Використання великих даних для побудови «розумного регіону»

dc.citation.epage296
dc.citation.issue14
dc.citation.journalTitleВісник Національного університету “Львівська політехніка”. Серія: Інформаційні системи та мережі
dc.citation.spage281
dc.contributor.affiliationУжгородський національний університет
dc.contributor.affiliationUzhhorod National University
dc.contributor.authorГолота, Олександр
dc.contributor.authorКут, Василь Іванович
dc.contributor.authorHolota, Oleksandr
dc.contributor.authorKut, Vasyl
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-09-12T07:21:58Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractПроаналізовано сучасні підходи до опрацювання даних, які генеруються та збираються у “розумних” містах. Технології опрацювання “великих даних” відкривають можливості для покращення життя міста та підвищення ефективності функціонування його різних галузей. Створення розумних міст, де технології поліпшують якість життя та підвищують ефективність роботи служб, є важливим напрямом використання великих даних. Зазначено, що використання інформатизації не може стосуватися тільки місць з великою щільністю населення. Відповіддю на завдання інформатизації невеликих населених пунктів, але із порівняно великою щільністю населення є створення розумного регіону. Розвиток сучасних інформаційних технологій змінює підходи до управління регіонами та їх економічного поступу. Особливо це стосується регіонів зі складною географією, мультинаціональною спільнотою та різнорідними галузями економіки, до яких належить і Закарпаття. У статті досліджено можливість створення розумного регіону на Закарпатті із використанням сучасних методів обробки великих даних.
dc.description.abstractThe modern world is characterized by a growth in the amount of data generated and collected. “Big data” provides opportunities for improving life and efficiency in various spheres. Creating smart cities where technology enhances the quality of life and service efficiency is an important direction in the use of big data. However, the use of digitization should not only concern places with a high population density. The answer to the challenge of digitizing populated areas of small size but relatively high population density is the creation of an intelligent region. The current technological environment is changing approaches to the management and development of regions. This is especially true for places with complex geography, a multinational community, and diverse economic sectors, such as Transcarpathia. This article explores the possibility of creating an intelligent region in Transcarpathia using modern methods of big data processing.
dc.format.extent281-296
dc.format.pages16
dc.identifier.citationГолота О. Використання великих даних для побудови «розумного регіону» / Олександр Голота, Василь Кут // Вісник Національного університету “Львівська політехніка”. Серія: Інформаційні системи та мережі. — Львів : Видавництво Львівської політехніки, 2023. — № 14. — С. 281–296.
dc.identifier.citationenHolota O. Using big data for the construction of an intelligent region / Oleksandr Holota, Vasyl Kut // Information Systems and Networks. — Lviv : Lviv Politechnic Publishing House, 2023. — No 14. — P. 281–296.
dc.identifier.doidoi.org/10.23939/sisn2023.14.281
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111710
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofВісник Національного університету “Львівська політехніка”. Серія: Інформаційні системи та мережі, 14, 2023
dc.relation.ispartofInformation Systems and Networks, 14, 2023
dc.relation.references1. Jiang D., The construction of smart city information system based on the Internet of Things and cloud computing. Comput. Commun., 150 (2020), 158–166. https://doi.org/10.1016/j.comcom.2019.10.035
dc.relation.references2. Javed A. R., Shahzad F., ur Rehman S., Zikria Y. B., Razzak I., Jalil Z., Xu G., Future smart cities requirements, emerging technologies, applications, challenges, and future aspects. Cities, 129 (2022), Article 103794. https://doi.org/10.1016/j.cities.2022.103794.
dc.relation.references3. Silva B. N., Khan M., Jung C., Seo J., Muhammad D., Han J., Yoon Y., Han K., Urban planning and smart city decision management empowered by real-time data processing using big data analytics. Sensors, 18 (9) (2018), p. 2994. https://doi.org/10.3390/s18092994
dc.relation.references4. Machine Learning for Data Streams: with Practical Examples in MOA / by Bifet, A., Read, J., Žliobaitė, I., Pfahringer, B., & Holmes, G., published in 2018, 125–128. https://mitpress.mit.edu/9780262037792/
dc.relation.references5. Chen, C. P., & Zhang, C. Y. (2014). Data-intensive applications, challenges, techniques and technologies: A survey on Big Data. Information Sciences, 275, 314–347. https://doi.org/10.1080/10630732.2014.942092.
dc.relation.references6. V. Albino, U. Berardi, R.M. Dangelico, Smart cities: Definitions, dimensions, performance, and initiatives. Journal of Urban Technology, 22 (1) (2015), 3–21. 10.1016/j.ins.2014.01.015.
dc.relation.references7. S. Allwinkle, P. Cruickshank, Creating smart-er cities: An overview. Journal of Urban Technology, 18 (2) (2011), 1–16 https://doi.org/10.1080/10630732.2011.601103.
dc.relation.references8. S. Ben Letaifa, How to strategize smart cities: Revealing the SMART model. Journal of Business Research, 68 (7) (2015), 1414–14. https://doi.org/10.1016/j.jbusres.2015.01.024.
dc.relation.references9. L. Anthopoulos, Smart utopia VS smart reality: Learning by experience from 10 smart city cases. Cities (London, England), 63 (2017), 128–148. https://doi.org/10.1016/j.cities.2016.10.005.
dc.relation.references10. A. Camero, E. Alba. Smart city and information technology: A review. Cities (London, England), 93 (2019), 84–94. https://doi.org/10.1016/j.cities.2019.04.014.
dc.relation.references11. G. Dall'O’, E. Bruni, A. Panza, L. Sarto, F. Khayatian, “Evaluation of cities’ smartness by means of indicators for small and medium cities and communities: A methodology for Northern Italy”. Sustainable Cities and Society, 34 (2017), 193–202. DOI: 10.1016/j.scs.2017.06.021.
dc.relation.references12. M. Duygan, M. Fischer, R. Pärli, K. Ingold, “Where do smart cities grow? The spatial and socio-economic configurations of smart city development”. Sustainable Cities and Society (2021), DOI: 10.1016/j.scs.2021.103578.
dc.relation.references13. Farhan, A. R., & Lim, S. (2019). Mountainous topography and the resilience of cities: A case study. International Journal of Disaster Risk Reduction, 33, 221–234. DOI: 10.1016/j.ijdrr.2018.04.030.
dc.relation.references14. Halás, M., Klapka, P., & Bleha, B. (2014). Regional differentiation of selected conditions for development of human and social capital in the regions of the Visegrad Group plus countries. Moravian Geographical Reports, 22(2), 22–32. DOI:10.2478/mgr-2014-0012.
dc.relation.references15. Kerekes, S., Kindler, E., & Piskóti, I. (2008). Environmental Co-operation in the Carpathians: Challenges and Responses. International Journal of Sustainable Development & World Ecology, 15(1), 53–65. DOI: 10.3843/SusDev.15.1:6.
dc.relation.references16. Acuto, M. 2013. “City Leadership in Global Governance”. Global Governance: a Review of Multilateralism and International Organizations, 19 (3): 481–498. DOI: 10.1163/19426720-01903008
dc.relation.references17. Bihun, Y. (2020). Climate change impact on the environment of the Transcarpathian region (Ukraine). Geologija. Geografija, 6(2), 66–78. DOI:10.13140/RG.2.2.31424.35841.
dc.relation.references18. Komornicki, T., & Śleszyński, P. (2016). The EU and its eastern partners: conditionality and expected benefits. Europa XXI, 30, 7–28. DOI:10.7163/Eu21.2016.30.1.
dc.relation.references19. Acuto, M., S. Parnell, and K. C. Seto. 2018. “Building a Global Urban Science”. Nature Sustainability, 1 (1): 2. DOI: 10.1038/s41893-017-0013-9.
dc.relation.references20. S. B. Kotsiantis, D. Kanellopoulos, P. E. Pintelas. Data preprocessing for supervised learning. International Journal of Computer Science, 1 (2) (2006), 111–117. 10.1080/02331931003692557
dc.relation.references21. M. J. McDonnell, I. MacGregor-Fors. The ecological future of cities. Science, 352 (6288) (2016), 936-938, 10.1126/science.aaf3630
dc.relation.references22. K. Mori, A. Christodoulou. Review of sustainability indices and indicators: Towards a new City Sustainability Index (CSI). Environmental Impact Assessment Review, 32 (1) (2012), pp. 94–106. 10.1016/j.eiar.2011.06.001
dc.relation.references23. D. Jaeger, R. Jung (Eds.), Encyclopedia of computational neuroscience, Springer, New York, NY (2013), 1–5. 10.1007/978-1-4614-7320-6_708-1
dc.relation.references24. P. McManus. Measuring urban sustainability: The potential and pitfalls of city rankings. Australian Geographer, 43 (4) (2012), 411–424. 10.1080/00049182.2012.731301
dc.relation.references25. H. Ichikawa, N. Yamato, P. Dustan. Competitiveness of global cities from the perspective of the global power city index. Procedia Engineering, 198 (September 2016) (2017), 736–742. 10.1016/j.proeng.2017.07.125
dc.relation.references26. F. Husson, S. Lê, J. Pagès. Exploratory multivariate analysis by example using R. Chapman & Hall/CRC computer science & data analysis, Vol. 40 (2010). 10.1080/02664763.2012.657409
dc.relation.references27. I. Koch. Analysis of multivariate and high-dimensional data. Cambridge University Press (2013). 10.1017/CBO9781139025805
dc.relation.references28. S. Hughes, E. K. Chu, S.G. Mason (Eds.), Climate change in cities: Innovations in multi-level governance, Springer International Publishing, Cham (2018), 1–15. 10.1007/978-3-319-65003-6_1
dc.relation.references29. G. Munda, Social multi-criteria evaluation for urban sustainability policies. Land Use Policy, 23 (1) (2006), 86–94. 10.1016/j.landusepol.2004.08.012
dc.relation.references30. T. Nam, T. A. Pardo. Conceptualizing smart city with dimensions of technology, people, and institutions. Proceedings of the 12th annual international digital government research conference: Digital government innovation in challenging times, ACM, New York, NY (2011), 282–291.10.1145/2037556.2037602
dc.relation.references31. Handbook on constructing composite indicators: Methodology and user guide. European Commission Joint Research Center, Paris (2008). 10.1787/9789264043466-en
dc.relation.references32. S. Lê, J. Josse, F. Husson. FactoMineR: An R package for multivariate analysis. Journal of Statistical Software, 25 (1) (2008), 1–18. 10.1016/j.envint.2008.06.007
dc.relation.references33. A. L. Mayer. Strengths and weaknesses of common sustainability indices for multidimensional systems. Environment International, 34 (2) (2008), 277–291. 10.1016/j.envint.2007.09.004
dc.relation.references34. M. E. Kahn. Green cities: Urban growth and the environment, (2006), 10.1111/j.1467-9787.2006.00531_8.x
dc.relation.references35. C. Jacinto, C. G. Soares. The added value of the new ESAW/Eurostat variables in accident analysis in the mining and quarrying industry. Journal of Safety Research, 39 (6) (2008), 631–644. 10.1016/j.jsr.;1; 2008.10.009
dc.relation.references36. I. T. Jolliffe, J. Cadima. Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374 (2065) (2016), p. 20150202. 10.1098/rsta.2015.0202
dc.relation.references37. Global Power City Index 2016. Institute for Urban Strategies, 74 (4) (2016), A28–A29. 10.1002/ana.24042
dc.relation.references38. H. F. Kaiser. The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20 (1) (1960), 141–151. 10.1177/001316446002000116
dc.relation.references39. J. V. Meijering, K. Kern, H. Tobi. Identifying the methodological characteristics of European green city rankings. Ecological Indicators, 43 (2014), 132–142. 10.1016/j.ecolind.2014.02.026
dc.relation.references40. Kucharczyk H., Kucharczyk M., Stanislawek K., Fedor P. (2012). Application of PCA in taxonomy research. Principal component analysis – Multidisciplinary applications (2012). 10.5772/711
dc.relation.references41. B. Lindström, B. Eriksson. Quality of life among children in the Nordic countries. Quality of Life Research, 2 (1) (1993), 23–32. 10.1007/BF00642886
dc.relation.references42. K. Kouser, P. G. Lavanya, L. Rangarajan, K. Acharya Kshitish. Effective feature selection for classification of promoter sequences. PLOS ONE, 11 (12) (2016), 1–20. 10.1371/journal.pone.0167165
dc.relation.references43. X. A. Li, G. O. Yeh. Principal component analysis of stacked multi-temporal images for the monitoring of rapid urban expansion in the Pearl River Delta. International Journal of Remote Sensing, 19 (8) (1998), 1501-1518. 10.1080/014311698215315
dc.relation.references44. M. L. Marsal-Llacuna, J. Colomer-Llinàs, J. Meléndez-Frigola. Lessons in urban monitoring taken from sustainable and livable cities to better address the Smart Cities initiative. Technological Forecasting and Social Change, 90 (PB) (2015), 611–622. 10.1016/j.techfore.2014.01.012
dc.relation.references45. Y. A. Phillis, V. S. Kouikoglou, C. Verdugo. Urban sustainability assessment and ranking of cities. Computers, Environment and Urban Systems, 64 (2017), 254–265. 10.1016/j.compenvurbsys.2017.03.002
dc.relation.references46. Organisation for Economic Co-Operation and Development and China Development Research Foundation, 2010. Organisation for Economic Co-Operation and Development, China Development Research Foundation. Trends in urbanisation and urban policies in OECD Countries: What lessons for China? (2010), p. 219, 10.1787/9789264092259-en
dc.relation.references47. T. Metsalu, J. Vilo. ClustVis: A web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Research, 43 (W1) (2015), W566–W570, 10.1093/nar/gkv468
dc.relation.references48. G. Munda. Social multi-criteria evaluation: Methodological foundations and operational consequences. European Journal of Operational Research, 158 (3) (2004), 662–677. 10.1016/S0377-2217(03)00369-2
dc.relation.references49. M. Saisana, A. Saltelli. Rankings and ratings: Instructions for use. Hague Journal on the Rule of Law, 3 (2) (2011), 247–268. 10.1017/S1876404511200058
dc.relation.references50. C. Serbanica, D. L. Constantin. Sustainable cities in central and eastern European countries. Moving towards smart specialization. Habitat International, 68 (2017), 55–63. 10.1016/j.habitatint.2017.03.005
dc.relation.references51. M. Sharholy, K. Ahmad, G. Mahmood, R. C. Trivedi. Municipal solid waste management in Indian cities – A review. Waste Management, 28 (2) (2008), 459–467. 10.1016/j.wasman.2007.02.008
dc.relation.references52. N. Sheng, U. W. Tang. The first official city ranking by air quality in China – A review and analysis. Cities, 51 (2016), 139–149. 10.1016/j.cities.2015.08.012
dc.relation.references53. K. Szopik-Depczyńska, K. Cheba, I. Bąk, M. Stajniak, A. Simboli, G. Ioppolo. The study of relationship in a hierarchical structure of EU sustainable development indicators. Ecological Indicators, 90 (December 2017) (2018), 120–131. 10.1016/j.ecolind.2018.03.002
dc.relation.references54. W. Poortinga, L. Steg, C. Vlek. Values, environmental concern, and environmental behavior: A study into household energy use. Environment and Behavior, 36 (1) (2004), 70–93. 10.1177/0013916503251466
dc.relation.references55. R. Osbaldiston, J. P. Schott. Environmental sustainability and behavioral science: Meta-analysis of proenvironmental behavior experiments. Environment and Behavior, 44 (2) (2012), 257–299. 10.1177/0013916511402673
dc.relation.references56. D. L. Omucheni, K. A. Kaduki, W. D. Bulimo, H. K. Angeyo. Application of principal component analysis to multispectral-multimodal optical image analysis for malaria diagnostics. Malaria Journal, 13 (485) (2014), 1–11. 10.1186/1475-2875-13-485
dc.relation.references57. Chamoso P., Gonzalez-Briones A., Rodriguez S., Corchado J.M., Tendencies of technologies and platforms in smart cities: A state-of-the-art review. DOI: 10.1155/2018/3086854.
dc.relation.references58. Costa D. G., Damasceno A., Silva I., CitySpeed: A crowdsensing-based integrated platform for general purpose monitoring of vehicular speeds in smart cities. Smart Cities, 2 (1) (2019), 46–65. DOI: 10.1155/2018/3086854.
dc.relation.references59. Dabberdt W. F., Miller E., Uncertainty, ensembles and air quality dispersion modeling: applications and challenges. Atmospheric Enviroment, 34 (27) (2000), 4667–4673. DOI: 10.1016/S1352-2310(00)00141-2.
dc.relation.references60. Kim D., Kim S., Role and challenge of technology toward a smart sustainable city: Topic modeling, classification, and time series analysis using information and communication technology patent data. Sustainable Cities and Society, 82 (2022). DOI: 10.1016/j.scs.2022.103888.
dc.relation.references61. Kontokosta C. E., Malik A., The resilience to emergencies and disasters index: Applying big data to benchmark and validate neighborhood resilience capacity. Sustainable Cities and Society, 36 (2018), 272–285. DOI: 10.1016/j.scs.2017.10.025.
dc.relation.references62. Li W., Batty M., Goodchild M.F., Real-time GIS for smart cities. International Journal of Geographical Information Science, 34 (2) (2020), 311–324. DOI: 10.1080/13658816.2019.1673397
dc.relation.references63. Lim C. C., Kim H., Vilcassim M. R., Thurston G. D., Gordon T., Chen L.-C., et al., Mapping urban air quality using mobile sampling with low-cost sensors and machine learning in seoul, South Korea, Environment International, 131 (2019). DOI: 10.1016/j.scs.2022.104161
dc.relation.references64. Mouratidis K., Bike-sharing, car-sharing, e-scooters, and uber: Who are the shared mobility users and where do they live? Sustainable Cities and Society, 86 (2022). DOI: 10.1016/j.scs.2022.104161
dc.relation.references65. Muñoz-Villamizar A., Solano-Charris E., AzadDisfany M., Reyes-Rubiano L., Study of urban-traffic congestion based on google maps API: the case of Boston. IFAC-PapersOnLine, 54 (1) (2021), 211–216. DOI: 10.1016/j.ifacol.2021.08.079
dc.relation.references66. Mydlarz C., Sharma M., Lockerman Y., Steers B., Silva C., Bello J.P., The life of a new york city noise sensor network. Sensors, 19 (6) (2019). DOI: 10.3390/s19061415
dc.relation.references67. Nguyen H. T., Marques P., Benneworth P., Living labs: Challenging and changing the smart city power relations? Technological Forecasting and Social Change, 183 (2022). DOI: 10.1016/j.techfore.2022.121866.
dc.relation.references68. Oliveira, F., Costa, D. G., & Assis, F. (2022). An IoT Platform for the Development of Low-cost Emergencies Detection Units based on Soft Sensors. In 2022 IEEE international smart cities conference (ISC2), 1–4. DOI: 10.1109/ISC255366.2022.9922105
dc.relation.references69. Senturk, I. F., & Kebe, G. Y. (2019). A New Approach to Simulating Node Deployment for Smart City Applications Using Geospatial Data. In International symposium on networks, computers and communications, 1–5. DOI: 10.1109/ISNCC.2019.8909101
dc.relation.references70. Vargas-Munoz J. E., Srivastava S., Tuia D., Falcão A. X., OpenStreetMap: Challenges and opportunities in machine learning and remote sensing. IEEE Geoscience and Remote Sensing Magazine, 9 (1) (2021), 184–19. DOI: 10.1109/MGRS.2020.2994107.
dc.relation.references71. Tchuitcheu W. C., Bobda C., Pantho M. J. H., Internet of smart-cameras for traffic lights optimization in smart cities. Internet of Things, 11 (2020). DOI: 10.1016/j.iot.2020.100207
dc.relation.references72. Zhou M., Mehedi Hassan M., Goscinski A., Emerging edge-of-things computing for smart cities: Recent advances and future trends. Information Sciences, 600 (2022), 442–445. DOI: 10.1016/j.ins.2020.03.008
dc.relation.referencesen1. Jiang D., The construction of smart city information system based on the Internet of Things and cloud computing. Comput. Commun., 150 (2020), 158–166. https://doi.org/10.1016/j.comcom.2019.10.035
dc.relation.referencesen2. Javed A. R., Shahzad F., ur Rehman S., Zikria Y. B., Razzak I., Jalil Z., Xu G., Future smart cities requirements, emerging technologies, applications, challenges, and future aspects. Cities, 129 (2022), Article 103794. https://doi.org/10.1016/j.cities.2022.103794.
dc.relation.referencesen3. Silva B. N., Khan M., Jung C., Seo J., Muhammad D., Han J., Yoon Y., Han K., Urban planning and smart city decision management empowered by real-time data processing using big data analytics. Sensors, 18 (9) (2018), p. 2994. https://doi.org/10.3390/s18092994
dc.relation.referencesen4. Machine Learning for Data Streams: with Practical Examples in MOA, by Bifet, A., Read, J., Žliobaitė, I., Pfahringer, B., & Holmes, G., published in 2018, 125–128. https://mitpress.mit.edu/9780262037792/
dc.relation.referencesen5. Chen, C. P., & Zhang, C. Y. (2014). Data-intensive applications, challenges, techniques and technologies: A survey on Big Data. Information Sciences, 275, 314–347. https://doi.org/10.1080/10630732.2014.942092.
dc.relation.referencesen6. V. Albino, U. Berardi, R.M. Dangelico, Smart cities: Definitions, dimensions, performance, and initiatives. Journal of Urban Technology, 22 (1) (2015), 3–21. 10.1016/j.ins.2014.01.015.
dc.relation.referencesen7. S. Allwinkle, P. Cruickshank, Creating smart-er cities: An overview. Journal of Urban Technology, 18 (2) (2011), 1–16 https://doi.org/10.1080/10630732.2011.601103.
dc.relation.referencesen8. S. Ben Letaifa, How to strategize smart cities: Revealing the SMART model. Journal of Business Research, 68 (7) (2015), 1414–14. https://doi.org/10.1016/j.jbusres.2015.01.024.
dc.relation.referencesen9. L. Anthopoulos, Smart utopia VS smart reality: Learning by experience from 10 smart city cases. Cities (London, England), 63 (2017), 128–148. https://doi.org/10.1016/j.cities.2016.10.005.
dc.relation.referencesen10. A. Camero, E. Alba. Smart city and information technology: A review. Cities (London, England), 93 (2019), 84–94. https://doi.org/10.1016/j.cities.2019.04.014.
dc.relation.referencesen11. G. Dall'O’, E. Bruni, A. Panza, L. Sarto, F. Khayatian, "Evaluation of cities’ smartness by means of indicators for small and medium cities and communities: A methodology for Northern Italy". Sustainable Cities and Society, 34 (2017), 193–202. DOI: 10.1016/j.scs.2017.06.021.
dc.relation.referencesen12. M. Duygan, M. Fischer, R. Pärli, K. Ingold, "Where do smart cities grow? The spatial and socio-economic configurations of smart city development". Sustainable Cities and Society (2021), DOI: 10.1016/j.scs.2021.103578.
dc.relation.referencesen13. Farhan, A. R., & Lim, S. (2019). Mountainous topography and the resilience of cities: A case study. International Journal of Disaster Risk Reduction, 33, 221–234. DOI: 10.1016/j.ijdrr.2018.04.030.
dc.relation.referencesen14. Halás, M., Klapka, P., & Bleha, B. (2014). Regional differentiation of selected conditions for development of human and social capital in the regions of the Visegrad Group plus countries. Moravian Geographical Reports, 22(2), 22–32. DOI:10.2478/mgr-2014-0012.
dc.relation.referencesen15. Kerekes, S., Kindler, E., & Piskóti, I. (2008). Environmental Co-operation in the Carpathians: Challenges and Responses. International Journal of Sustainable Development & World Ecology, 15(1), 53–65. DOI: 10.3843/SusDev.15.1:6.
dc.relation.referencesen16. Acuto, M. 2013. "City Leadership in Global Governance". Global Governance: a Review of Multilateralism and International Organizations, 19 (3): 481–498. DOI: 10.1163/19426720-01903008
dc.relation.referencesen17. Bihun, Y. (2020). Climate change impact on the environment of the Transcarpathian region (Ukraine). Geologija. Geografija, 6(2), 66–78. DOI:10.13140/RG.2.2.31424.35841.
dc.relation.referencesen18. Komornicki, T., & Śleszyński, P. (2016). The EU and its eastern partners: conditionality and expected benefits. Europa XXI, 30, 7–28. DOI:10.7163/Eu21.2016.30.1.
dc.relation.referencesen19. Acuto, M., S. Parnell, and K. C. Seto. 2018. "Building a Global Urban Science". Nature Sustainability, 1 (1): 2. DOI: 10.1038/s41893-017-0013-9.
dc.relation.referencesen20. S. B. Kotsiantis, D. Kanellopoulos, P. E. Pintelas. Data preprocessing for supervised learning. International Journal of Computer Science, 1 (2) (2006), 111–117. 10.1080/02331931003692557
dc.relation.referencesen21. M. J. McDonnell, I. MacGregor-Fors. The ecological future of cities. Science, 352 (6288) (2016), 936-938, 10.1126/science.aaf3630
dc.relation.referencesen22. K. Mori, A. Christodoulou. Review of sustainability indices and indicators: Towards a new City Sustainability Index (CSI). Environmental Impact Assessment Review, 32 (1) (2012), pp. 94–106. 10.1016/j.eiar.2011.06.001
dc.relation.referencesen23. D. Jaeger, R. Jung (Eds.), Encyclopedia of computational neuroscience, Springer, New York, NY (2013), 1–5. 10.1007/978-1-4614-7320-6_708-1
dc.relation.referencesen24. P. McManus. Measuring urban sustainability: The potential and pitfalls of city rankings. Australian Geographer, 43 (4) (2012), 411–424. 10.1080/00049182.2012.731301
dc.relation.referencesen25. H. Ichikawa, N. Yamato, P. Dustan. Competitiveness of global cities from the perspective of the global power city index. Procedia Engineering, 198 (September 2016) (2017), 736–742. 10.1016/j.proeng.2017.07.125
dc.relation.referencesen26. F. Husson, S. Lê, J. Pagès. Exploratory multivariate analysis by example using R. Chapman & Hall/CRC computer science & data analysis, Vol. 40 (2010). 10.1080/02664763.2012.657409
dc.relation.referencesen27. I. Koch. Analysis of multivariate and high-dimensional data. Cambridge University Press (2013). 10.1017/CBO9781139025805
dc.relation.referencesen28. S. Hughes, E. K. Chu, S.G. Mason (Eds.), Climate change in cities: Innovations in multi-level governance, Springer International Publishing, Cham (2018), 1–15. 10.1007/978-3-319-65003-6_1
dc.relation.referencesen29. G. Munda, Social multi-criteria evaluation for urban sustainability policies. Land Use Policy, 23 (1) (2006), 86–94. 10.1016/j.landusepol.2004.08.012
dc.relation.referencesen30. T. Nam, T. A. Pardo. Conceptualizing smart city with dimensions of technology, people, and institutions. Proceedings of the 12th annual international digital government research conference: Digital government innovation in challenging times, ACM, New York, NY (2011), 282–291.10.1145/2037556.2037602
dc.relation.referencesen31. Handbook on constructing composite indicators: Methodology and user guide. European Commission Joint Research Center, Paris (2008). 10.1787/9789264043466-en
dc.relation.referencesen32. S. Lê, J. Josse, F. Husson. FactoMineR: An R package for multivariate analysis. Journal of Statistical Software, 25 (1) (2008), 1–18. 10.1016/j.envint.2008.06.007
dc.relation.referencesen33. A. L. Mayer. Strengths and weaknesses of common sustainability indices for multidimensional systems. Environment International, 34 (2) (2008), 277–291. 10.1016/j.envint.2007.09.004
dc.relation.referencesen34. M. E. Kahn. Green cities: Urban growth and the environment, (2006), 10.1111/j.1467-9787.2006.00531_8.x
dc.relation.referencesen35. C. Jacinto, C. G. Soares. The added value of the new ESAW/Eurostat variables in accident analysis in the mining and quarrying industry. Journal of Safety Research, 39 (6) (2008), 631–644. 10.1016/j.jsr.;1; 2008.10.009
dc.relation.referencesen36. I. T. Jolliffe, J. Cadima. Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374 (2065) (2016), p. 20150202. 10.1098/rsta.2015.0202
dc.relation.referencesen37. Global Power City Index 2016. Institute for Urban Strategies, 74 (4) (2016), A28–A29. 10.1002/ana.24042
dc.relation.referencesen38. H. F. Kaiser. The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20 (1) (1960), 141–151. 10.1177/001316446002000116
dc.relation.referencesen39. J. V. Meijering, K. Kern, H. Tobi. Identifying the methodological characteristics of European green city rankings. Ecological Indicators, 43 (2014), 132–142. 10.1016/j.ecolind.2014.02.026
dc.relation.referencesen40. Kucharczyk H., Kucharczyk M., Stanislawek K., Fedor P. (2012). Application of PCA in taxonomy research. Principal component analysis – Multidisciplinary applications (2012). 10.5772/711
dc.relation.referencesen41. B. Lindström, B. Eriksson. Quality of life among children in the Nordic countries. Quality of Life Research, 2 (1) (1993), 23–32. 10.1007/BF00642886
dc.relation.referencesen42. K. Kouser, P. G. Lavanya, L. Rangarajan, K. Acharya Kshitish. Effective feature selection for classification of promoter sequences. PLOS ONE, 11 (12) (2016), 1–20. 10.1371/journal.pone.0167165
dc.relation.referencesen43. X. A. Li, G. O. Yeh. Principal component analysis of stacked multi-temporal images for the monitoring of rapid urban expansion in the Pearl River Delta. International Journal of Remote Sensing, 19 (8) (1998), 1501-1518. 10.1080/014311698215315
dc.relation.referencesen44. M. L. Marsal-Llacuna, J. Colomer-Llinàs, J. Meléndez-Frigola. Lessons in urban monitoring taken from sustainable and livable cities to better address the Smart Cities initiative. Technological Forecasting and Social Change, 90 (PB) (2015), 611–622. 10.1016/j.techfore.2014.01.012
dc.relation.referencesen45. Y. A. Phillis, V. S. Kouikoglou, C. Verdugo. Urban sustainability assessment and ranking of cities. Computers, Environment and Urban Systems, 64 (2017), 254–265. 10.1016/j.compenvurbsys.2017.03.002
dc.relation.referencesen46. Organisation for Economic Co-Operation and Development and China Development Research Foundation, 2010. Organisation for Economic Co-Operation and Development, China Development Research Foundation. Trends in urbanisation and urban policies in OECD Countries: What lessons for China? (2010), p. 219, 10.1787/9789264092259-en
dc.relation.referencesen47. T. Metsalu, J. Vilo. ClustVis: A web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Research, 43 (W1) (2015), W566–W570, 10.1093/nar/gkv468
dc.relation.referencesen48. G. Munda. Social multi-criteria evaluation: Methodological foundations and operational consequences. European Journal of Operational Research, 158 (3) (2004), 662–677. 10.1016/S0377-2217(03)00369-2
dc.relation.referencesen49. M. Saisana, A. Saltelli. Rankings and ratings: Instructions for use. Hague Journal on the Rule of Law, 3 (2) (2011), 247–268. 10.1017/S1876404511200058
dc.relation.referencesen50. C. Serbanica, D. L. Constantin. Sustainable cities in central and eastern European countries. Moving towards smart specialization. Habitat International, 68 (2017), 55–63. 10.1016/j.habitatint.2017.03.005
dc.relation.referencesen51. M. Sharholy, K. Ahmad, G. Mahmood, R. C. Trivedi. Municipal solid waste management in Indian cities – A review. Waste Management, 28 (2) (2008), 459–467. 10.1016/j.wasman.2007.02.008
dc.relation.referencesen52. N. Sheng, U. W. Tang. The first official city ranking by air quality in China – A review and analysis. Cities, 51 (2016), 139–149. 10.1016/j.cities.2015.08.012
dc.relation.referencesen53. K. Szopik-Depczyńska, K. Cheba, I. Bąk, M. Stajniak, A. Simboli, G. Ioppolo. The study of relationship in a hierarchical structure of EU sustainable development indicators. Ecological Indicators, 90 (December 2017) (2018), 120–131. 10.1016/j.ecolind.2018.03.002
dc.relation.referencesen54. W. Poortinga, L. Steg, C. Vlek. Values, environmental concern, and environmental behavior: A study into household energy use. Environment and Behavior, 36 (1) (2004), 70–93. 10.1177/0013916503251466
dc.relation.referencesen55. R. Osbaldiston, J. P. Schott. Environmental sustainability and behavioral science: Meta-analysis of proenvironmental behavior experiments. Environment and Behavior, 44 (2) (2012), 257–299. 10.1177/0013916511402673
dc.relation.referencesen56. D. L. Omucheni, K. A. Kaduki, W. D. Bulimo, H. K. Angeyo. Application of principal component analysis to multispectral-multimodal optical image analysis for malaria diagnostics. Malaria Journal, 13 (485) (2014), 1–11. 10.1186/1475-2875-13-485
dc.relation.referencesen57. Chamoso P., Gonzalez-Briones A., Rodriguez S., Corchado J.M., Tendencies of technologies and platforms in smart cities: A state-of-the-art review. DOI: 10.1155/2018/3086854.
dc.relation.referencesen58. Costa D. G., Damasceno A., Silva I., CitySpeed: A crowdsensing-based integrated platform for general purpose monitoring of vehicular speeds in smart cities. Smart Cities, 2 (1) (2019), 46–65. DOI: 10.1155/2018/3086854.
dc.relation.referencesen59. Dabberdt W. F., Miller E., Uncertainty, ensembles and air quality dispersion modeling: applications and challenges. Atmospheric Enviroment, 34 (27) (2000), 4667–4673. DOI: 10.1016/S1352-2310(00)00141-2.
dc.relation.referencesen60. Kim D., Kim S., Role and challenge of technology toward a smart sustainable city: Topic modeling, classification, and time series analysis using information and communication technology patent data. Sustainable Cities and Society, 82 (2022). DOI: 10.1016/j.scs.2022.103888.
dc.relation.referencesen61. Kontokosta C. E., Malik A., The resilience to emergencies and disasters index: Applying big data to benchmark and validate neighborhood resilience capacity. Sustainable Cities and Society, 36 (2018), 272–285. DOI: 10.1016/j.scs.2017.10.025.
dc.relation.referencesen62. Li W., Batty M., Goodchild M.F., Real-time GIS for smart cities. International Journal of Geographical Information Science, 34 (2) (2020), 311–324. DOI: 10.1080/13658816.2019.1673397
dc.relation.referencesen63. Lim C. C., Kim H., Vilcassim M. R., Thurston G. D., Gordon T., Chen L.-C., et al., Mapping urban air quality using mobile sampling with low-cost sensors and machine learning in seoul, South Korea, Environment International, 131 (2019). DOI: 10.1016/j.scs.2022.104161
dc.relation.referencesen64. Mouratidis K., Bike-sharing, car-sharing, e-scooters, and uber: Who are the shared mobility users and where do they live? Sustainable Cities and Society, 86 (2022). DOI: 10.1016/j.scs.2022.104161
dc.relation.referencesen65. Muñoz-Villamizar A., Solano-Charris E., AzadDisfany M., Reyes-Rubiano L., Study of urban-traffic congestion based on google maps API: the case of Boston. IFAC-PapersOnLine, 54 (1) (2021), 211–216. DOI: 10.1016/j.ifacol.2021.08.079
dc.relation.referencesen66. Mydlarz C., Sharma M., Lockerman Y., Steers B., Silva C., Bello J.P., The life of a new york city noise sensor network. Sensors, 19 (6) (2019). DOI: 10.3390/s19061415
dc.relation.referencesen67. Nguyen H. T., Marques P., Benneworth P., Living labs: Challenging and changing the smart city power relations? Technological Forecasting and Social Change, 183 (2022). DOI: 10.1016/j.techfore.2022.121866.
dc.relation.referencesen68. Oliveira, F., Costa, D. G., & Assis, F. (2022). An IoT Platform for the Development of Low-cost Emergencies Detection Units based on Soft Sensors. In 2022 IEEE international smart cities conference (ISC2), 1–4. DOI: 10.1109/ISC255366.2022.9922105
dc.relation.referencesen69. Senturk, I. F., & Kebe, G. Y. (2019). A New Approach to Simulating Node Deployment for Smart City Applications Using Geospatial Data. In International symposium on networks, computers and communications, 1–5. DOI: 10.1109/ISNCC.2019.8909101
dc.relation.referencesen70. Vargas-Munoz J. E., Srivastava S., Tuia D., Falcão A. X., OpenStreetMap: Challenges and opportunities in machine learning and remote sensing. IEEE Geoscience and Remote Sensing Magazine, 9 (1) (2021), 184–19. DOI: 10.1109/MGRS.2020.2994107.
dc.relation.referencesen71. Tchuitcheu W. C., Bobda C., Pantho M. J. H., Internet of smart-cameras for traffic lights optimization in smart cities. Internet of Things, 11 (2020). DOI: 10.1016/j.iot.2020.100207
dc.relation.referencesen72. Zhou M., Mehedi Hassan M., Goscinski A., Emerging edge-of-things computing for smart cities: Recent advances and future trends. Information Sciences, 600 (2022), 442–445. DOI: 10.1016/j.ins.2020.03.008
dc.relation.urihttps://doi.org/10.1016/j.comcom.2019.10.035
dc.relation.urihttps://doi.org/10.1016/j.cities.2022.103794
dc.relation.urihttps://doi.org/10.3390/s18092994
dc.relation.urihttps://mitpress.mit.edu/9780262037792/
dc.relation.urihttps://doi.org/10.1080/10630732.2014.942092
dc.relation.urihttps://doi.org/10.1080/10630732.2011.601103
dc.relation.urihttps://doi.org/10.1016/j.jbusres.2015.01.024
dc.relation.urihttps://doi.org/10.1016/j.cities.2016.10.005
dc.relation.urihttps://doi.org/10.1016/j.cities.2019.04.014
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Голота О., Кут В., 2023
dc.subjectрозумний регіон
dc.subjectавтоматизація життєдіяльності населення
dc.subjectвеликі дані
dc.subjectпараметризація v
dc.subjectсфери впровадження розумного регіону
dc.subjectЗакарпаття
dc.subjectsmart region
dc.subjectautomation of population life activities
dc.subjectbig data
dc.subjectparameterization
dc.subjectareas of implementation of the intelligent region
dc.subjectTranscarpathia
dc.subject.udc004.89
dc.subject.udc004
dc.titleВикористання великих даних для побудови «розумного регіону»
dc.title.alternativeUsing big data for the construction of an intelligent region
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023n14_Holota_O-Using_big_data_for_the_construction_281-296.pdf
Size:
10.87 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023n14_Holota_O-Using_big_data_for_the_construction_281-296__COVER.png
Size:
427.14 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.81 KB
Format:
Plain Text
Description: