015.11.030
dc.relation.urihttps://doi.org/10.1016/j.polymdegradstab.2010.06.007
dc.relation.urihttps://doi.org/10.1016/j.proeng.2012.07.534
dc.relation.urihttps://doi.org/10.23939/ctas2021.02.179
dc.relation.urihttps://doi.org/10.1007/s11003-021-00506-5
dc.relation.urihttps://doi.org/10.1155/2014/827028
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2017.03.209
dc.relation.urihttps://doi.org/10.1016/j.carbpol.2012.09.007
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subjectполілактид
dc.subjectкальцію карбонат
dc.subjectкомпозит
dc.subjectепоксидована соєва олія
dc.subjectpolylactide
dc.subjectcalcium carbonate
dc.subjectcomposite
dc.subjectepoxidized soybean oil
dc.titleВплив кальцію карбонату на експлуатаційні властивості полілактидних композитів
dc.title.alternativeThe effect of calcium carbonate on the performance properties of polylactide composites
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2022v5n1_Masyuk_A_S-The_effect_of_calcium_180-185.pdf
Size:
700.31 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2022v5n1_Masyuk_A_S-The_effect_of_calcium_180-185__COVER.png
Size:
522.98 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.91 KB
Format:
Plain Text
Description: