Visualization method for multidimensional random processes

dc.citation.epage10
dc.citation.issue1
dc.citation.journalTitleВимірювальна техніка та метрологія
dc.citation.spage5
dc.contributor.affiliationNational Automobile and Highway University
dc.contributor.affiliationState Biotechnological University
dc.contributor.authorPoliarus, Oleksandr
dc.contributor.authorLebedynskyi, Andriy
dc.contributor.authorChepusenko, Yevhenii
dc.contributor.authorLyubymova, Nina
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-03-11T08:26:31Z
dc.date.available2024-03-11T08:26:31Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractThe article proposes a method for visualizing multidimensional random process realizations using the example of the concentrations of harmful gases emitted into the atmosphere from a thermal power plant. The method is based on the transformation of gas concentration values in one point of multidimensional space at the same time into a two-dimensional curve, which is described by the sum of products of normalized concentrations by orthogonal Legendre functions of the corresponding order. The combination of such curves on a two-dimensional plane at discrete times creates a characteristic image that can be used to visually detect features of gas concentrations over time by a human operator.
dc.format.extent5-10
dc.format.pages6
dc.identifier.citationVisualization method for multidimensional random processes / Oleksandr Poliarus, Andriy Lebedynskyi, Yevhenii Chepusenko, Nina Lyubymova // Measuring Equipment and Metrology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 84. — No 1. — P. 5–10.
dc.identifier.citationenVisualization method for multidimensional random processes / Oleksandr Poliarus, Andriy Lebedynskyi, Yevhenii Chepusenko, Nina Lyubymova // Measuring Equipment and Metrology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 84. — No 1. — P. 5–10.
dc.identifier.doidoi.org/10.23939/istcmtm2023.01.005
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61415
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofВимірювальна техніка та метрологія, 1 (84), 2023
dc.relation.ispartofMeasuring Equipment and Metrology, 1 (84), 2023
dc.relation.references[1] G. Phillips-Wren. Intelligent Systems to Support Human Decision Making. In book: Artificial Intelligence, 2017, pp. 3023–3036. DOI: 10.4018/978-1-5225-1759-7.ch125
dc.relation.references[2] S.Mansmann, T. Neumuth, M. H. Scholl,Multidimensional Data Modeling for Business Process Analysis, 26th Int. Conf. on Conceptual Modeling, Nov. 5–9, 2007, Auckland, New Zealand. DOI: 10.1007/978-3-540-75563-0_4
dc.relation.references[3] J. Starck, F. Murtagh, Handbook of Astronomical Data Analysis. Elsevier, 2002. [Online] Available: https://www.academia.edu/2608657/Handbook_of_Astronomical_Data_ Analysis
dc.relation.references[4] Pak Chung Wong and R. Daniel Bergeron. 30 Years of Multidimensional Multivariate Visualization. In Sc. Visualization, Overviews, Methodologies and Techniques. IEEE Computer Society Press, pp. 3–33, 1994. Available: https://www.cs.unc.edu/xcms/courses/comp715-s10/papers/Wong97_30_years_of_multidimensional_multivariate_visualization.pdf
dc.relation.references[5] H. C. Purchase, N. Andrienko, T. J. Jankun-Kelly, M. Ward. Theoretical Foundations of Information Visualization. In: Inf. Visualization: Human-Centered Issues and Perspectives, 1970, pp. 46–64. DOI: 10.1007/978-3-540-70956-5_3.
dc.relation.references[6] W. Weaver, C. Shannon. The mathematical theory of communication. Physics, 2009. DOI:10.1098/rspa.2009.0063
dc.relation.references[7] D. Asimov, “The grand tour: A tool for viewing multidimensional data”, SIAM Journ. on Sc. & Stat. Comp., pp. 128–143, 1985. DOI: 10.1137/0906011
dc.relation.references[8] R. Bergeron, W. Cody, W. Hibbard, D. Kao, K. Miceli, L. Treinish, S. Walther. Database Issues for Data Visualization: Data Model Development. In IEEE Visualization '93 Workshop, San Jose, California, USA, October 26, 1993, pp. 3–15. In Proc. Lecture Notes in Comp. Sc. 871, Springer 1993. [Online] Available: https://link.springer.com/book/10.1007/BFb0021138
dc.relation.references[9] I. Romanova, “Modern Methods of Multidimensional Data Visualization: Analysis, Classification, Implementation and Applications in Technical Systems, Science and Education of the Bauman MSTU”, Vol. 3, 2016, pp. 133–167. DOI:10.7463/0316.0834876
dc.relation.references[10] Zongben Xu, Yong Shi. Exploring Big Data Analysis: Fundamental Scientific Problems, Ann. data sci., 2 (4), 2015, pp. 363–372. DOI: 10.1007/s 40745-015-00637
dc.relation.references[11] Yau Nathan. Visualize This: The Flowing Data Guide to Design, Visualization, and Statistics s. Indianapolis, In: Wiley Publishing, 2011. [E-book] Available: https://www.perlego.com/book/1011299/visualize-this-theflowingdata-guide-to-design-visualization-and-statistics-pdf
dc.relation.references[12] H. Chernoff. The Use of Faces to Represent Points in KDimensional Space Graphically. Journ. Am. Stat. Ass., Vol. 68, No. 342, pp. 361–368, 1973. DOI: 10.2307/2284077
dc.relation.references[13] J. Heer, M. Bostock, V. Ogievetsky, A Tour through the Visualization Zoo. A survey of powerful visualization techniques, from the obvious to the obscure. Communications of the ACM. Stanford University. 2010. Vol. 53, Iss. 6, pp. 59–67. DOI: 10.1145/1743546.1743567
dc.relation.references[14] V. Ogievetsky, J. Heer. D3: Data Driven Documents, IEEE Trans. Visualization & Comp. Graphics, 2011 [Online]. Available: http://vis.stanford.edu/files/2011-D3-InfoVis.pdf
dc.relation.references[15] M. Marjani, F. Nasaruddin, A. Gani, A. Karim, I. Abaker, T Hashen, A Siddiqa, I. Yaqoob. Big Data Analytics: Architecture, Opportunities, and Open Res. Challenges. IEEE Access, 2017, Vol. 5, pp. 5247–5261. DOI: 10.1109/ACCESS.2017.2689040
dc.relation.references[16] S. Koyamada, Y. Shikauchi, K. Nakae, M. Koyama, S. Ishii. Deep Learning of FMRI big data: a novel approach to subject-transfer decoding. – arXiv: 1502.00093v1 [stat ML] 31 January 2015 [Online]. Available: https://arxiv.org/pdf/1502.00093.pdf
dc.relation.references[17] L. van der Maaten, G. Hinton. Visualizing Data using t-SNE. Journ. Mach. Learn. Res., Vol. 9, 2008, pp. 2579–2605 [Online]. Available: https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf.
dc.relation.references[18] A. Genender-Feltheimer. Visualizing High Dimensional and Big Data. Complex Adaptive Systems Conference with Theme: Cyber Physical Systems and Deep Learning, CAS, 2018, 5–7 Nov. 2018, Chicago, USA, pp. 112–121. DOI: 10.1016/j.procs.2018.10.308
dc.relation.references[19] K. Börner, C. Chen, K. Boyack. Visualizing knowledge domains. An. Rev. of Inf. Sc. & Techn., Vol. 37, 2003, Medford, NJ: Information Today, Inc./ Amer. Soc. for Inf. Sc. and Techn., Ch. 5, pp. 179–255. DOI: 10.1002/aris.1440370106
dc.relation.references[20] J. Emerson, W. Green, B. Schloerke, J. Crowley, D. Cook, H. Hofmann, H. Wickham. The Generalized Pairs Plot. Journ Comp. and Graph. Statistics, Vol. 22(1), 2013, pp. 79–91. DOI: 10.1080/10618600.2012.694762
dc.relation.references[21] J. Im, M. McGuffin, R. Leung. GPLOM: Generalized Plot Matrix for Visualizing Multidimensional Multivariate Data, IEEE Trans. on Visualization and Comp. Graphics, 19 (12), 2013, pp. 2606–2614. DOI: 10.1109/TVCG.2013.160
dc.relation.references[22] J. vanWijk, R. van Liere. HyperSlice:Visualization of Scalar Functions of Many Variables, 1998. [Online]. Available: www.researchgate.net/publication/2660434_ HyperSlice
dc.relation.references[23] D. Andrews. Plots of high-dimensional data, Biometrics, Vol. 28, No. 1, 1972, pp. 69–97. DOI: 10.2307/2528964
dc.relation.references[24] O. Poliarus, Y. Poliakov, A. Lebedynskyi. Detection of landmarks by autonomous mobile robots using camerabased sensors in outdoor environments. IEEE Sensors Journal, Vol. 21, iss. 10, 2021, pp. 11443–11450, DOI: 10.1109/JSEN.2020.3010883
dc.relation.referencesen[1] G. Phillips-Wren. Intelligent Systems to Support Human Decision Making. In book: Artificial Intelligence, 2017, pp. 3023–3036. DOI: 10.4018/978-1-5225-1759-7.ch125
dc.relation.referencesen[2] S.Mansmann, T. Neumuth, M. H. Scholl,Multidimensional Data Modeling for Business Process Analysis, 26th Int. Conf. on Conceptual Modeling, Nov. 5–9, 2007, Auckland, New Zealand. DOI: 10.1007/978-3-540-75563-0_4
dc.relation.referencesen[3] J. Starck, F. Murtagh, Handbook of Astronomical Data Analysis. Elsevier, 2002. [Online] Available: https://www.academia.edu/2608657/Handbook_of_Astronomical_Data_ Analysis
dc.relation.referencesen[4] Pak Chung Wong and R. Daniel Bergeron. 30 Years of Multidimensional Multivariate Visualization. In Sc. Visualization, Overviews, Methodologies and Techniques. IEEE Computer Society Press, pp. 3–33, 1994. Available: https://www.cs.unc.edu/xcms/courses/comp715-s10/papers/Wong97_30_years_of_multidimensional_multivariate_visualization.pdf
dc.relation.referencesen[5] H. C. Purchase, N. Andrienko, T. J. Jankun-Kelly, M. Ward. Theoretical Foundations of Information Visualization. In: Inf. Visualization: Human-Centered Issues and Perspectives, 1970, pp. 46–64. DOI: 10.1007/978-3-540-70956-5_3.
dc.relation.referencesen[6] W. Weaver, C. Shannon. The mathematical theory of communication. Physics, 2009. DOI:10.1098/rspa.2009.0063
dc.relation.referencesen[7] D. Asimov, "The grand tour: A tool for viewing multidimensional data", SIAM Journ. on Sc. & Stat. Comp., pp. 128–143, 1985. DOI: 10.1137/0906011
dc.relation.referencesen[8] R. Bergeron, W. Cody, W. Hibbard, D. Kao, K. Miceli, L. Treinish, S. Walther. Database Issues for Data Visualization: Data Model Development. In IEEE Visualization '93 Workshop, San Jose, California, USA, October 26, 1993, pp. 3–15. In Proc. Lecture Notes in Comp. Sc. 871, Springer 1993. [Online] Available: https://link.springer.com/book/10.1007/BFb0021138
dc.relation.referencesen[9] I. Romanova, "Modern Methods of Multidimensional Data Visualization: Analysis, Classification, Implementation and Applications in Technical Systems, Science and Education of the Bauman MSTU", Vol. 3, 2016, pp. 133–167. DOI:10.7463/0316.0834876
dc.relation.referencesen[10] Zongben Xu, Yong Shi. Exploring Big Data Analysis: Fundamental Scientific Problems, Ann. data sci., 2 (4), 2015, pp. 363–372. DOI: 10.1007/s 40745-015-00637
dc.relation.referencesen[11] Yau Nathan. Visualize This: The Flowing Data Guide to Design, Visualization, and Statistics s. Indianapolis, In: Wiley Publishing, 2011. [E-book] Available: https://www.perlego.com/book/1011299/visualize-this-theflowingdata-guide-to-design-visualization-and-statistics-pdf
dc.relation.referencesen[12] H. Chernoff. The Use of Faces to Represent Points in KDimensional Space Graphically. Journ. Am. Stat. Ass., Vol. 68, No. 342, pp. 361–368, 1973. DOI: 10.2307/2284077
dc.relation.referencesen[13] J. Heer, M. Bostock, V. Ogievetsky, A Tour through the Visualization Zoo. A survey of powerful visualization techniques, from the obvious to the obscure. Communications of the ACM. Stanford University. 2010. Vol. 53, Iss. 6, pp. 59–67. DOI: 10.1145/1743546.1743567
dc.relation.referencesen[14] V. Ogievetsky, J. Heer. D3: Data Driven Documents, IEEE Trans. Visualization & Comp. Graphics, 2011 [Online]. Available: http://vis.stanford.edu/files/2011-D3-InfoVis.pdf
dc.relation.referencesen[15] M. Marjani, F. Nasaruddin, A. Gani, A. Karim, I. Abaker, T Hashen, A Siddiqa, I. Yaqoob. Big Data Analytics: Architecture, Opportunities, and Open Res. Challenges. IEEE Access, 2017, Vol. 5, pp. 5247–5261. DOI: 10.1109/ACCESS.2017.2689040
dc.relation.referencesen[16] S. Koyamada, Y. Shikauchi, K. Nakae, M. Koyama, S. Ishii. Deep Learning of FMRI big data: a novel approach to subject-transfer decoding, arXiv: 1502.00093v1 [stat ML] 31 January 2015 [Online]. Available: https://arxiv.org/pdf/1502.00093.pdf
dc.relation.referencesen[17] L. van der Maaten, G. Hinton. Visualizing Data using t-SNE. Journ. Mach. Learn. Res., Vol. 9, 2008, pp. 2579–2605 [Online]. Available: https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf.
dc.relation.referencesen[18] A. Genender-Feltheimer. Visualizing High Dimensional and Big Data. Complex Adaptive Systems Conference with Theme: Cyber Physical Systems and Deep Learning, CAS, 2018, 5–7 Nov. 2018, Chicago, USA, pp. 112–121. DOI: 10.1016/j.procs.2018.10.308
dc.relation.referencesen[19] K. Börner, C. Chen, K. Boyack. Visualizing knowledge domains. An. Rev. of Inf. Sc. & Techn., Vol. 37, 2003, Medford, NJ: Information Today, Inc./ Amer. Soc. for Inf. Sc. and Techn., Ch. 5, pp. 179–255. DOI: 10.1002/aris.1440370106
dc.relation.referencesen[20] J. Emerson, W. Green, B. Schloerke, J. Crowley, D. Cook, H. Hofmann, H. Wickham. The Generalized Pairs Plot. Journ Comp. and Graph. Statistics, Vol. 22(1), 2013, pp. 79–91. DOI: 10.1080/10618600.2012.694762
dc.relation.referencesen[21] J. Im, M. McGuffin, R. Leung. GPLOM: Generalized Plot Matrix for Visualizing Multidimensional Multivariate Data, IEEE Trans. on Visualization and Comp. Graphics, 19 (12), 2013, pp. 2606–2614. DOI: 10.1109/TVCG.2013.160
dc.relation.referencesen[22] J. vanWijk, R. van Liere. HyperSlice:Visualization of Scalar Functions of Many Variables, 1998. [Online]. Available: www.researchgate.net/publication/2660434_ HyperSlice
dc.relation.referencesen[23] D. Andrews. Plots of high-dimensional data, Biometrics, Vol. 28, No. 1, 1972, pp. 69–97. DOI: 10.2307/2528964
dc.relation.referencesen[24] O. Poliarus, Y. Poliakov, A. Lebedynskyi. Detection of landmarks by autonomous mobile robots using camerabased sensors in outdoor environments. IEEE Sensors Journal, Vol. 21, iss. 10, 2021, pp. 11443–11450, DOI: 10.1109/JSEN.2020.3010883
dc.relation.urihttps://www.academia.edu/2608657/Handbook_of_Astronomical_Data_
dc.relation.urihttps://www.cs.unc.edu/xcms/courses/comp715-s10/papers/Wong97_30_years_of_multidimensional_multivariate_visualization.pdf
dc.relation.urihttps://link.springer.com/book/10.1007/BFb0021138
dc.relation.urihttps://www.perlego.com/book/1011299/visualize-this-theflowingdata-guide-to-design-visualization-and-statistics-pdf
dc.relation.urihttp://vis.stanford.edu/files/2011-D3-InfoVis.pdf
dc.relation.urihttps://arxiv.org/pdf/1502.00093.pdf
dc.relation.urihttps://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectVisualization
dc.subjectMultidimensional random process
dc.subjectVisualization method
dc.titleVisualization method for multidimensional random processes
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v84n1_Poliarus_O-Visualization_method_for_5-10.pdf
Size:
819.37 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v84n1_Poliarus_O-Visualization_method_for_5-10__COVER.png
Size:
1.35 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.8 KB
Format:
Plain Text
Description: