Peculiarities of graft polymerization initiated from peroxidized surface of mineral nanoparticles

dc.citation.epage197
dc.citation.issue2
dc.citation.spage190
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorШевчук, О. М.
dc.contributor.authorБукартик, Н. М.
dc.contributor.authorЧобіт, М. Р.
dc.contributor.authorТокарев, В. С.
dc.contributor.authorShevchuk, O. M.
dc.contributor.authorBukartyk, N. M.
dc.contributor.authorChobit, M. R.
dc.contributor.authorTokarev, V. S.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2026-01-15T13:53:23Z
dc.date.created2024-10-10
dc.date.issued2024-10-10
dc.description.abstractДосліджено особливості прищепленої полімеризації різних за природою вінільних мономерів, ініційованої з поверхні мінеральних наночастинок SiO2, Fe3O4 та гідроксіапатиту, модифікованих пероксидвмісними кополімерами. Показано, що розвинена поверхня НЧ істотно впливає на кінетику процесу полімеризації. Порядок швидкості полімеризації за концентрацією ініціатора становить 0,58, а швидкість полімеризації, кількість прищепленого полімеру та ефективність прищеплення зростають зі збільшенням концентрації пероксидованих мінеральних НЧ у реакційній суміші.
dc.description.abstractThe peculiarities of graft polymerization of different nature vinyl monomers initiated from the surface of SiO2, Fe3O4, and hydroxyapatite nanoparticles modified by peroxidecontaining copolymers were studied. It was shown that the developed surface of NPs has a significant effect on the kinetics of the polymerization process. The order of polymerization rate with respect to initiator concentration is equal to 0.58. The polymerization rate, amount of grafted polymer and grafting efficiency increase with increasing concentration of peroxidized mineral nanoparticles in reaction mixture.
dc.format.extent190-197
dc.format.pages8
dc.identifier.citationPeculiarities of graft polymerization initiated from peroxidized surface of mineral nanoparticles / O. M. Shevchuk, N. M. Bukartyk, M. R. Chobit, V. S. Tokarev // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 7. — No 2. — P. 190–197.
dc.identifier.citation2015Peculiarities of graft polymerization initiated from peroxidized surface of mineral nanoparticles / Shevchuk O. M. та ін. // Chemistry, Technology and Application of Substances, Lviv. 2024. Vol 7. No 2. P. 190–197.
dc.identifier.citationenAPAShevchuk, O. M., Bukartyk, N. M., Chobit, M. R., & Tokarev, V. S. (2024). Peculiarities of graft polymerization initiated from peroxidized surface of mineral nanoparticles. Chemistry, Technology and Application of Substances, 7(2), 190-197. Lviv Politechnic Publishing House..
dc.identifier.citationenCHICAGOShevchuk O. M., Bukartyk N. M., Chobit M. R., Tokarev V. S. (2024) Peculiarities of graft polymerization initiated from peroxidized surface of mineral nanoparticles. Chemistry, Technology and Application of Substances (Lviv), vol. 7, no 2, pp. 190-197.
dc.identifier.doihttps://doi.org/10.23939/ctas2024.02.190
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/124456
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (7), 2024
dc.relation.references1. Alexandre, M., Dubois, P., Sun, T., Garces, J. M. & Jérôme R. (2002). Polyethylene-layered silicate nanocomposites prepared by the polymerization-filling technique: synthesis and mechanical properties. Polymer,43(8), 2123–2132. DOI: 10.1016/S0032-3861(02)00036-8
dc.relation.references2. Haeri, S.Z., Ramezanzadeh, B. & Asghari M.(2017). A novel fabrication of a high performance SiO2- graphene oxide (GO) nanohybrids: Characterization of thermal properties of epoxy nanocomposites filled withSiO2-GO nanohybrids. Journal of Colloid and Interface Science, 493, 111–122. DOI: 10.1016/j.jcis.2017.01.016
dc.relation.references3. Shevchuk, O., Tokarev, S., Serdiuk, V., Chobit, M., Nikitishyn, E., Dolynska, L., …Tokarev, V. (2015). Thin polymer films grafted to the solid surface with in situ synthesized CdS nanocrystals. Journal of Polymer Research, 22(9), 172. DOI:10.1007/s10965-015-0807-2.
dc.relation.references4. de Oliveira, A. D., Beatrice C. A. G. (2019). Polymer nanocomposites with different types of nanofiller. In S. Sivasankaran (Ed.) Nanocomposites – recent evolutions. IntechOpen. DOI: 10.5772/intechopen.73364.
dc.relation.references5. Huang, T.-C., Yeh, J.-M. & Lai, C.-Y. (2012). Polymer nanocomposite coatings. In F. Gao (Ed.), Advances in Polymer Nanocomposites. Types and Applications (pp. 605–638). Cambridge: Woodhead Publishing Limited.
dc.relation.references6. Mulvaney, P. (2001). Not All That’s Gold Does Glitter. MRS Bulletin 26, 1009–1014. DOI:10.1557/mrs2001.258.
dc.relation.references7. Crosby, A. & Lee, J.-Y. (2007). Polymer Nanocomposites: The “Nano” Effect on Mechanical Properties. Polymer Review, 47 (2), 217–229. DOI:10.1080/15583720701271278
dc.relation.references8. Ramanathan, T., Abdala, A. A. & Stankovich, S.(2008). Functionalized graphene sheets for polymer nanocomposites. Nature Nanotechnology, 3, 327–331. DOI:10.1038/nnano.2008.96.
dc.relation.references9. Haraguchi, K. & Takehisa T. (2002). Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/ de-swelling properties. Advanced Materials, 14(16),1120–1124. DOI: 1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9
dc.relation.references10. Zhang, Q., Zhang, L. & Lin J. (2017). Percolating behavior of nanoparticles in block copolymer host: hybrid particle-field simulations. Journal of Physical Chemistry C, 121(42), 23705–23715. DOI: 10.1021/acs.jpcc.7b07337
dc.relation.references11. Moniruzzaman, M. & Winey K. I. (2006). Polymer nanocomposites containing carbon nanotubes. Macromolecules, 39(16), 5194–5205. DOI: 10.1021/ma060733p
dc.relation.references12. de Leon, A. C., Rodier, B. J. & Bajamundi C. (2018). Plastic metal-free electric motor by 3D printing of graphene-polyamide powder. ACS Applied Energy Materials, 1(4), 1726–1733. DOI: 10.1021/acsaem.8b00240.
dc.relation.references13. Ashraf, M. A., Peng,W., Zare Y, & Rhee K. Y.(2018). Effects of size and aggregation/agglomeration of nanoparticles on the interfacial/interphase properties and tensile strength of polymer nanocomposites. Nanoscale Research Letters 13, 214. DOI: 10.1186/s11671-018-2624-0.
dc.relation.references14. Shevchuk, O., Wagenknecht, U., Wiessner, S., Bukartyk, N., Chobit, M. & Tokarev, V. (2015). Flameretardant polymer composites on the basis of modified magnesium hydroxide. Chemistry and Chemical Technology,9(2), 149–155. DOI: 10.23939/chcht09.02.149
dc.relation.references15. Hiremath, A., Murthy, A. A., Thipperudrappa, S. & Bharath, K. N. (2021). Nanoparticles filled polymer nanocomposites: a technological review. Cogent Engineering, 8(1), 1991229. DOI: 10.1080/23311916.2021.1991229.
dc.relation.references16. Althues, H., Henle, J. & Kaskel, S. (2007). Functional inorganic nanofillers for transparent polymers. Chemical Society Review, 36, 1454–1465. DOI:10.1039/B608177K.
dc.relation.references17. Kango, S., Kalia, S., Celli, A., Njuguna, J., Habibi, Y. & Kumar, R. (2013). Surface modification of inorganic nanoparticles for development of organicinorganic nanocomposites – A review. Progress in Polymer Science, 38, 1232–1261. DOI: 10.1016/j.progpolymsci.2013.02.003.
dc.relation.references18. Voronov, S., Tokarev V., Oduola, K., Lastukhin, Yu. (2000). Polyperoxide surfactants for interface modification and compatibilization of polymer colloidal systems. I. Synthesis and properties of polyperoxide surfactants. Journal of Applied Polymer Science, 76,1217–1227. DOI: 10.1002/(SICI)1097-4628(20000523)76:8<1217::AID-APP2>3.0.CO;2-F.
dc.relation.references19. Shevchuk, O. M., Bukartyk, N. M., Nadashkevych, Z. Ya., Tokarev V. S. (2019). Synthesis and properties of silica nanoparticles with functional polymer shell. Chemistry, Technology and Application of Substances, 2(1), 153–158. DOI: 10.23939/ctas2019.01.153.
dc.relation.references20. Serdiuk, V., Shevchuk, O., Bukartyk, N., Kovalenko, T., Borysiuk, A., Tokarev, V. (2021). Synthesis and properties of magnetite nanoparticles with peroxide-containing polymer shell and nanocomposites based on them. Journal of Applied Polymer Science,138(36), 50928. DOI: 10.1002/app.50928.
dc.relation.references21. Kong, Y., Jie, W., Yuan, W. C., Bao, L. Yu.(2007). A study on in vitro and in vivo bioactivity of nano hydroxyapatite/polymer biocomposite. Chinese Science Bulletin, 52(2), 267–271. DOI: 10.1007/s11434-007-0035-1
dc.relation.references22. Bagdasar’yan, Kh. S. (1968). Theory of freeradical polymerization. Jerusalem: Israel Program for Scientific Translations.
dc.relation.references23. Odian G. (2004). Principles of polymerization. Hoboken: JohnWiley& Sons, Inc.
dc.relation.referencesen1. Alexandre, M., Dubois, P., Sun, T., Garces, J. M. & Jérôme R. (2002). Polyethylene-layered silicate nanocomposites prepared by the polymerization-filling technique: synthesis and mechanical properties. Polymer,43(8), 2123–2132. DOI: 10.1016/S0032-3861(02)00036-8
dc.relation.referencesen2. Haeri, S.Z., Ramezanzadeh, B. & Asghari M.(2017). A novel fabrication of a high performance SiO2- graphene oxide (GO) nanohybrids: Characterization of thermal properties of epoxy nanocomposites filled withSiO2-GO nanohybrids. Journal of Colloid and Interface Science, 493, 111–122. DOI: 10.1016/j.jcis.2017.01.016
dc.relation.referencesen3. Shevchuk, O., Tokarev, S., Serdiuk, V., Chobit, M., Nikitishyn, E., Dolynska, L., …Tokarev, V. (2015). Thin polymer films grafted to the solid surface with in situ synthesized CdS nanocrystals. Journal of Polymer Research, 22(9), 172. DOI:10.1007/s10965-015-0807-2.
dc.relation.referencesen4. de Oliveira, A. D., Beatrice C. A. G. (2019). Polymer nanocomposites with different types of nanofiller. In S. Sivasankaran (Ed.) Nanocomposites – recent evolutions. IntechOpen. DOI: 10.5772/intechopen.73364.
dc.relation.referencesen5. Huang, T.-C., Yeh, J.-M. & Lai, C.-Y. (2012). Polymer nanocomposite coatings. In F. Gao (Ed.), Advances in Polymer Nanocomposites. Types and Applications (pp. 605–638). Cambridge: Woodhead Publishing Limited.
dc.relation.referencesen6. Mulvaney, P. (2001). Not All That’s Gold Does Glitter. MRS Bulletin 26, 1009–1014. DOI:10.1557/mrs2001.258.
dc.relation.referencesen7. Crosby, A. & Lee, J.-Y. (2007). Polymer Nanocomposites: The "Nano" Effect on Mechanical Properties. Polymer Review, 47 (2), 217–229. DOI:10.1080/15583720701271278
dc.relation.referencesen8. Ramanathan, T., Abdala, A. A. & Stankovich, S.(2008). Functionalized graphene sheets for polymer nanocomposites. Nature Nanotechnology, 3, 327–331. DOI:10.1038/nnano.2008.96.
dc.relation.referencesen9. Haraguchi, K. & Takehisa T. (2002). Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/ de-swelling properties. Advanced Materials, 14(16),1120–1124. DOI: 1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9
dc.relation.referencesen10. Zhang, Q., Zhang, L. & Lin J. (2017). Percolating behavior of nanoparticles in block copolymer host: hybrid particle-field simulations. Journal of Physical Chemistry C, 121(42), 23705–23715. DOI: 10.1021/acs.jpcc.7b07337
dc.relation.referencesen11. Moniruzzaman, M. & Winey K. I. (2006). Polymer nanocomposites containing carbon nanotubes. Macromolecules, 39(16), 5194–5205. DOI: 10.1021/ma060733p
dc.relation.referencesen12. de Leon, A. C., Rodier, B. J. & Bajamundi C. (2018). Plastic metal-free electric motor by 3D printing of graphene-polyamide powder. ACS Applied Energy Materials, 1(4), 1726–1733. DOI: 10.1021/acsaem.8b00240.
dc.relation.referencesen13. Ashraf, M. A., Peng,W., Zare Y, & Rhee K. Y.(2018). Effects of size and aggregation/agglomeration of nanoparticles on the interfacial/interphase properties and tensile strength of polymer nanocomposites. Nanoscale Research Letters 13, 214. DOI: 10.1186/s11671-018-2624-0.
dc.relation.referencesen14. Shevchuk, O., Wagenknecht, U., Wiessner, S., Bukartyk, N., Chobit, M. & Tokarev, V. (2015). Flameretardant polymer composites on the basis of modified magnesium hydroxide. Chemistry and Chemical Technology,9(2), 149–155. DOI: 10.23939/chcht09.02.149
dc.relation.referencesen15. Hiremath, A., Murthy, A. A., Thipperudrappa, S. & Bharath, K. N. (2021). Nanoparticles filled polymer nanocomposites: a technological review. Cogent Engineering, 8(1), 1991229. DOI: 10.1080/23311916.2021.1991229.
dc.relation.referencesen16. Althues, H., Henle, J. & Kaskel, S. (2007). Functional inorganic nanofillers for transparent polymers. Chemical Society Review, 36, 1454–1465. DOI:10.1039/B608177K.
dc.relation.referencesen17. Kango, S., Kalia, S., Celli, A., Njuguna, J., Habibi, Y. & Kumar, R. (2013). Surface modification of inorganic nanoparticles for development of organicinorganic nanocomposites – A review. Progress in Polymer Science, 38, 1232–1261. DOI: 10.1016/j.progpolymsci.2013.02.003.
dc.relation.referencesen18. Voronov, S., Tokarev V., Oduola, K., Lastukhin, Yu. (2000). Polyperoxide surfactants for interface modification and compatibilization of polymer colloidal systems. I. Synthesis and properties of polyperoxide surfactants. Journal of Applied Polymer Science, 76,1217–1227. DOI: 10.1002/(SICI)1097-4628(20000523)76:8<1217::AID-APP2>3.0.CO;2-F.
dc.relation.referencesen19. Shevchuk, O. M., Bukartyk, N. M., Nadashkevych, Z. Ya., Tokarev V. S. (2019). Synthesis and properties of silica nanoparticles with functional polymer shell. Chemistry, Technology and Application of Substances, 2(1), 153–158. DOI: 10.23939/ctas2019.01.153.
dc.relation.referencesen20. Serdiuk, V., Shevchuk, O., Bukartyk, N., Kovalenko, T., Borysiuk, A., Tokarev, V. (2021). Synthesis and properties of magnetite nanoparticles with peroxide-containing polymer shell and nanocomposites based on them. Journal of Applied Polymer Science,138(36), 50928. DOI: 10.1002/app.50928.
dc.relation.referencesen21. Kong, Y., Jie, W., Yuan, W. C., Bao, L. Yu.(2007). A study on in vitro and in vivo bioactivity of nano hydroxyapatite/polymer biocomposite. Chinese Science Bulletin, 52(2), 267–271. DOI: 10.1007/s11434-007-0035-1
dc.relation.referencesen22. Bagdasar’yan, Kh. S. (1968). Theory of freeradical polymerization. Jerusalem: Israel Program for Scientific Translations.
dc.relation.referencesen23. Odian G. (2004). Principles of polymerization. Hoboken: JohnWiley& Sons, Inc.
dc.rights.holder© Національний університет „Львівська політехніка“, 2024
dc.subjectпероксидвмісні кополімери
dc.subjectмінеральні наночастинки
dc.subjectприщеплена полімеризація
dc.subjectшвидкість ініціювання
dc.subjectефективність прищеплення
dc.subjectperoxide-containing copolymers
dc.subjectmineral nanoparticles
dc.subjectgraft polymerization
dc.subjectinitiation rate
dc.subjectgrafting efficiency
dc.titlePeculiarities of graft polymerization initiated from peroxidized surface of mineral nanoparticles
dc.title.alternativeОсобливості прищепленої полімеризації, ініційованої з пероксидованої поверхні мінеральних наночастинок
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2024v7n2_Shevchuk_O_M-Peculiarities_of_graft_190-197.pdf
Size:
408 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.86 KB
Format:
Plain Text
Description: