Searching of biological activity of S-esters 4-acetylamino-benzenethiosulfoacid using methods of chemoinformatics

dc.citation.epage86
dc.citation.issue2
dc.citation.journalTitleChemistry, Technology and Application of Substances
dc.citation.spage76
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorКопак, Н. А.
dc.contributor.authorKopak, N. A.
dc.coverage.placenameLviv
dc.coverage.placenameLviv
dc.date.accessioned2025-03-05T08:12:24Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractСкринінг біологічної активності тіосульфоефірів здійснювали за допомогою програм SuperPred, SwissTargetPrediction та molecular docking. На основі отриманих даних віртуального скринінгу визначено перспективні напрями експериментальних біологічних досліджень s-ефірів 4-ацетиламінобензолтіосульфокислоти. Молекулярний докінг продемонстрував доцільність пошуку нових антивірусних агентів серед досліджуваних тіосульфоефірів і дав змогу вибрати провідну сполуку для цих досліджень, а саме тіосульфоефіри.
dc.description.abstractThe biological activity screening of thiosulfonoesters was carried out using the SuperPred, SwissTargetPrediction, and molecular docking programs. Based on the obtained data from virtual screening, promising directions for experimental biological investigations of S-esters 4-acetylaminobenzenethiosulfoacid were identified. Molecular docking demonstrated the feasibility of searching for new antiviral agents among the investigated thiosulfonoesters and selected a lead compound for these studies, namely thiosulfonoesters.The biological activity screening of thiosulfonoesters was carried out using the SuperPred, SwissTargetPrediction, and molecular docking programs. Based on the obtained data from virtual screening, promising directions for experimental biological investigations of S-esters 4-acetylaminobenzenethiosulfoacid were identified. Molecular docking demonstrated the feasibility of searching for new antiviral agents among the investigated thiosulfonoesters and selected a lead compound for these studies, namely thiosulfonoesters.
dc.format.extent76-86
dc.format.pages11
dc.identifier.citationKopak N. A. Searching of biological activity of S-esters 4-acetylamino-benzenethiosulfoacid using methods of chemoinformatics / N. A. Kopak // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 6. — No 2. — P. 76–86.
dc.identifier.citationenKopak N. A. Searching of biological activity of S-esters 4-acetylamino-benzenethiosulfoacid using methods of chemoinformatics / N. A. Kopak // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 6. — No 2. — P. 76–86.
dc.identifier.doidoi.org/10.23939/ctas2023.02.076
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63668
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (6), 2023
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (6), 2023
dc.relation.references1. Awadhesh K. S., Ritu S., Shashank R. J., & Anoop M. (2021). Mucormycosis in COVID-19: A systematic review of cases reported worldwide and in India, Diabetes Metab Syndr., 15(4), 102 - 146. doi: 10.1016/j.dsx.2021.05.019. https://doi.org/10.1016/j.dsx.2021.05.019
dc.relation.references2. Raju J. R., Md. Waheed, Jangam J. K. (2018). A straightforward and convenient synthesis of functionalized allyl thiosulfonates and allyl disulfanes. RSC Adv., 8, 40446-40453. doi: doi.org/10.1039/c8ra06938g. https://doi.org/10.1039/C8RA06938G
dc.relation.references3. Mampuys P., McElroy R., Clark J., Orru R., Maesa B. (2019) Thiosulfonates as Emerging Reactants: Synthesis and Applications. Advanced Synthesis & Catalysis, 362: 3 - 64. https://doi.org/10.1002/adsc.201900864
dc.relation.references4. Dmitryjuk, M., Szczotko, M., Kubiak, K., Trojanowicz, R., Parashchyn, Z., Khomitska, H., & Lubenets, V. (2020). SMethyl-(2-Methoxycarbonylamino-Benzimidazole-5) Thiosulfonate as a Potential Antiparasitic Agent-Its Action on the Development of Ascaris suum Eggs In Vitro. Pharmaceuticals 2020, 13. doi: https://doi.org/10.3390/ph13110332.
dc.relation.references5. Halenova, T.I., Nikolaeva, I.V., Nakonechna, A.V., Bolibrukh, K.B., Monka, N.Ya., Lubenets, V.I., Savchuk, O.M., Novikov, V.P., Ostapchenko, L.I. (2015). The search of compounds with antiaggregation activity among S-esters of thiosulfonic acids. Ukr. Biochem. J., 87, 83-92. doi: https://doi.org/10.15407/ubj87.05.083
dc.relation.references6. Liubas N., Iskra, R., Stadnytska N., Monka N., Havryliak V., & Lubenets V. (2022). Antioxidant Activity of Thiosulfonate Compounds in Experiments in Vitro and in vivo Biointerface Research in Applied Chemistry Volume 12 (3), 3106 -3116. doi: https://doi.org/10.33263/BRIAC123.31063116.
dc.relation.references7. Yeon Ho K., Geun Hyang K., Ki Sun Y., Shiv S., & Jong-Whan R. (2020). Comparative antibacterial and antifungal activities of sulfur nanoparticlescapped with chitosan. Microbial Pathogenesis. 144, 104178. doi: https://doi.org/10.1016/j.micpath.2020.104178.
dc.relation.references8. Gonçalves Diniz Khodyuk R., Bai R., Hamel E., Mariana G., Guimarães Barbosa E., Beatriz E., & Pires de Lima D. (2020) Diaryl, Disulfides and Thiosulfonates as Combretastatin A-4 Analogues: Synthesis, Cytotoxicity and Antitubulin Activity, Bioorganic Chemistry, 1-24. doi: https://doi.org/10.1016/j.bioorg.2020.104017.
dc.relation.references9. Friesner R. A., Banks J. L., Murphy R. B., Halgren T. A., Klicic J. J., Mainz D. T., Repasky M. P., Knoll E. H., Shaw D. E., Shelley M., Perry J. K., Francis P., & Shenkin P. S. (2004). Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy. J. Med. Chem, 47, 1739-1749. https://doi.org/10.1021/jm0306430
dc.relation.references10. V. Lubenets, S. Vasylyuk, N. Monka, K. Bolibrukh, O. Komarovska-Porokhnyavets, D. Baranovych, R. Musyanovych, E. Zaczynska, A. Czarny, U. Nawrot & V. Novikov (2017). Synthesis and antimicrobial properties of 4-acylaminobenzenethiosulfoacid S-esters, Saudi Pharmaceutical Journal 25, 266-274. doi: http://dx.doi.org/10.1016/j.jsps.2016.06.007.
dc.relation.references11. Nickel J., Gohlke B., Erehman J., Banerjee P., Rong Wei - W., Goede A., & Dunkel M., Preissner R. (2014). SuperPred: update on drug classification and target prediction. Nucleic Acids Research, 42, (1), 26-31. doi: https://doi.org/10.1093/nar/gku477.
dc.relation.references12. David G., Aurélien G., Matthias W., Antoine D., Olivier M., & Vincent Z. (2014). SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Research. 42, 32-38. https://doi.org/10.1093/nar/gku293
dc.relation.references13. Michael P. Pollastri. (2010). Overview on the Rule of Five. Current protocols in Pharmacy, 11, 42-45. doi: https://doi.org/10.1002/0471141755.ph0912s49.
dc.relation.references14. Dassault Systems. (2020). BIOVIA Discovery Studio. Retrieved from: https://discover.3ds.com/discovery-studio-visualizer-download.
dc.relation.references15. Script Research. (2016). AutoDock Tools. Retrieved from: https://autodock.scripps.edu.
dc.relation.references16. Molinspiration Cheminformatics. (1986). Molinspiration Cheminformatics Software. Retrieved from: https://www.molinspiration.com.
dc.relation.references17. Kathleen G., Andrean G., Robert P., & Bjoern-Oliver G. (2022). Nucleic Acids Research, 50, 726 - 731.
dc.relation.references18. Jia-Xi H., Bo-Lin Z., Jiang-Ping X., & Zhong Zhen Z. (2023). Advances in the development of phosphodiesterase 7 inhibitors. European Journal of Medicinal Chemistry, 250, 141-149. doi: https://doi.org/10.1016/j.ejmech.2023.115194.
dc.relation.references19. Pia G., Marzia Di D., Giovanni G., Erika Di Z., Antonio B., & Antimo M. (2018). The Androgen Receptor in Breast Cancer. Sec. Cancer Endocrinology, 9, 4. doi: https://doi.org/10.3389/fendo.2018.00492.
dc.relation.references20. Jin, Z., Du X., Xu Y., Deng Y., Liu M., Zhao Y., ... Z., Yang. (2020). Structure of Mprofrom SARS-CoV-2 and discovery of its inhibitors. H. Nature, 582, 289-293. doi: doi.org/10.1038/s41586-020-2223-y. https://doi.org/10.1038/s41586-020-2223-y
dc.relation.referencesen1. Awadhesh K. S., Ritu S., Shashank R. J., & Anoop M. (2021). Mucormycosis in COVID-19: A systematic review of cases reported worldwide and in India, Diabetes Metab Syndr., 15(4), 102 - 146. doi: 10.1016/j.dsx.2021.05.019. https://doi.org/10.1016/j.dsx.2021.05.019
dc.relation.referencesen2. Raju J. R., Md. Waheed, Jangam J. K. (2018). A straightforward and convenient synthesis of functionalized allyl thiosulfonates and allyl disulfanes. RSC Adv., 8, 40446-40453. doi: doi.org/10.1039/P.8ra06938g. https://doi.org/10.1039/P.8RA06938G
dc.relation.referencesen3. Mampuys P., McElroy R., Clark J., Orru R., Maesa B. (2019) Thiosulfonates as Emerging Reactants: Synthesis and Applications. Advanced Synthesis & Catalysis, 362: 3 - 64. https://doi.org/10.1002/adsc.201900864
dc.relation.referencesen4. Dmitryjuk, M., Szczotko, M., Kubiak, K., Trojanowicz, R., Parashchyn, Z., Khomitska, H., & Lubenets, V. (2020). SMethyl-(2-Methoxycarbonylamino-Benzimidazole-5) Thiosulfonate as a Potential Antiparasitic Agent-Its Action on the Development of Ascaris suum Eggs In Vitro. Pharmaceuticals 2020, 13. doi: https://doi.org/10.3390/ph13110332.
dc.relation.referencesen5. Halenova, T.I., Nikolaeva, I.V., Nakonechna, A.V., Bolibrukh, K.B., Monka, N.Ya., Lubenets, V.I., Savchuk, O.M., Novikov, V.P., Ostapchenko, L.I. (2015). The search of compounds with antiaggregation activity among S-esters of thiosulfonic acids. Ukr. Biochem. J., 87, 83-92. doi: https://doi.org/10.15407/ubj87.05.083
dc.relation.referencesen6. Liubas N., Iskra, R., Stadnytska N., Monka N., Havryliak V., & Lubenets V. (2022). Antioxidant Activity of Thiosulfonate Compounds in Experiments in Vitro and in vivo Biointerface Research in Applied Chemistry Volume 12 (3), 3106 -3116. doi: https://doi.org/10.33263/BRIAC123.31063116.
dc.relation.referencesen7. Yeon Ho K., Geun Hyang K., Ki Sun Y., Shiv S., & Jong-Whan R. (2020). Comparative antibacterial and antifungal activities of sulfur nanoparticlescapped with chitosan. Microbial Pathogenesis. 144, 104178. doi: https://doi.org/10.1016/j.micpath.2020.104178.
dc.relation.referencesen8. Gonçalves Diniz Khodyuk R., Bai R., Hamel E., Mariana G., Guimarães Barbosa E., Beatriz E., & Pires de Lima D. (2020) Diaryl, Disulfides and Thiosulfonates as Combretastatin A-4 Analogues: Synthesis, Cytotoxicity and Antitubulin Activity, Bioorganic Chemistry, 1-24. doi: https://doi.org/10.1016/j.bioorg.2020.104017.
dc.relation.referencesen9. Friesner R. A., Banks J. L., Murphy R. B., Halgren T. A., Klicic J. J., Mainz D. T., Repasky M. P., Knoll E. H., Shaw D. E., Shelley M., Perry J. K., Francis P., & Shenkin P. S. (2004). Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy. J. Med. Chem, 47, 1739-1749. https://doi.org/10.1021/jm0306430
dc.relation.referencesen10. V. Lubenets, S. Vasylyuk, N. Monka, K. Bolibrukh, O. Komarovska-Porokhnyavets, D. Baranovych, R. Musyanovych, E. Zaczynska, A. Czarny, U. Nawrot & V. Novikov (2017). Synthesis and antimicrobial properties of 4-acylaminobenzenethiosulfoacid S-esters, Saudi Pharmaceutical Journal 25, 266-274. doi: http://dx.doi.org/10.1016/j.jsps.2016.06.007.
dc.relation.referencesen11. Nickel J., Gohlke B., Erehman J., Banerjee P., Rong Wei - W., Goede A., & Dunkel M., Preissner R. (2014). SuperPred: update on drug classification and target prediction. Nucleic Acids Research, 42, (1), 26-31. doi: https://doi.org/10.1093/nar/gku477.
dc.relation.referencesen12. David G., Aurélien G., Matthias W., Antoine D., Olivier M., & Vincent Z. (2014). SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Research. 42, 32-38. https://doi.org/10.1093/nar/gku293
dc.relation.referencesen13. Michael P. Pollastri. (2010). Overview on the Rule of Five. Current protocols in Pharmacy, 11, 42-45. doi: https://doi.org/10.1002/0471141755.ph0912s49.
dc.relation.referencesen14. Dassault Systems. (2020). BIOVIA Discovery Studio. Retrieved from: https://discover.3ds.com/discovery-studio-visualizer-download.
dc.relation.referencesen15. Script Research. (2016). AutoDock Tools. Retrieved from: https://autodock.scripps.edu.
dc.relation.referencesen16. Molinspiration Cheminformatics. (1986). Molinspiration Cheminformatics Software. Retrieved from: https://www.molinspiration.com.
dc.relation.referencesen17. Kathleen G., Andrean G., Robert P., & Bjoern-Oliver G. (2022). Nucleic Acids Research, 50, 726 - 731.
dc.relation.referencesen18. Jia-Xi H., Bo-Lin Z., Jiang-Ping X., & Zhong Zhen Z. (2023). Advances in the development of phosphodiesterase 7 inhibitors. European Journal of Medicinal Chemistry, 250, 141-149. doi: https://doi.org/10.1016/j.ejmech.2023.115194.
dc.relation.referencesen19. Pia G., Marzia Di D., Giovanni G., Erika Di Z., Antonio B., & Antimo M. (2018). The Androgen Receptor in Breast Cancer. Sec. Cancer Endocrinology, 9, 4. doi: https://doi.org/10.3389/fendo.2018.00492.
dc.relation.referencesen20. Jin, Z., Du X., Xu Y., Deng Y., Liu M., Zhao Y., ... Z., Yang. (2020). Structure of Mprofrom SARS-CoV-2 and discovery of its inhibitors. H. Nature, 582, 289-293. doi: doi.org/10.1038/s41586-020-2223-y. https://doi.org/10.1038/s41586-020-2223-y
dc.relation.urihttps://doi.org/10.1016/j.dsx.2021.05.019
dc.relation.urihttps://doi.org/10.1039/C8RA06938G
dc.relation.urihttps://doi.org/10.1002/adsc.201900864
dc.relation.urihttps://doi.org/10.3390/ph13110332
dc.relation.urihttps://doi.org/10.15407/ubj87.05.083
dc.relation.urihttps://doi.org/10.33263/BRIAC123.31063116
dc.relation.urihttps://doi.org/10.1016/j.micpath.2020.104178
dc.relation.urihttps://doi.org/10.1016/j.bioorg.2020.104017
dc.relation.urihttps://doi.org/10.1021/jm0306430
dc.relation.urihttp://dx.doi.org/10.1016/j.jsps.2016.06.007
dc.relation.urihttps://doi.org/10.1093/nar/gku477
dc.relation.urihttps://doi.org/10.1093/nar/gku293
dc.relation.urihttps://doi.org/10.1002/0471141755.ph0912s49
dc.relation.urihttps://discover.3ds.com/discovery-studio-visualizer-download
dc.relation.urihttps://autodock.scripps.edu
dc.relation.urihttps://www.molinspiration.com
dc.relation.urihttps://doi.org/10.1016/j.ejmech.2023.115194
dc.relation.urihttps://doi.org/10.3389/fendo.2018.00492
dc.relation.urihttps://doi.org/10.1038/s41586-020-2223-y
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectвіртуальний скринінг
dc.subjectбіологічна активність
dc.subjectмолекулярний докінг
dc.subjectправило Ліпінського
dc.subjectvirtual screening
dc.subjectbiological activity
dc.subjectmolecular docking
dc.subjectLipinski’s rule
dc.titleSearching of biological activity of S-esters 4-acetylamino-benzenethiosulfoacid using methods of chemoinformatics
dc.title.alternativeПошук біологічної активності S-ефірів 4-ацетиламінобензентіосульфокислоти методами хіміоінформатики
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v6n2_Kopak_N_A-Searching_of_biological_activity_76-86.pdf
Size:
530.68 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v6n2_Kopak_N_A-Searching_of_biological_activity_76-86__COVER.png
Size:
429.91 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.76 KB
Format:
Plain Text
Description: