Experimental determination of critical strain energy density of ductile materials

dc.citation.epage44
dc.citation.issue1
dc.citation.journalTitleУкраїнський журнал із машинобудування і матеріалознавства
dc.citation.spage39
dc.citation.volume5
dc.contributor.affiliationKarpenko Physico-mechanical Institute of the NAS of Ukraine
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorMolkov, Yuriy
dc.contributor.authorIvanyts’kyi, Yaroslav
dc.contributor.authorLenkovs’kyi, Taras
dc.contributor.authorTrostianchyn, Andriy
dc.contributor.authorKulyk, Volodymyr
dc.contributor.authorShyshkovskyy, Roman
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2020-05-11T09:02:52Z
dc.date.available2020-05-11T09:02:52Z
dc.date.created2019-03-20
dc.date.issued2019-03-20
dc.description.abstractThe method of experimental determination of strain energy density of plastic materials is developed. The technique for complete true stress-strain curves plotting is formulated. The standard hydraulic testing machine is equipped with specially designed experimental setup for Bridgman specimens testing at strain controlled tension loading with digital camera and light source for using digital image correlation method – a non-contact technique for strain and displacement measurement. The digital image correlation method was used to determine the local strain at the onset of fracture in the neck of Bridgman specimen. The technique takes into account the change of crosssection area in the neck of specimen due to internal crack propagation when calculating the true stresses. The complete true stressstress-curve of 40Kh alloyed steel is plotted end criticalstrain energy density of steel is determined from it. It is shown that the critical strain energy density of material, determined from the curve obtained by developed technique is 1.8 times higher than determined from the classical true stress-strain curve and is close to the value of the specific heat of fusion of steel. The curves built using the proposed technique can be used for setting material properties in stress-strain state calculations by finite element method at large scale yielding conditions, for instance at pressure vessels critical pressure calculation. The critical strain energy density value can be considered as a material property at fatigue life-time calculation using energy approach.
dc.format.extent39-44
dc.format.pages6
dc.identifier.citationExperimental determination of critical strain energy density of ductile materials / Yuriy Molkov, Yaroslav Ivanyts’kyi, Taras Lenkovs’kyi, Andriy Trostianchyn, Volodymyr Kulyk, Roman Shyshkovskyy // Ukrainian Journal of Mechanical Engineering and Materials Science. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 5. — No 1. — P. 39–44.
dc.identifier.citationenExperimental determination of critical strain energy density of ductile materials / Yuriy Molkov, Yaroslav Ivanyts’kyi, Taras Lenkovs’kyi, Andriy Trostianchyn, Volodymyr Kulyk, Roman Shyshkovskyy // Ukrainian Journal of Mechanical Engineering and Materials Science. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 5. — No 1. — P. 39–44.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/49618
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofУкраїнський журнал із машинобудування і матеріалознавства, 1 (5), 2019
dc.relation.ispartofUkrainian Journal of Mechanical Engineering and Materials Science, 1 (5), 2019
dc.relation.references1. Yu. Du, et al., “Analysis of the stress-strain state of the process zone of a plate with central crack under biaxial loading,” Materials Science, vol. 53, no. 1, pp. 86–92, 2017.
dc.relation.references2. Yu. V. Mol’kov, “Experimental determination of the specific strain energy of 65G steel under cyclic loading,” Materials Science, vol. 52, no. 4, pp. 522–529, 2017.
dc.relation.references3. H. J. Shindler, “Strain energy density as the link between global and local ap p roach to fracture”, in Proc. of 10th Int. Conf. on Fracture, Honolulu, 2001.
dc.relation.references4. L. F. Gillemot, “Criterion of crack initiation and spreading,” Engineering Fracture Mechanics, vol. 8, no. 1, pp. 239–253, 1976.
dc.relation.references5. A. Valiente, “On Bridgman’s stress solution for a tensile neck applied to axisymmetrical blunt notched tension bars,” J. Appl. Mech., vol. 68, no. 3, pp. 412–419, 2000.
dc.relation.references6. M. A. Sutton, M. Cheng, W. H Peters, et al., “Application of an optimized digital correlation method to planar deformation analysis,” Image Vision Comput., vol. 4, no. 3, pp. 143–150, 1986.
dc.relation.references7. B. Pan, K. M. Qian, H. M. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol., vol. 20, no. 6, pp. 062001–062007, 2009.
dc.relation.references8. Z. Wang, “On the accuracy and speed enhancement of digital image correlation technique,” J. Exper. Mech., vol. 26, no. 5, pp. 632–638, 2011.
dc.relation.references9. Yu. V. Mol’kov, “Otsiniuvannia opirnosti ruinuvanniu yemnostei pid tyskom iz vykorystanniam enerhetychnoho pidkhodu” [“Evaluation of pressure vessels fracture resistance using energy approach”], Ph.D. dissertation, Karpenko physico-mechanical institute of the NAS of Ukraine, Lviv, Ukraine, 2014. [in Ukrainian].
dc.relation.references10. Yu. V. Mol’kov, “Application of the method of digital image correlation to the construction of stress–strain diagrams,” Materials Science, vol. 48, no. 6, pp. 832–837, 2013.
dc.relation.references11. A. Kalup, M. Žaludová, S. Zlá, et al., “Latent heats of melting and solidifying of real steel grades”, in Proc. 23rd International Conference on Metallurgy and Materials (METAL-2014), Brno, Czech Republic, 2014, pp. 695–700.
dc.relation.references12. Th. H. Courtney, Mechanical behaviour of materials. Long Grove, IL: Waveland Press, 2005.
dc.relation.referencesen1. Yu. Du, et al., "Analysis of the stress-strain state of the process zone of a plate with central crack under biaxial loading," Materials Science, vol. 53, no. 1, pp. 86–92, 2017.
dc.relation.referencesen2. Yu. V. Mol’kov, "Experimental determination of the specific strain energy of 65G steel under cyclic loading," Materials Science, vol. 52, no. 4, pp. 522–529, 2017.
dc.relation.referencesen3. H. J. Shindler, "Strain energy density as the link between global and local ap p roach to fracture", in Proc. of 10th Int. Conf. on Fracture, Honolulu, 2001.
dc.relation.referencesen4. L. F. Gillemot, "Criterion of crack initiation and spreading," Engineering Fracture Mechanics, vol. 8, no. 1, pp. 239–253, 1976.
dc.relation.referencesen5. A. Valiente, "On Bridgman’s stress solution for a tensile neck applied to axisymmetrical blunt notched tension bars," J. Appl. Mech., vol. 68, no. 3, pp. 412–419, 2000.
dc.relation.referencesen6. M. A. Sutton, M. Cheng, W. H Peters, et al., "Application of an optimized digital correlation method to planar deformation analysis," Image Vision Comput., vol. 4, no. 3, pp. 143–150, 1986.
dc.relation.referencesen7. B. Pan, K. M. Qian, H. M. Xie, and A. Asundi, "Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review," Meas. Sci. Technol., vol. 20, no. 6, pp. 062001–062007, 2009.
dc.relation.referencesen8. Z. Wang, "On the accuracy and speed enhancement of digital image correlation technique," J. Exper. Mech., vol. 26, no. 5, pp. 632–638, 2011.
dc.relation.referencesen9. Yu. V. Mol’kov, "Otsiniuvannia opirnosti ruinuvanniu yemnostei pid tyskom iz vykorystanniam enerhetychnoho pidkhodu" ["Evaluation of pressure vessels fracture resistance using energy approach"], Ph.D. dissertation, Karpenko physico-mechanical institute of the NAS of Ukraine, Lviv, Ukraine, 2014. [in Ukrainian].
dc.relation.referencesen10. Yu. V. Mol’kov, "Application of the method of digital image correlation to the construction of stress–strain diagrams," Materials Science, vol. 48, no. 6, pp. 832–837, 2013.
dc.relation.referencesen11. A. Kalup, M. Žaludová, S. Zlá, et al., "Latent heats of melting and solidifying of real steel grades", in Proc. 23rd International Conference on Metallurgy and Materials (METAL-2014), Brno, Czech Republic, 2014, pp. 695–700.
dc.relation.referencesen12. Th. H. Courtney, Mechanical behaviour of materials. Long Grove, IL: Waveland Press, 2005.
dc.rights.holder© Національний університет “Львівська політехніка”, 2019
dc.rights.holder© Molkov Yu., Ivanyts’kyi Ya., Lenkovs’kyi T., Trostianchyn A., Kulyk V., Shyshkovskyy R., 2019
dc.subjectstrain energy density
dc.subjectstress-strain curve
dc.subjecttrue stress
dc.subjecttrue strain
dc.subjectBridgman specimen
dc.subjectdigital image correlation
dc.subjectstrain-controlled loading
dc.subjectalloyed steel
dc.titleExperimental determination of critical strain energy density of ductile materials
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2019v5n1_Molkov_Y-Experimental_determination_39-44.pdf
Size:
347.73 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2019v5n1_Molkov_Y-Experimental_determination_39-44__COVER.png
Size:
501.59 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.04 KB
Format:
Plain Text
Description: