Area-wide 2D and quasi-3D geoelectric models of the earth's crust and upper mantle as a possible evidence of recent tectonic activity in the western part of the ukrainian shield

dc.citation.epage118
dc.citation.issue1(32)
dc.citation.journalTitleГеодинаміка
dc.citation.spage99
dc.contributor.affiliationІнститут геофізики
dc.contributor.affiliationІнститут геофізики ім. С. І. Субботіна
dc.contributor.affiliationInstitute of Geophysics
dc.contributor.affiliationSubbotin Institute of Geophysics
dc.contributor.authorКовачікова, Світлана
dc.contributor.authorЛогвінов, Ігор
dc.contributor.authorТарасов, Віктор
dc.contributor.authorKováčiková, Svetlana
dc.contributor.authorLogvinov, Igor
dc.contributor.authorTarasov, Viktor
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-07-03T08:11:30Z
dc.date.available2023-07-03T08:11:30Z
dc.date.created2028-02-22
dc.date.issued2028-02-22
dc.description.abstractМета роботи – моделювання розподілу електропровідності в північно-західній частині Українського щита та вивчення взаємозв’язку геоелектричних аномалій із природними родовищами корисних копалин та з ознаками можливої тектонічної активізації довгоіснуючих систем розломів на щиті. Методологія досліджень основана на довгоперіодних магнітотелуричних і магнітоваріаційних вимірюваннях в діапазоні періодів від 3–16 до 2500–3600 с. Густа мережа пунктів вимірювань дала змогу дослідити геоелектричну структуру сегмента Українського щита, обмеженого координатами 26°–30°E та 48°– 51,7°N. 2D та квазі-3D інверсії отриманих магнітотелуричних та геомагнітних відгуків привели до створення оглядових моделей питомого електроопору/провідності для території досліджень. В результаті на різних глибинах були виявлені геоелектрично аномальні структури. Локальний характер провідників та їхнє положення вказують на їх зв’язок із нещодавно активованими зонами розломів, місцями їх перетину та з металогенезом. Докембрійський вік кристалічних порід досліджуваної території вказує на переважно електронний тип графітно-сульфітного походження підвищеної електропровідності, однак глибина провідних аномалій, їх вертикальна протяжність і зв’язок з оновленими системами розломів можуть свідчити про генетичний зв’язок різних мінералів і їх подальше осадження з глибинною міграцією флюїдів. Наукова новизна. Отримані результати спрямовані на з’ясування глибинної будови та співвіднесення геоелектричних особливостей земної кори та верхньої мантії з системами розломів та родовищ різних корисних копалин і самі по собі можуть бути додатковим свідченням можливих тектонічних активізаційних процесів на досліджуваній території. Практична значущість. Подані результати можуть принести економічну користь завдяки визначенню районів наявності мінеральної сировини, а у вивченні геодинаміки можуть сприяти оцінюванню природної небезпеки під час картографування простягання тектонічно активних систем розломів.
dc.description.abstractThe purpose of the presented work was to model the electrical conductivity distribution in the northwestern part of the Ukrainian shield and to study the relationship of geoelectric anomalies with natural mineral deposits and with signs of possible tectonic activation of long-lived fault systems on the Shield. The methodology was based on long-period magnetotelluric and magnetovariational measurements in the period range of 3–16 to 2500–3600 s. The dense network of measurement sites made it possible to explore the geoelectric structure of the Ukrainian Shield segment limited by the coordinates 26°–30°E and 48°-51,7°N. 2D and quasi-3D inversion of the obtained magnetotelluric and geomagnetic responses resulted in the creation of overview models of electrical resistivity/conductivity for the territory of investigation. As a result, geoelectrically anomalous structures were identified at different depths. The local character of the conductors and their position indicate their connection with recently activated fault zones, their junctions and with metallogeny. The Precambrian age of crystalline rocks of the investigated area refers mainly to the electronic-type graphite-sulphite origin of increased conductivity, however the depth of conductive features, their vertical extent and their link to rejuvenated fault systems may indicate the genetic connection of various minerals and their subsequent precipitation with deep fluid migration. Originality. The obtained results aimed at clarifying the deep structure and correlating the geoelectric features of the earth’s crust and upper mantle with fault systems and deposits of various natural mineral sources. In addition, they alone can serve as further evidence of possible tectonic activation processes in the studied area. Practical significance. The presented results can bring social benefits by identifying areas of mineral endowment, and in the field of geodynamics they can contribute to the assessment of natural hazard in mapping the course of tectonically active fault systems.
dc.format.extent99-118
dc.format.pages20
dc.identifier.citationKováčiková S. Area-wide 2D and quasi-3D geoelectric models of the earth's crust and upper mantle as a possible evidence of recent tectonic activity in the western part of the ukrainian shield / Svetlana Kováčiková, Igor Logvinov, Viktor Tarasov // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2022. — No 1(32). — P. 99–118.
dc.identifier.citationenKováčiková S. Area-wide 2D and quasi-3D geoelectric models of the earth's crust and upper mantle as a possible evidence of recent tectonic activity in the western part of the ukrainian shield / Svetlana Kováčiková, Igor Logvinov, Viktor Tarasov // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2022. — No 1(32). — P. 99–118.
dc.identifier.doidoi.org/10.23939/jgd2022.02.099
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/59364
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofГеодинаміка, 1(32), 2022
dc.relation.ispartofGeodynamics, 1(32), 2022
dc.relation.referencesAntsiferov, A. V., Sheremet, E. M., Nikolaev, Yu. I.,
dc.relation.referencesNikolaev, I. Yu., Setaya, L. D., Antsiferov, V. A.,
dc.relation.references& Omelchenko, A. A. (2011). Deep Electromagnetic (MT and AMT) Sounding of the Suture
dc.relation.referencesZones of the Ukrainian Shield. Izvestiya, Physics
dc.relation.referencesof the Solid Earth, 47, 1, 33-44,
dc.relation.referenceshttps://doi.org/10.1134/S1069351311010010.
dc.relation.referencesAstapenko, V. N. (2012). The Earth's crust and mantle
dc.relation.referenceson the territory of Belarus. Magnetotelluric data.
dc.relation.referencesMinsk. 208 p. (in Russian).
dc.relation.referencesAstapenko, V. N., Logvinov, I. M. (2014). Geoelectric
dc.relation.referencesmodel of the crust and upper mantle along
dc.relation.referencesgeotraverse EUROBRI-DGE-97. Geofiz. Zhurn., 36, 5, 143-155 (in Russian). http://www.igph.kiev.ua/FullVersion/2014/gj5/art5814.pdf
dc.relation.referencesBanks, R. J. (1979). The use of the equivalent current
dc.relation.referencessystems in the interpretation of the Geomagnetic
dc.relation.referencesDeep Sounding data. Geophys. J. R. Astr. Soc., 87, 139-157. https://doi.org/10.1111/j.1365-246X.1979.tb04773.x
dc.relation.referencesBaysarovich, M. M., Mitropol'sky, O. Yu., Chuprina, І. С.
dc.relation.references(Eds.). (2002). Atlas. Deep lithospheric structure
dc.relation.referencesand eco-geology of Ukraine. Кiev: IGN NASU. 55 p. (in Ukrainian). https://doi.org10.1016/j.gsf. 2018. 10.011.
dc.relation.referencesBogdanova, S. R., Gorbatschev, R., Grad, M., Janik, T. A.,
dc.relation.referencesGuterch, A., Kozlovskaya, E., Motuza, G.,
dc.relation.referencesSkridlaite, G., Starostenko, V., Taran, L. (2006).
dc.relation.referencesEUROBRIDGE and POLONAISE Working
dc.relation.referencesGroups, 2006. EUROBRIDGE: new insight into
dc.relation.referencesthe geo-dynamic evolution of the East European
dc.relation.referencesCraton. In: Gee, D.G., Stephenson, R.A. (eds).
dc.relation.references(2006). European Lithosphere Dynamics.
dc.relation.referencesGeological Society, London, Memoirs, 32, 599–625, https://doi.org/:10.1144/GSL.MEM.2006.032.01. 36.
dc.relation.referencesBogdanova, S. V., Bingen, B., Gorbatschev, R.,
dc.relation.referencesKheraskova, T. N., Kozlov, V. I., Puchkov, V. N.,
dc.relation.referencesVolozh, Yu. A. (2008). The East European Craton
dc.relation.references(Baltica) before and during the assembly of
dc.relation.referencesRodinia. Precam. Res., 160, 1, 23–45, doi:10. 1016/j.precamres.2007.04.024.
dc.relation.referencesBouzid, A., Bayou, B., Liégeois, J-P., Bourouis, S.,
dc.relation.referencesBougchiche, S. S., Bendekken, A., Abtout, A.,
dc.relation.referencesBoukhlouf, W., Ouabadi, A. (2015), Lithospheric
dc.relation.referencesstructure of the Atakor metacratonic volcanic
dc.relation.referencesswell (Hoggar, Tuareg Shield, southern Algeria):
dc.relation.referencesElectrical constraints from magnetotelluric data.
dc.relation.referencesGeological Society of America Special Papers, 71–514, 239–255, https://doi.org/:10.1130/2015.2514(15).
dc.relation.referencesBurakhovich, T. K., Kulik, S. N., Logvinov, I. M.,
dc.relation.referencesGordienko, I. V., & Tarasov, V. N. (1997).
dc.relation.referencesConductivity crust of the NW Ukrainian Shield.
dc.relation.referencesReports of NAS of Ukraine, 10, 125–128 (in
dc.relation.referencesRussian).
dc.relation.referencesCao, S., Neubauer, F. (2019). Graphitic material in
dc.relation.referencesfault zones: Implications for fault strength and
dc.relation.referencescarbon cycle. Earth Sci. Rev., 194, 109–124,
dc.relation.referenceshttps://doi.org/10.1016/j.earscirev.2019.05.008.
dc.relation.referencesChattopadhyay, A., Bhattacharjee, D., Srivastava, S.
dc.relation.references(2020). Neotectonic fault movement and
dc.relation.referencesinterpolate seismicity in the central Indian shield:
dc.relation.referencesa review and reappraisal. Journal of Mineralogical and Petrological Sciences, J-STAGE Advance
dc.relation.referencesPublication, 115, 2, 136–149. https://doi.org/10.2465/jmps.190824b.
dc.relation.referencesClaesson, S., Bibikova, E., Shumlyanskyy, L., Dhuime, B., Hawkesworth, C.J. (2014). The oldest
dc.relation.referencescrust in the Ukrainian Shield – Eoarchaean U-Pb
dc.relation.referencesages and Hf-Nd constraints from enderbites and
dc.relation.referencesmetasediments. Geological Society, London,
dc.relation.referencesSpecial Publications. 389, 227–259. https://doi.org/10.1144/SP389.9.
dc.relation.referencesFoley, S. F. (2008). Rejuvenation and erosion of the
dc.relation.referencescratonic lithosphere. Nat. Geosci., 1, 503–510.
dc.relation.referenceshttps://doi.org/10.1038/ngeo261.
dc.relation.referencesGaretsky, R. G., & Klushin, S. V. (1989). Listric
dc.relation.referencesfaults in the Pripyat Trough. Geotectonics, 1, 48–60 (in Russian).
dc.relation.referencesGintov, O. B., Pashkevich, I. K. (2010). Tectonophysical analysis and geodynamic interpretation of
dc.relation.referencesthe three-dimensional geophysical model of the
dc.relation.referencesUkrainian Shield. Geofiz. Zhurn. 2, 32, 3-27 (in
dc.relation.referencesRussian).
dc.relation.referencesGlasby, G. P. (2006). Abiogenic Origin of Hydrocarbons: A Historical Overview. Resource Geology, 56, 1, 83–96, https://doi.org/10.1111/j.1751–3928.2006.tb00271.
dc.relation.referencesGordienko, V. V., Gordienko, I. V., Zavgorodnyaya, O. V., & Usenko, O. V. (2002). Deep heat
dc.relation.referencesflow map of Ukraine. 1:2500000.
dc.relation.referencesGordienko, V. V., Gordienko, I. V., Zavgorodnyaya, O. V., Kovacikova, S., Logvinov, I. M.,
dc.relation.referencesTarasov, V. N., & Usenko, O. V. (2005).
dc.relation.referencesUkrainian Shield (Geophysics, Deep Processes).
dc.relation.referencesKiev: Korvin Press, 210 p. (in Russian).
dc.relation.referenceshttps://www.geokniga.org/bookfiles/geoknigaukrainskiy-shchit.pdf
dc.relation.referencesGordienko, V. V., Gordienko, I. V., Zavgorodnyaya, O. V., Kovacikova, S., Logvinov, I. M.,
dc.relation.referencesPek, J.,Tarasov, V. N., Usenko, O. V. (2006).
dc.relation.referencesDnepr-Donets Basin (Geophysics, Deep Processes). Kiev: Korvin Press, 210 p. (in Russian).
dc.relation.referencesGordienko, V. V., Gordienko, I. V., Zavgorodnyaya, O. V., Kovacikova, S., Logvinov, I. M.,
dc.relation.referencesTarasov, V. N., & Usenko, O. V. (2012). VolynPodolian Plate (Geophysics, Deep Processes).
dc.relation.referencesNaukova Dumka, Kiev. 180 p. (in Russian).
dc.relation.referencesGordienko, V. V., Gordienko, I. V., Gordienko, L. Ya.,
dc.relation.referencesZavgorodnyaya, O. V., Logvinov, I. M., &
dc.relation.referencesTarasov, V. N. (2020). Zones of recent activation
dc.relation.referencesof Ukraine. Geofiz. Zhurn., 2, 42, 29–52. https://doi.org/10.24028/gzh.0203-3100.v42i2.2020.201740.
dc.relation.referencesGuion, E., Mitescu, K. D., Julien, J. P., Ru, S. (1989).
dc.relation.referencesFractals and percolation in a porous medium.
dc.relation.referencesFractals in Physics: Essays in Honour of Benoit B
dc.relation.referencesMandelbrot. Physics ser. D. V. 38. 172–178.
dc.relation.referencesGursky, D. S., Kalinin, V. I., Gozhik, P. F., Velikanov, V. Ya., Kolosovskaya, V. A. (Eds.). (2003).
dc.relation.referencesGeology and minerals of Ukraine. Kiev:
dc.relation.referencesUkrGGRI. 368 p. (in Ukrainian).
dc.relation.referencesGursky, D. S., Kruglov, S. S. (Eds.). (2007). Tectonic
dc.relation.referencesmap of Ukraine. 1:1000000. Kiev: UkrDGRI, 2007 (in Ukrainian).
dc.relation.referencesIlchenko, T. V. (2002). The results of research by the
dc.relation.referencesDSS transect EUROBRIDGE’97. Geofiz. Zhurn. 24, 3, 36–50 (In Russian).
dc.relation.referencesIngerov, A. I., Rokityansky, I. I., & Tregubenko, V. I.
dc.relation.references(1999). Forty years of MTS studies in Ukraine.
dc.relation.referencesEarth Planet Space, 51, 1127-1133.
dc.relation.referencesJodicke, H., Jording, A., Ferrari, L., Arzate, J.,
dc.relation.referencesMezger, K., & Rupke, L., (2006). Fluid release
dc.relation.referencesfrom the subducted Cocos plate and partial
dc.relation.referencesmelting of the crust deduced from magnetotelluric
dc.relation.referencesstudies in southern Mexico: Implications for the
dc.relation.referencesgeneration of volcanism and subduction dynamics.
dc.relation.referencesJ. Geophys. Res. 111, B08102, https://doi.org/1029/2005JB003739.
dc.relation.referencesKaplun, V. B. (2018). Structure of the Zeya block of
dc.relation.referencesToko Stanovik according to results of magnetotelluric soundings. Russian Geology and Geophysics, 59, 4, 419–431. https://doi.org/10.1016/j.rgg.2018.03.013.
dc.relation.referencesKarato, S., & Wang, D. (2013). Electrical
dc.relation.referencesconductivity of minerals and rocks. In: Karato, S.
dc.relation.references(Ed.): Physicsand Chemistry of the Deep Earth.
dc.relation.referencesJohn Wiley & Sons, Ltd. https://doi.org/10.1002/9781118529492.ch5.
dc.relation.referencesKelbert, A., Meqbel, N., Egbert, G., & Tandon, K.
dc.relation.references(2014). ModEM: A modular system for inversion
dc.relation.referencesof electromagnetic geophysical data. Computers
dc.relation.references& Geosciences, 66, 40–53. https://doi.org/10.1016/j.cageo.2014.01.010.
dc.relation.referencesKorja, T., Engels, M., Zhamaletdinov, A., Kovtun, A. A.,
dc.relation.referencesPalshin, N. A., Smirnov, M. Yu., Tokarev, A. D.,
dc.relation.referencesAsming, V. E., Vanyan, L. L., Vardaniants, I. L.,
dc.relation.references& Bear W. G., (2002). Crustal conductivity in
dc.relation.referencesFennoscandia – a compilation of a database on
dc.relation.referencescrustal conductance in the Fennoscandian Shield.
dc.relation.referencesEarth Planets Space, 54, 535–558.
dc.relation.referencesKováčiková S., Logvinov I., Nazarevych A., Nazarevych L., Pek J., Tarasov V., Kalenda P. (2016).
dc.relation.referencesSeismic activity and deep conductivity structure of
dc.relation.referencesthe Eastern Carpathians. Stud. Geophys. Geod., 60, 280–296. https://doi.org/10.1007/s11200-014-0942-y.
dc.relation.referencesKováčiková, S., Červ, V., Praus, O. (2005). Modelling
dc.relation.referencesof the conductance distribution at the eastern
dc.relation.referencesmargin of the European Hercynides. Studia geoph.
dc.relation.referenceset geod., 49, 403–421.
dc.relation.referencesKováčiková, S., Logvinov, I., Tarasov, V. (2019).
dc.relation.referencesComparison of the 2D and quasi-3D geoelectric
dc.relation.referencesmodels of the Ukrainian Eastern Carpathians and
dc.relation.referencestheir link to the tectonic structure. Tectonics, 38, 3818–3834. https://doi.org/10.1029/2018TC005311.
dc.relation.referencesKovacikova, S., Logvinov, I. M., Pek J., & Tarasov V. N.
dc.relation.references(2016). Modelling of the Earth’s crust of Ukraine
dc.relation.referencesby the results of the magnetotelluric studies using
dc.relation.referencesnew methods of inversions. Geofiz. Zhurn., 38, 6, 83–100. https://doi.org/10.24028/gzh.0203-3100.v38i6.2016.91871.
dc.relation.referencesLogvinov, I. M. (2015). Deep Geoelectrical Structure
dc.relation.referencesof the Central and Western Ukraine. Acta Geophysica, 63, 5, 1216–1230. https://doi.org/10.1515/acgeo-2015-0049.
dc.relation.referencesLogvinov, I. M., Gordienko, I. V., Tarasov, V. N.
dc.relation.references(2017). Geoelectric model (according to the 2D
dc.relation.referencesinversion of the results of magnetotelluric studies)
dc.relation.referencesalong geotraverse DOBRE-3. Reports of NAS of
dc.relation.referencesUkraine, 6, 148–165 (in Russian). https://doi.org/10.15407/dopovidi2018.04.067
dc.relation.referencesLogvinov, I. M., & Tarasov, V. N. (2018). Electric
dc.relation.referencesresistivity distribution in the Earth’s crust and
dc.relation.referencesupper mantle for the southern East European
dc.relation.referencesPlatform and Crimea from area-wide 2D models.
dc.relation.referencesActa Geophys., 66, 2, 131–139.
dc.relation.referenceshttps://doi.org/10.1007/s11600-018-0125-2.
dc.relation.referencesLogvinov, I. M., Tarasov, V. N. (2019). Electric resistivity distribution in the Earth’s crust and upper
dc.relation.referencesmantle for the western East European Platform in
dc.relation.referencesUkraine from area-wide 2D models. Geofiz.
dc.relation.referencesZhurn., 41, 1, 44–75 (in Russian), https://doi.org/1024028/gzh0203-3001.v.41i1.2019.158863.
dc.relation.referencesLogvinov, I. M., Tarasov, V. N., Gordienko, I. V.
dc.relation.references(2020). Geoelectric parameters of the northwestern Ukrainian Shield from 2D inversion.
dc.relation.referencesGeofiz. Zhurn., 42, 1, 51–64 (in Russian).
dc.relation.referenceshttps://doi.org/10.24028/gzh.0203-3100.v42i1.2020.195467.
dc.relation.referencesLough, A. C., Wiens, D. A., Nyblade, A. (2018).
dc.relation.referencesReactivation of ancient Antarctic rift zones by
dc.relation.referencesintraplate seismicity. Nature Geoscience, 11, 515–519. https://doi.org/10.1038/s41561-018-0140-6.
dc.relation.referencesMakhnach, A. S., Garetsky, R. G., Matveev, A. V.
dc.relation.references(Eds.) (2001). Geology of Belarus. Minsk: Institute
dc.relation.referencesof Geological Sciences of the National Academy
dc.relation.referencesof Sciences of Belarus. 815 pp. (in Russian).
dc.relation.referencesMalleswari, D., Veeraswamy, K., Abdul-Azeez, K. K.,
dc.relation.referencesGupta, A. K., Babu, N., Patro, P. K., & Harinarayana, T. (2019). Magnetotelluric incvestigation
dc.relation.referencesof lithosphe-ric electrical structure beneath the
dc.relation.referencesDharwar Craton in South India: Evidence for
dc.relation.referencesmantle suture and plume-continental interaction.
dc.relation.referencesGeosci. Front., 10, 1915–1930. https://doi.org/10.1016/j.gsf. 2018.10.011.
dc.relation.referencesMap of the hypsometry of the sole of the plate
dc.relation.referencescomplexes of the southwest of the USSR (using
dc.relation.referencesspace survey materials). 1: 1000000. (1988). Ed.
dc.relation.referencesN.A. Krylov. Moscow: Mingeo USSR, 41 (in
dc.relation.referencesRussian).
dc.relation.referencesMap of the location of oil and gas prospective provinces and areas of Ukraine by geophysical data. 1:4000000 (2004). Ed. V. I. Starostenko. Kyiv:
dc.relation.referencesUkr.DGRI (in Ukrainian).
dc.relation.referencesMeng, H., Shi, Q., Liu, T., Liu, F.X, & Chen, P.
dc.relation.references(2019). The percolation properties of electrical
dc.relation.referencesconductivity and permeability for fractal porous
dc.relation.referencesmedia. Energies, 12.1085. https://doi.org/10.33990/en12 061085.
dc.relation.referencesShcherbak, M. P., & Bobrov, O. B. (2006). Mineral
dc.relation.referencesdeposits of Ukraine. I: Metalliferous mineral
dc.relation.referencesdeposits. Kyiv – Lviv. “Centre of Europe” Publ.
dc.relation.referencesHouse, 785 p. (in Ukrainian).
dc.relation.referencesParfeevets, A. V., Sankov, V. A., (2018).
dc.relation.referencesGeodynamic Conditions for Cenozoic Activation
dc.relation.referencesof Tectonic Structures in Southeastern Mongolia.
dc.relation.referencesGeodynamics and Tectonophysics, Publ. of the
dc.relation.referencesEarth’s Crust Siberian Branch, RAS, 9, 3, 855–888. https://doi.org/10.5800/GT-2018-9-3-0374.
dc.relation.referencesPrikhodko, V. L., & Prikhodko, M. V. (2005).
dc.relation.referencesTrapezoidal formation of Volyn and nativemineral fertilization. Collection of scientific works
dc.relation.referencesof UkrDGRI, 1, 101–109 (in Ukrainian).
dc.relation.referencesRyabenko, V. A. (1970). The main features of the
dc.relation.referencestectonic structure of the Ukrainian crystalline
dc.relation.referencesshield. Kyiv: Nauk. Dumka, 128 p. (in Russian).
dc.relation.referencesSalishchev, K. A. (1987). Design and mapping. Moscow. MSU Publishing House, 240 p. (in Russian).
dc.relation.referencesSarafian, E., Evans, R. L., Abdelsalam, M. G., Atekwana, E., Elsenbeck, J., Jones, A. G., &
dc.relation.referencesChikambwe, E. (2018). Crustal conductors along
dc.relation.referencesshear and suture zones – graphite and sulphides
dc.relation.referencesthat experienced shearand metamorphism.
dc.relation.referencesGondwana Res., 54, 38–49. https://doi.org/10.1016/j.gr.2017.09. 007.
dc.relation.referencesSemenov, V. Y., Pek, J., Adam, A., Jozwiak, W.,
dc.relation.referencesLadanyvskyy, B., Logvinov, I., Pushkarev, P., &
dc.relation.referencesVozar J. (2008). Electrical structure of the upper
dc.relation.referencesmantle beneath Central Europe: Results of the
dc.relation.referencesCEMES project. Acta Geophysica, 56, 4, 957–981. https://doi.org/10.2478/s11600-008-0058-2.
dc.relation.referencesShankland, T., Waff, H. (1977). Partial melting and
dc.relation.referenceselectrical conductivity anomalies in the Upper
dc.relation.referencesMantle. J. Geophys. Res., 82, 33, 5409–5417.
dc.relation.referencesShepel, S. I. (2003). Electrical properties of rocks
dc.relation.referencesunder thermobaric conditions of the lithosphere
dc.relation.referencesand geoelectric models. Habil. Thesis 04.00.22,
dc.relation.referencesKiev, 2003, 411 p. (in Russian).
dc.relation.referencesShirkov B. I., Burakhovich, T. K., & Kushnir, A. N.
dc.relation.references(2017). Three-dimensional geoelectric model of
dc.relation.referencesthe Golovanevsk suture zone of the Ukrainian
dc.relation.referencesShield. Geofiz. Zhurn., 1, 39, 41–60 (in Russian),
dc.relation.referenceshttps://doi.org/10.24028/gzh.0203-3100.v39i1.2017.94010.
dc.relation.referencesSiripunvaraporn, W., Egbert, G. (2000). An efficient
dc.relation.referencesdata-subspace inversion method for 2-D magnetotelluric data. Geophysics, 65, 3, 791–80.
dc.relation.referencesSiripunvaraporn, W., Egbert, G., Lenbury, Y., Uyeshima, M. (2005). Three-dimensional magnetotelluric inversion: data-space method. Phys. Earth
dc.relation.referencesPlanet. Interiors. 150, 3–14, https://doi.org/10.1016/j.pepi. 2004.08.023.
dc.relation.referencesSollogub, V. B., 1980. Lithosphere of Ukraine. Kiev:
dc.relation.referencesNauk. Dumka, 184 p. (in Russian).
dc.relation.referencesSrebrov, B., Logvinov, I., Rakhlin, L., Kováčiková, S.
dc.relation.references(2018). Results of the magnetotelluric investigations at geophysical observatories in Bulgaria.
dc.relation.referencesGeophys. J. Int., 215, 165–180,
dc.relation.referenceshttps://doi.org/10.1093/gji/ggy268.
dc.relation.referencesStarostenko, V., Janik, T., Yegorova, T., Czuba, W.,
dc.relation.referencesSroda, P., Lysynchuk, D., Aizberg, R., Garetsky, R., Karataev, G., Gribik, Y., Farfuliak, L.,
dc.relation.referencesKolomiyets, K., Omelchenko, V., Komminaho, K.,
dc.relation.referencesTiira, T., Gryn, D., Guterch, A., Legostaeva, O.,
dc.relation.referencesThybo, H., & Tolkunov, A. (2018). Lithospheric
dc.relation.referencesstructure along wide-angle seismic profile
dc.relation.referencesGEORIFT 2013 in Pripyat – Dnieper – Donets
dc.relation.referencesBasin (Belarus and Ukraine). Geophys. J. Int., 212,1932–1962, https://doi.org/10.1093/gji/ggx509.
dc.relation.referencesTarasov, V. N., & Logvinov, I. M. (2020). Using the
dc.relation.referencesTAR3D program for 3D data visualization in
dc.relation.referencesgeoelectric studies. Proceedings of the conference
dc.relation.referencesGeoinformatics, Theoretical and Applied Aspects, 2020, 1–5, https://doi.org/10.3997/2214-4609.2020geo020.
dc.relation.referencesThybo, H., Janik, T., Omelchenko, V. D., Grad, M.,
dc.relation.referencesGaretsky, R. G., Belinsky, A.A., Karatayev, G. I.,
dc.relation.referencesZlotski, G., Knudsen, E., Sand, R., Yliniemi, J.,
dc.relation.referencesTiiro, T., Luosto, U., Komminaho, K., Giese, R.,
dc.relation.referencesGuterch, A., Lund, C. E., Kharitonov, O. M., Ilchenko, T. V., Lysynchuk, D. V., Skobolev, V. M.,
dc.relation.references& Doody, J. J. (2003). Upper lithospheric
dc.relation.referencesseismic velocity structure across the Pripyat
dc.relation.referencesTrough and the Ukrainian Shield along the
dc.relation.referencesEUROBRIDGE’97 profile. Tectonophysics 371, 1/4, 41–79, https://doi.org/10.1016/S0040-1951(03)00200-2.
dc.relation.referencesTregubenko, V. I., Lukin, O. E., Kremnetsky, O. O.,
dc.relation.referencesPetrovsky, O. P., Kostenko, M. M., Slonitska, S. G,
dc.relation.referencesShimkiv, L. M., Nikitash, O. B, Dzyuba, B. M.,
dc.relation.referencesNechaeva, T. S, & Ipatenko, S. P. (2009).
dc.relation.referencesInvestigation of anomalous geophysical zones of
dc.relation.referencesthe Ukrainian Shield adjacent to oil-gas basins
dc.relation.referenceswith the method of evaluation of their oil and gas
dc.relation.referencescontent (2005–2009). Kyiv: Geoinform. 405 p. (in Ukrainian).
dc.relation.referencesUnsworth, M., & Bedrosian, P. A. (2004). On the
dc.relation.referencesgeoelectric structure of major strike-slip faults and
dc.relation.referenceshear zones. Earth Planet Space, 56, 12, 1177-1184. https://earth-planets-space.springeropen.com/articles/10.1186/BF03353337.
dc.relation.referencesUsenko, I. S. (Ed.) (1982). Metamorpism of the
dc.relation.referencesUkrainian shield. Kiev: Naukova Dumka. 1982. 307 p. (in Russian).
dc.relation.referencesVan Zuilen, M. A., Lepland, A., & Arrhenius, G.
dc.relation.references(2002). Reassessing the evidence for the earliest
dc.relation.referencestraces of life. Letters to Nature, 418, 627–630,
dc.relation.referenceshttps: //www.nature.com/articles/nature00934.
dc.relation.referencesVerkhovtsev, V. (2006). Newest vertical crustal
dc.relation.referencesmovements in Ukraine, their relationship with
dc.relation.referenceslinear and circular structures. In: Power Earth, its
dc.relation.referencesgeological and environmental displays, scientific
dc.relation.referencesand practical use. Kyiv: KNU. 129–137 (in
dc.relation.referencesUkrainian).
dc.relation.referencesWang, H., van Hunen, J., & Pearson, D. G. (2015).
dc.relation.referencesThe thinning of subcontinental lithosphere: The roles
dc.relation.referencesof plume impact and metasomatic weakening.
dc.relation.referencesGeochem. Geophys. Geosyst., 16, 1156–1171,
dc.relation.referenceshttps://doi.org/10.1002/2015GC005748.
dc.relation.referencesWu, P., Johnston, P., & Lambeck, K. (1999).
dc.relation.referencesPostglacial rebound and fault instability in
dc.relation.referencesFennoscandia. Geophys. J. Int., 139, 657–670.
dc.relation.referencesYatsenko, V. G. (1998). Regularities of the spatial
dc.relation.referencesarrangement of graphite manifestations on the
dc.relation.referencesUkrainian shield. Aspects of mineralogy in
dc.relation.referencesUkraine. Kiyv: GNC ROS. 254-270 (in Russian).
dc.relation.referencesYin, Y., Unsworth, M., Liddell, M., Pana, D., & Craven, J.A. (2014). Electrical resistivity structure of
dc.relation.referencesthe Great Slave Lake shear zone, northwest Canada: implications for tectonic history. Geophys.
dc.relation.referencesJ. Int., 199, 178-199, doi:10.1093/gji/ggu251.
dc.relation.referencesYushyn, A. A., Moroz, V. S., & Proskurko, L. I.
dc.relation.references(2013). Genetic peculiarities of manifestations of
dc.relation.referencesprecious and non-ferrous metals mineralization in
dc.relation.referencescarboniferous complexes of the Early PreСambrian at the Krivoi Rih basin. Geology and
dc.relation.referencesMineralogy Bulletin of the Krivoi Rih National
dc.relation.referencesUniversity, 1–2, 12–18, (in Russian).
dc.relation.referencesenAntsiferov, A. V., Sheremet, E. M., Nikolaev, Yu. I.,
dc.relation.referencesenNikolaev, I. Yu., Setaya, L. D., Antsiferov, V. A.,
dc.relation.referencesen& Omelchenko, A. A. (2011). Deep Electromagnetic (MT and AMT) Sounding of the Suture
dc.relation.referencesenZones of the Ukrainian Shield. Izvestiya, Physics
dc.relation.referencesenof the Solid Earth, 47, 1, 33-44,
dc.relation.referencesenhttps://doi.org/10.1134/S1069351311010010.
dc.relation.referencesenAstapenko, V. N. (2012). The Earth's crust and mantle
dc.relation.referencesenon the territory of Belarus. Magnetotelluric data.
dc.relation.referencesenMinsk. 208 p. (in Russian).
dc.relation.referencesenAstapenko, V. N., Logvinov, I. M. (2014). Geoelectric
dc.relation.referencesenmodel of the crust and upper mantle along
dc.relation.referencesengeotraverse EUROBRI-DGE-97. Geofiz. Zhurn., 36, 5, 143-155 (in Russian). http://www.igph.kiev.ua/FullVersion/2014/gj5/art5814.pdf
dc.relation.referencesenBanks, R. J. (1979). The use of the equivalent current
dc.relation.referencesensystems in the interpretation of the Geomagnetic
dc.relation.referencesenDeep Sounding data. Geophys. J. R. Astr. Soc., 87, 139-157. https://doi.org/10.1111/j.1365-246X.1979.tb04773.x
dc.relation.referencesenBaysarovich, M. M., Mitropol'sky, O. Yu., Chuprina, I. S.
dc.relation.referencesen(Eds.). (2002). Atlas. Deep lithospheric structure
dc.relation.referencesenand eco-geology of Ukraine. Kiev: IGN NASU. 55 p. (in Ukrainian). https://doi.org10.1016/j.gsf. 2018. 10.011.
dc.relation.referencesenBogdanova, S. R., Gorbatschev, R., Grad, M., Janik, T. A.,
dc.relation.referencesenGuterch, A., Kozlovskaya, E., Motuza, G.,
dc.relation.referencesenSkridlaite, G., Starostenko, V., Taran, L. (2006).
dc.relation.referencesenEUROBRIDGE and POLONAISE Working
dc.relation.referencesenGroups, 2006. EUROBRIDGE: new insight into
dc.relation.referencesenthe geo-dynamic evolution of the East European
dc.relation.referencesenCraton. In: Gee, D.G., Stephenson, R.A. (eds).
dc.relation.referencesen(2006). European Lithosphere Dynamics.
dc.relation.referencesenGeological Society, London, Memoirs, 32, 599–625, https://doi.org/:10.1144/GSL.MEM.2006.032.01. 36.
dc.relation.referencesenBogdanova, S. V., Bingen, B., Gorbatschev, R.,
dc.relation.referencesenKheraskova, T. N., Kozlov, V. I., Puchkov, V. N.,
dc.relation.referencesenVolozh, Yu. A. (2008). The East European Craton
dc.relation.referencesen(Baltica) before and during the assembly of
dc.relation.referencesenRodinia. Precam. Res., 160, 1, 23–45, doi:10. 1016/j.precamres.2007.04.024.
dc.relation.referencesenBouzid, A., Bayou, B., Liégeois, J-P., Bourouis, S.,
dc.relation.referencesenBougchiche, S. S., Bendekken, A., Abtout, A.,
dc.relation.referencesenBoukhlouf, W., Ouabadi, A. (2015), Lithospheric
dc.relation.referencesenstructure of the Atakor metacratonic volcanic
dc.relation.referencesenswell (Hoggar, Tuareg Shield, southern Algeria):
dc.relation.referencesenElectrical constraints from magnetotelluric data.
dc.relation.referencesenGeological Society of America Special Papers, 71–514, 239–255, https://doi.org/:10.1130/2015.2514(15).
dc.relation.referencesenBurakhovich, T. K., Kulik, S. N., Logvinov, I. M.,
dc.relation.referencesenGordienko, I. V., & Tarasov, V. N. (1997).
dc.relation.referencesenConductivity crust of the NW Ukrainian Shield.
dc.relation.referencesenReports of NAS of Ukraine, 10, 125–128 (in
dc.relation.referencesenRussian).
dc.relation.referencesenCao, S., Neubauer, F. (2019). Graphitic material in
dc.relation.referencesenfault zones: Implications for fault strength and
dc.relation.referencesencarbon cycle. Earth Sci. Rev., 194, 109–124,
dc.relation.referencesenhttps://doi.org/10.1016/j.earscirev.2019.05.008.
dc.relation.referencesenChattopadhyay, A., Bhattacharjee, D., Srivastava, S.
dc.relation.referencesen(2020). Neotectonic fault movement and
dc.relation.referenceseninterpolate seismicity in the central Indian shield:
dc.relation.referencesena review and reappraisal. Journal of Mineralogical and Petrological Sciences, J-STAGE Advance
dc.relation.referencesenPublication, 115, 2, 136–149. https://doi.org/10.2465/jmps.190824b.
dc.relation.referencesenClaesson, S., Bibikova, E., Shumlyanskyy, L., Dhuime, B., Hawkesworth, C.J. (2014). The oldest
dc.relation.referencesencrust in the Ukrainian Shield – Eoarchaean U-Pb
dc.relation.referencesenages and Hf-Nd constraints from enderbites and
dc.relation.referencesenmetasediments. Geological Society, London,
dc.relation.referencesenSpecial Publications. 389, 227–259. https://doi.org/10.1144/SP389.9.
dc.relation.referencesenFoley, S. F. (2008). Rejuvenation and erosion of the
dc.relation.referencesencratonic lithosphere. Nat. Geosci., 1, 503–510.
dc.relation.referencesenhttps://doi.org/10.1038/ngeo261.
dc.relation.referencesenGaretsky, R. G., & Klushin, S. V. (1989). Listric
dc.relation.referencesenfaults in the Pripyat Trough. Geotectonics, 1, 48–60 (in Russian).
dc.relation.referencesenGintov, O. B., Pashkevich, I. K. (2010). Tectonophysical analysis and geodynamic interpretation of
dc.relation.referencesenthe three-dimensional geophysical model of the
dc.relation.referencesenUkrainian Shield. Geofiz. Zhurn. 2, 32, 3-27 (in
dc.relation.referencesenRussian).
dc.relation.referencesenGlasby, G. P. (2006). Abiogenic Origin of Hydrocarbons: A Historical Overview. Resource Geology, 56, 1, 83–96, https://doi.org/10.1111/j.1751–3928.2006.tb00271.
dc.relation.referencesenGordienko, V. V., Gordienko, I. V., Zavgorodnyaya, O. V., & Usenko, O. V. (2002). Deep heat
dc.relation.referencesenflow map of Ukraine. 1:2500000.
dc.relation.referencesenGordienko, V. V., Gordienko, I. V., Zavgorodnyaya, O. V., Kovacikova, S., Logvinov, I. M.,
dc.relation.referencesenTarasov, V. N., & Usenko, O. V. (2005).
dc.relation.referencesenUkrainian Shield (Geophysics, Deep Processes).
dc.relation.referencesenKiev: Korvin Press, 210 p. (in Russian).
dc.relation.referencesenhttps://www.geokniga.org/bookfiles/geoknigaukrainskiy-shchit.pdf
dc.relation.referencesenGordienko, V. V., Gordienko, I. V., Zavgorodnyaya, O. V., Kovacikova, S., Logvinov, I. M.,
dc.relation.referencesenPek, J.,Tarasov, V. N., Usenko, O. V. (2006).
dc.relation.referencesenDnepr-Donets Basin (Geophysics, Deep Processes). Kiev: Korvin Press, 210 p. (in Russian).
dc.relation.referencesenGordienko, V. V., Gordienko, I. V., Zavgorodnyaya, O. V., Kovacikova, S., Logvinov, I. M.,
dc.relation.referencesenTarasov, V. N., & Usenko, O. V. (2012). VolynPodolian Plate (Geophysics, Deep Processes).
dc.relation.referencesenNaukova Dumka, Kiev. 180 p. (in Russian).
dc.relation.referencesenGordienko, V. V., Gordienko, I. V., Gordienko, L. Ya.,
dc.relation.referencesenZavgorodnyaya, O. V., Logvinov, I. M., &
dc.relation.referencesenTarasov, V. N. (2020). Zones of recent activation
dc.relation.referencesenof Ukraine. Geofiz. Zhurn., 2, 42, 29–52. https://doi.org/10.24028/gzh.0203-3100.v42i2.2020.201740.
dc.relation.referencesenGuion, E., Mitescu, K. D., Julien, J. P., Ru, S. (1989).
dc.relation.referencesenFractals and percolation in a porous medium.
dc.relation.referencesenFractals in Physics: Essays in Honour of Benoit B
dc.relation.referencesenMandelbrot. Physics ser. D. V. 38. 172–178.
dc.relation.referencesenGursky, D. S., Kalinin, V. I., Gozhik, P. F., Velikanov, V. Ya., Kolosovskaya, V. A. (Eds.). (2003).
dc.relation.referencesenGeology and minerals of Ukraine. Kiev:
dc.relation.referencesenUkrGGRI. 368 p. (in Ukrainian).
dc.relation.referencesenGursky, D. S., Kruglov, S. S. (Eds.). (2007). Tectonic
dc.relation.referencesenmap of Ukraine. 1:1000000. Kiev: UkrDGRI, 2007 (in Ukrainian).
dc.relation.referencesenIlchenko, T. V. (2002). The results of research by the
dc.relation.referencesenDSS transect EUROBRIDGE’97. Geofiz. Zhurn. 24, 3, 36–50 (In Russian).
dc.relation.referencesenIngerov, A. I., Rokityansky, I. I., & Tregubenko, V. I.
dc.relation.referencesen(1999). Forty years of MTS studies in Ukraine.
dc.relation.referencesenEarth Planet Space, 51, 1127-1133.
dc.relation.referencesenJodicke, H., Jording, A., Ferrari, L., Arzate, J.,
dc.relation.referencesenMezger, K., & Rupke, L., (2006). Fluid release
dc.relation.referencesenfrom the subducted Cocos plate and partial
dc.relation.referencesenmelting of the crust deduced from magnetotelluric
dc.relation.referencesenstudies in southern Mexico: Implications for the
dc.relation.referencesengeneration of volcanism and subduction dynamics.
dc.relation.referencesenJ. Geophys. Res. 111, B08102, https://doi.org/1029/2005JB003739.
dc.relation.referencesenKaplun, V. B. (2018). Structure of the Zeya block of
dc.relation.referencesenToko Stanovik according to results of magnetotelluric soundings. Russian Geology and Geophysics, 59, 4, 419–431. https://doi.org/10.1016/j.rgg.2018.03.013.
dc.relation.referencesenKarato, S., & Wang, D. (2013). Electrical
dc.relation.referencesenconductivity of minerals and rocks. In: Karato, S.
dc.relation.referencesen(Ed.): Physicsand Chemistry of the Deep Earth.
dc.relation.referencesenJohn Wiley & Sons, Ltd. https://doi.org/10.1002/9781118529492.ch5.
dc.relation.referencesenKelbert, A., Meqbel, N., Egbert, G., & Tandon, K.
dc.relation.referencesen(2014). ModEM: A modular system for inversion
dc.relation.referencesenof electromagnetic geophysical data. Computers
dc.relation.referencesen& Geosciences, 66, 40–53. https://doi.org/10.1016/j.cageo.2014.01.010.
dc.relation.referencesenKorja, T., Engels, M., Zhamaletdinov, A., Kovtun, A. A.,
dc.relation.referencesenPalshin, N. A., Smirnov, M. Yu., Tokarev, A. D.,
dc.relation.referencesenAsming, V. E., Vanyan, L. L., Vardaniants, I. L.,
dc.relation.referencesen& Bear W. G., (2002). Crustal conductivity in
dc.relation.referencesenFennoscandia – a compilation of a database on
dc.relation.referencesencrustal conductance in the Fennoscandian Shield.
dc.relation.referencesenEarth Planets Space, 54, 535–558.
dc.relation.referencesenKováčiková S., Logvinov I., Nazarevych A., Nazarevych L., Pek J., Tarasov V., Kalenda P. (2016).
dc.relation.referencesenSeismic activity and deep conductivity structure of
dc.relation.referencesenthe Eastern Carpathians. Stud. Geophys. Geod., 60, 280–296. https://doi.org/10.1007/s11200-014-0942-y.
dc.relation.referencesenKováčiková, S., Červ, V., Praus, O. (2005). Modelling
dc.relation.referencesenof the conductance distribution at the eastern
dc.relation.referencesenmargin of the European Hercynides. Studia geoph.
dc.relation.referencesenet geod., 49, 403–421.
dc.relation.referencesenKováčiková, S., Logvinov, I., Tarasov, V. (2019).
dc.relation.referencesenComparison of the 2D and quasi-3D geoelectric
dc.relation.referencesenmodels of the Ukrainian Eastern Carpathians and
dc.relation.referencesentheir link to the tectonic structure. Tectonics, 38, 3818–3834. https://doi.org/10.1029/2018TC005311.
dc.relation.referencesenKovacikova, S., Logvinov, I. M., Pek J., & Tarasov V. N.
dc.relation.referencesen(2016). Modelling of the Earth’s crust of Ukraine
dc.relation.referencesenby the results of the magnetotelluric studies using
dc.relation.referencesennew methods of inversions. Geofiz. Zhurn., 38, 6, 83–100. https://doi.org/10.24028/gzh.0203-3100.v38i6.2016.91871.
dc.relation.referencesenLogvinov, I. M. (2015). Deep Geoelectrical Structure
dc.relation.referencesenof the Central and Western Ukraine. Acta Geophysica, 63, 5, 1216–1230. https://doi.org/10.1515/acgeo-2015-0049.
dc.relation.referencesenLogvinov, I. M., Gordienko, I. V., Tarasov, V. N.
dc.relation.referencesen(2017). Geoelectric model (according to the 2D
dc.relation.referenceseninversion of the results of magnetotelluric studies)
dc.relation.referencesenalong geotraverse DOBRE-3. Reports of NAS of
dc.relation.referencesenUkraine, 6, 148–165 (in Russian). https://doi.org/10.15407/dopovidi2018.04.067
dc.relation.referencesenLogvinov, I. M., & Tarasov, V. N. (2018). Electric
dc.relation.referencesenresistivity distribution in the Earth’s crust and
dc.relation.referencesenupper mantle for the southern East European
dc.relation.referencesenPlatform and Crimea from area-wide 2D models.
dc.relation.referencesenActa Geophys., 66, 2, 131–139.
dc.relation.referencesenhttps://doi.org/10.1007/s11600-018-0125-2.
dc.relation.referencesenLogvinov, I. M., Tarasov, V. N. (2019). Electric resistivity distribution in the Earth’s crust and upper
dc.relation.referencesenmantle for the western East European Platform in
dc.relation.referencesenUkraine from area-wide 2D models. Geofiz.
dc.relation.referencesenZhurn., 41, 1, 44–75 (in Russian), https://doi.org/1024028/gzh0203-3001.v.41i1.2019.158863.
dc.relation.referencesenLogvinov, I. M., Tarasov, V. N., Gordienko, I. V.
dc.relation.referencesen(2020). Geoelectric parameters of the northwestern Ukrainian Shield from 2D inversion.
dc.relation.referencesenGeofiz. Zhurn., 42, 1, 51–64 (in Russian).
dc.relation.referencesenhttps://doi.org/10.24028/gzh.0203-3100.v42i1.2020.195467.
dc.relation.referencesenLough, A. C., Wiens, D. A., Nyblade, A. (2018).
dc.relation.referencesenReactivation of ancient Antarctic rift zones by
dc.relation.referencesenintraplate seismicity. Nature Geoscience, 11, 515–519. https://doi.org/10.1038/s41561-018-0140-6.
dc.relation.referencesenMakhnach, A. S., Garetsky, R. G., Matveev, A. V.
dc.relation.referencesen(Eds.) (2001). Geology of Belarus. Minsk: Institute
dc.relation.referencesenof Geological Sciences of the National Academy
dc.relation.referencesenof Sciences of Belarus. 815 pp. (in Russian).
dc.relation.referencesenMalleswari, D., Veeraswamy, K., Abdul-Azeez, K. K.,
dc.relation.referencesenGupta, A. K., Babu, N., Patro, P. K., & Harinarayana, T. (2019). Magnetotelluric incvestigation
dc.relation.referencesenof lithosphe-ric electrical structure beneath the
dc.relation.referencesenDharwar Craton in South India: Evidence for
dc.relation.referencesenmantle suture and plume-continental interaction.
dc.relation.referencesenGeosci. Front., 10, 1915–1930. https://doi.org/10.1016/j.gsf. 2018.10.011.
dc.relation.referencesenMap of the hypsometry of the sole of the plate
dc.relation.referencesencomplexes of the southwest of the USSR (using
dc.relation.referencesenspace survey materials). 1: 1000000. (1988). Ed.
dc.relation.referencesenN.A. Krylov. Moscow: Mingeo USSR, 41 (in
dc.relation.referencesenRussian).
dc.relation.referencesenMap of the location of oil and gas prospective provinces and areas of Ukraine by geophysical data. 1:4000000 (2004). Ed. V. I. Starostenko. Kyiv:
dc.relation.referencesenUkr.DGRI (in Ukrainian).
dc.relation.referencesenMeng, H., Shi, Q., Liu, T., Liu, F.X, & Chen, P.
dc.relation.referencesen(2019). The percolation properties of electrical
dc.relation.referencesenconductivity and permeability for fractal porous
dc.relation.referencesenmedia. Energies, 12.1085. https://doi.org/10.33990/en12 061085.
dc.relation.referencesenShcherbak, M. P., & Bobrov, O. B. (2006). Mineral
dc.relation.referencesendeposits of Ukraine. I: Metalliferous mineral
dc.relation.referencesendeposits. Kyiv – Lviv. "Centre of Europe" Publ.
dc.relation.referencesenHouse, 785 p. (in Ukrainian).
dc.relation.referencesenParfeevets, A. V., Sankov, V. A., (2018).
dc.relation.referencesenGeodynamic Conditions for Cenozoic Activation
dc.relation.referencesenof Tectonic Structures in Southeastern Mongolia.
dc.relation.referencesenGeodynamics and Tectonophysics, Publ. of the
dc.relation.referencesenEarth’s Crust Siberian Branch, RAS, 9, 3, 855–888. https://doi.org/10.5800/GT-2018-9-3-0374.
dc.relation.referencesenPrikhodko, V. L., & Prikhodko, M. V. (2005).
dc.relation.referencesenTrapezoidal formation of Volyn and nativemineral fertilization. Collection of scientific works
dc.relation.referencesenof UkrDGRI, 1, 101–109 (in Ukrainian).
dc.relation.referencesenRyabenko, V. A. (1970). The main features of the
dc.relation.referencesentectonic structure of the Ukrainian crystalline
dc.relation.referencesenshield. Kyiv: Nauk. Dumka, 128 p. (in Russian).
dc.relation.referencesenSalishchev, K. A. (1987). Design and mapping. Moscow. MSU Publishing House, 240 p. (in Russian).
dc.relation.referencesenSarafian, E., Evans, R. L., Abdelsalam, M. G., Atekwana, E., Elsenbeck, J., Jones, A. G., &
dc.relation.referencesenChikambwe, E. (2018). Crustal conductors along
dc.relation.referencesenshear and suture zones – graphite and sulphides
dc.relation.referencesenthat experienced shearand metamorphism.
dc.relation.referencesenGondwana Res., 54, 38–49. https://doi.org/10.1016/j.gr.2017.09. 007.
dc.relation.referencesenSemenov, V. Y., Pek, J., Adam, A., Jozwiak, W.,
dc.relation.referencesenLadanyvskyy, B., Logvinov, I., Pushkarev, P., &
dc.relation.referencesenVozar J. (2008). Electrical structure of the upper
dc.relation.referencesenmantle beneath Central Europe: Results of the
dc.relation.referencesenCEMES project. Acta Geophysica, 56, 4, 957–981. https://doi.org/10.2478/s11600-008-0058-2.
dc.relation.referencesenShankland, T., Waff, H. (1977). Partial melting and
dc.relation.referencesenelectrical conductivity anomalies in the Upper
dc.relation.referencesenMantle. J. Geophys. Res., 82, 33, 5409–5417.
dc.relation.referencesenShepel, S. I. (2003). Electrical properties of rocks
dc.relation.referencesenunder thermobaric conditions of the lithosphere
dc.relation.referencesenand geoelectric models. Habil. Thesis 04.00.22,
dc.relation.referencesenKiev, 2003, 411 p. (in Russian).
dc.relation.referencesenShirkov B. I., Burakhovich, T. K., & Kushnir, A. N.
dc.relation.referencesen(2017). Three-dimensional geoelectric model of
dc.relation.referencesenthe Golovanevsk suture zone of the Ukrainian
dc.relation.referencesenShield. Geofiz. Zhurn., 1, 39, 41–60 (in Russian),
dc.relation.referencesenhttps://doi.org/10.24028/gzh.0203-3100.v39i1.2017.94010.
dc.relation.referencesenSiripunvaraporn, W., Egbert, G. (2000). An efficient
dc.relation.referencesendata-subspace inversion method for 2-D magnetotelluric data. Geophysics, 65, 3, 791–80.
dc.relation.referencesenSiripunvaraporn, W., Egbert, G., Lenbury, Y., Uyeshima, M. (2005). Three-dimensional magnetotelluric inversion: data-space method. Phys. Earth
dc.relation.referencesenPlanet. Interiors. 150, 3–14, https://doi.org/10.1016/j.pepi. 2004.08.023.
dc.relation.referencesenSollogub, V. B., 1980. Lithosphere of Ukraine. Kiev:
dc.relation.referencesenNauk. Dumka, 184 p. (in Russian).
dc.relation.referencesenSrebrov, B., Logvinov, I., Rakhlin, L., Kováčiková, S.
dc.relation.referencesen(2018). Results of the magnetotelluric investigations at geophysical observatories in Bulgaria.
dc.relation.referencesenGeophys. J. Int., 215, 165–180,
dc.relation.referencesenhttps://doi.org/10.1093/gji/ggy268.
dc.relation.referencesenStarostenko, V., Janik, T., Yegorova, T., Czuba, W.,
dc.relation.referencesenSroda, P., Lysynchuk, D., Aizberg, R., Garetsky, R., Karataev, G., Gribik, Y., Farfuliak, L.,
dc.relation.referencesenKolomiyets, K., Omelchenko, V., Komminaho, K.,
dc.relation.referencesenTiira, T., Gryn, D., Guterch, A., Legostaeva, O.,
dc.relation.referencesenThybo, H., & Tolkunov, A. (2018). Lithospheric
dc.relation.referencesenstructure along wide-angle seismic profile
dc.relation.referencesenGEORIFT 2013 in Pripyat – Dnieper – Donets
dc.relation.referencesenBasin (Belarus and Ukraine). Geophys. J. Int., 212,1932–1962, https://doi.org/10.1093/gji/ggx509.
dc.relation.referencesenTarasov, V. N., & Logvinov, I. M. (2020). Using the
dc.relation.referencesenTAR3D program for 3D data visualization in
dc.relation.referencesengeoelectric studies. Proceedings of the conference
dc.relation.referencesenGeoinformatics, Theoretical and Applied Aspects, 2020, 1–5, https://doi.org/10.3997/2214-4609.2020geo020.
dc.relation.referencesenThybo, H., Janik, T., Omelchenko, V. D., Grad, M.,
dc.relation.referencesenGaretsky, R. G., Belinsky, A.A., Karatayev, G. I.,
dc.relation.referencesenZlotski, G., Knudsen, E., Sand, R., Yliniemi, J.,
dc.relation.referencesenTiiro, T., Luosto, U., Komminaho, K., Giese, R.,
dc.relation.referencesenGuterch, A., Lund, C. E., Kharitonov, O. M., Ilchenko, T. V., Lysynchuk, D. V., Skobolev, V. M.,
dc.relation.referencesen& Doody, J. J. (2003). Upper lithospheric
dc.relation.referencesenseismic velocity structure across the Pripyat
dc.relation.referencesenTrough and the Ukrainian Shield along the
dc.relation.referencesenEUROBRIDGE’97 profile. Tectonophysics 371, 1/4, 41–79, https://doi.org/10.1016/S0040-1951(03)00200-2.
dc.relation.referencesenTregubenko, V. I., Lukin, O. E., Kremnetsky, O. O.,
dc.relation.referencesenPetrovsky, O. P., Kostenko, M. M., Slonitska, S. G,
dc.relation.referencesenShimkiv, L. M., Nikitash, O. B, Dzyuba, B. M.,
dc.relation.referencesenNechaeva, T. S, & Ipatenko, S. P. (2009).
dc.relation.referencesenInvestigation of anomalous geophysical zones of
dc.relation.referencesenthe Ukrainian Shield adjacent to oil-gas basins
dc.relation.referencesenwith the method of evaluation of their oil and gas
dc.relation.referencesencontent (2005–2009). Kyiv: Geoinform. 405 p. (in Ukrainian).
dc.relation.referencesenUnsworth, M., & Bedrosian, P. A. (2004). On the
dc.relation.referencesengeoelectric structure of major strike-slip faults and
dc.relation.referencesenhear zones. Earth Planet Space, 56, 12, 1177-1184. https://earth-planets-space.springeropen.com/articles/10.1186/BF03353337.
dc.relation.referencesenUsenko, I. S. (Ed.) (1982). Metamorpism of the
dc.relation.referencesenUkrainian shield. Kiev: Naukova Dumka. 1982. 307 p. (in Russian).
dc.relation.referencesenVan Zuilen, M. A., Lepland, A., & Arrhenius, G.
dc.relation.referencesen(2002). Reassessing the evidence for the earliest
dc.relation.referencesentraces of life. Letters to Nature, 418, 627–630,
dc.relation.referencesenhttps: //www.nature.com/articles/nature00934.
dc.relation.referencesenVerkhovtsev, V. (2006). Newest vertical crustal
dc.relation.referencesenmovements in Ukraine, their relationship with
dc.relation.referencesenlinear and circular structures. In: Power Earth, its
dc.relation.referencesengeological and environmental displays, scientific
dc.relation.referencesenand practical use. Kyiv: KNU. 129–137 (in
dc.relation.referencesenUkrainian).
dc.relation.referencesenWang, H., van Hunen, J., & Pearson, D. G. (2015).
dc.relation.referencesenThe thinning of subcontinental lithosphere: The roles
dc.relation.referencesenof plume impact and metasomatic weakening.
dc.relation.referencesenGeochem. Geophys. Geosyst., 16, 1156–1171,
dc.relation.referencesenhttps://doi.org/10.1002/2015GC005748.
dc.relation.referencesenWu, P., Johnston, P., & Lambeck, K. (1999).
dc.relation.referencesenPostglacial rebound and fault instability in
dc.relation.referencesenFennoscandia. Geophys. J. Int., 139, 657–670.
dc.relation.referencesenYatsenko, V. G. (1998). Regularities of the spatial
dc.relation.referencesenarrangement of graphite manifestations on the
dc.relation.referencesenUkrainian shield. Aspects of mineralogy in
dc.relation.referencesenUkraine. Kiyv: GNC ROS. 254-270 (in Russian).
dc.relation.referencesenYin, Y., Unsworth, M., Liddell, M., Pana, D., & Craven, J.A. (2014). Electrical resistivity structure of
dc.relation.referencesenthe Great Slave Lake shear zone, northwest Canada: implications for tectonic history. Geophys.
dc.relation.referencesenJ. Int., 199, 178-199, doi:10.1093/gji/ggu251.
dc.relation.referencesenYushyn, A. A., Moroz, V. S., & Proskurko, L. I.
dc.relation.referencesen(2013). Genetic peculiarities of manifestations of
dc.relation.referencesenprecious and non-ferrous metals mineralization in
dc.relation.referencesencarboniferous complexes of the Early PreSambrian at the Krivoi Rih basin. Geology and
dc.relation.referencesenMineralogy Bulletin of the Krivoi Rih National
dc.relation.referencesenUniversity, 1–2, 12–18, (in Russian).
dc.relation.urihttps://doi.org/10.1134/S1069351311010010
dc.relation.urihttp://www.igph.kiev.ua/FullVersion/2014/gj5/art5814.pdf
dc.relation.urihttps://doi.org/10.1111/j.1365-246X.1979.tb04773.x
dc.relation.urihttps://doi.org10.1016/j.gsf
dc.relation.urihttps://doi.org/:10.1144/GSL.MEM.2006.032.01
dc.relation.urihttps://doi.org/:10.1130/2015.2514(15
dc.relation.urihttps://doi.org/10.1016/j.earscirev.2019.05.008
dc.relation.urihttps://doi.org/10.2465/jmps.190824b
dc.relation.urihttps://doi.org/10.1144/SP389.9
dc.relation.urihttps://doi.org/10.1038/ngeo261
dc.relation.urihttps://doi.org/10.1111/j.1751–3928.2006.tb00271
dc.relation.urihttps://www.geokniga.org/bookfiles/geoknigaukrainskiy-shchit.pdf
dc.relation.urihttps://doi.org/10.24028/gzh.0203-3100.v42i2.2020.201740
dc.relation.urihttps://doi.org/1029/2005JB003739
dc.relation.urihttps://doi.org/10.1016/j.rgg.2018.03.013
dc.relation.urihttps://doi.org/10.1002/9781118529492.ch5
dc.relation.urihttps://doi.org/10.1016/j.cageo.2014.01.010
dc.relation.urihttps://doi.org/10.1007/s11200-014-0942-y
dc.relation.urihttps://doi.org/10.1029/2018TC005311
dc.relation.urihttps://doi.org/10.24028/gzh.0203-3100.v38i6.2016.91871
dc.relation.urihttps://doi.org/10.1515/acgeo-2015-0049
dc.relation.urihttps://doi.org/10.15407/dopovidi2018.04.067
dc.relation.urihttps://doi.org/10.1007/s11600-018-0125-2
dc.relation.urihttps://doi.org/1024028/gzh0203-3001.v.41i1.2019.158863
dc.relation.urihttps://doi.org/10.24028/gzh.0203-3100.v42i1.2020.195467
dc.relation.urihttps://doi.org/10.1038/s41561-018-0140-6
dc.relation.urihttps://doi.org/10.1016/j.gsf
dc.relation.urihttps://doi.org/10.33990/en12
dc.relation.urihttps://doi.org/10.5800/GT-2018-9-3-0374
dc.relation.urihttps://doi.org/10.1016/j.gr.2017.09
dc.relation.urihttps://doi.org/10.2478/s11600-008-0058-2
dc.relation.urihttps://doi.org/10.24028/gzh.0203-3100.v39i1.2017.94010
dc.relation.urihttps://doi.org/10.1016/j.pepi
dc.relation.urihttps://doi.org/10.1093/gji/ggy268
dc.relation.urihttps://doi.org/10.1093/gji/ggx509
dc.relation.urihttps://doi.org/10.3997/2214-4609.2020geo020
dc.relation.urihttps://doi.org/10.1016/S0040-1951(03)00200-2
dc.relation.urihttps://earth-planets-space.springeropen.com/articles/10.1186/BF03353337
dc.relation.urihttps://doi.org/10.1002/2015GC005748
dc.rights.holder© Інститут геології і геохімії горючих копалин Національної академії наук України, 2022
dc.rights.holder© Інститут геофізики ім. С. І. Субботіна Національної академії наук України, 2022
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.rights.holder© Kováčiková Svetlana, Logvinov Igor, Tarasov Viktor
dc.subjectземна кора і верхня мантія
dc.subjectСхідноєвропейська платформа
dc.subjectУкраїнський щит
dc.subjectелектропровідність
dc.subjectмінералізація
dc.subjectEarth’s crust and upper mantle
dc.subjectEast European Platform
dc.subjectUkrainian Shield
dc.subjectelectrical conductivity
dc.subjectmineralization
dc.subject.udc550.837.211
dc.subject.udc477.41
dc.subject.udc451.14
dc.titleArea-wide 2D and quasi-3D geoelectric models of the earth's crust and upper mantle as a possible evidence of recent tectonic activity in the western part of the ukrainian shield
dc.title.alternative2D та квазі-3D геоелектричні моделі земної кори та верхньої мантії як можливе свідчення недавньої тектонічної активності в західній частині українського щита
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2022n1_32__Kova_ikova_S-Area_wide_2D_and_quasi_99-118.pdf
Size:
2.19 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2022n1_32__Kova_ikova_S-Area_wide_2D_and_quasi_99-118__COVER.png
Size:
586.74 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.87 KB
Format:
Plain Text
Description: