Methods of machine learning in modern metrology

dc.citation.epage60
dc.citation.issue1
dc.citation.journalTitleВимірювальна техніка та метрологія
dc.citation.spage57
dc.contributor.affiliationKharkiv National University of Radio Electronics
dc.contributor.authorAschepkov, Valeriy
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-13T07:53:54Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractIn the modern world of scientific and technological progress, the requirements for the accuracy and reliability of measurements are becoming increasingly stringent. The rapid development of machine learning (ML) methods opens up perspectives for improving metrological processes and enhancing the quality of measurements. This article explores the potential application of ML methods in metrology, outlining the main types of ML models in automatic instrument calibration, analysis, and prediction of data. Attention is paid to the development of hybrid approaches that combine ML methods with traditional metrological methods for the optimal solution of complex measurement tasks.
dc.format.extent57-60
dc.format.pages4
dc.identifier.citationAschepkov V. Methods of machine learning in modern metrology / Aschepkov Valeriy // Measuring Equipment and Metrology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 85. — No 1. — P. 57–60.
dc.identifier.citationenAschepkov V. Methods of machine learning in modern metrology / Aschepkov Valeriy // Measuring Equipment and Metrology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 85. — No 1. — P. 57–60.
dc.identifier.doidoi.org/10.23939/istcmtm2024.01.057
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/64127
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofВимірювальна техніка та метрологія, 1 (85), 2024
dc.relation.ispartofMeasuring Equipment and Metrology, 1 (85), 2024
dc.relation.references[1] S. Artemuk, I. Mykytyn, A. O. Kozhevnikov. “Investigation of methods for determining the accuracy of metrological measurements”, 2022. [Online]. Available: https://openarchive.nure.ua/entities/publication/6c386f59-2585-4e39-82a0-f452a70a8494
dc.relation.references[2] A. Mueller, S. Guido. “Introduction to Machine Learning with Python”, 2016–2017 [Online]. Available: https://library-it.com/wp-content/uploads/2021/01/a_myuller_s_gvido_vvedenie_ v_mashinnoe.pdf
dc.relation.references[3] Y. O. Hryshkun, S. M. Kravchenko, A. Yu. Levchenko, Yu. I. Lysogor. “Machine Learning Methods” in Znanstvena misel journal, No. 39, 2020, p. 55 [Online]. Available: https://www.znanstvena-journal.com/wpcontent/uploads/2020/10/Znanstvena-misel-journal-%E2%84%9639-2020-VOL.1.pdf#page=55
dc.relation.references[4] A. M. Rasulova, A. V. Izmajlova. “Application of the Isolation Forest algorithm for justifying the uniqueness of water bodies in a group of karst lakes” in Earth sciences, 2021. DOI: 10.33619/2414-2948/72/08
dc.relation.references[5] S. Bilson, A. Thompson, D. Tucker, J. Pierce “A machine learning approach to automation and uncertainty evaluation for self-validating thermocouples” in NIST.SP.2100-05, Digest Conference ITS10, 2023.
dc.relation.references[6] J. V. Pierce, O. Ongrey, G. Machin, S. D. Sweeney. “Self Validating Thermocouples Based on Fixed Points at High Temperatures” in Metrologia, Vol. 47, No. 1, 2010. DOI: 10.1088/0026-1394/47/1/L01
dc.relation.references[7] M. Y. Krajnyuk. “Deep Learning for Measurements: Application of Neural Networks in Solving Real Problems” in Metrological Aspects of Decision Making in the Conditions of Work at Technogenic Hazardous Objects [Online]. Available: https://er.chdtu.edu.ua/bitstream/ChSTU/4662/1/sbornik_konf_2023.pdf#page=21
dc.relation.references[8] O. M. Vasilevsky. “Concept of Metrological Support in Industry 4.0” in Information Technologies and Computer Engineering, Vol. 48, No. 2, 2020. DOI: 10.31649/1999-9941-2020-48-2-37-44
dc.relation.references[9] Padraig Timoney et al. “Implementation of machine learning for high-volume manufacturing metrology challenges” in Proceedings, Vol. 10585, Metrology, Inspection, and Process Control for Microlithography XXXII; 105850X, 2018. DOI: 10.1117/12.2300167
dc.relation.references[10] Marcela Vallejo, Carolina de la Espriella, Juliana Gómez Santamaría, Andrés Felipe Ramírez-Barrera, and Edilson Delgado-Trejos. “Soft metrology based on machine learning: a review” in Measurement Science and Technology, Vol. 31, No. 3, 2019. DOI: 10.1088/1361-6501/ab4b39
dc.relation.referencesen[1] S. Artemuk, I. Mykytyn, A. O. Kozhevnikov. "Investigation of methods for determining the accuracy of metrological measurements", 2022. [Online]. Available: https://openarchive.nure.ua/entities/publication/6c386f59-2585-4e39-82a0-f452a70a8494
dc.relation.referencesen[2] A. Mueller, S. Guido. "Introduction to Machine Learning with Python", 2016–2017 [Online]. Available: https://library-it.com/wp-content/uploads/2021/01/a_myuller_s_gvido_vvedenie_ v_mashinnoe.pdf
dc.relation.referencesen[3] Y. O. Hryshkun, S. M. Kravchenko, A. Yu. Levchenko, Yu. I. Lysogor. "Machine Learning Methods" in Znanstvena misel journal, No. 39, 2020, p. 55 [Online]. Available: https://www.znanstvena-journal.com/wpcontent/uploads/2020/10/Znanstvena-misel-journal-%E2%84%9639-2020-VOL.1.pdf#page=55
dc.relation.referencesen[4] A. M. Rasulova, A. V. Izmajlova. "Application of the Isolation Forest algorithm for justifying the uniqueness of water bodies in a group of karst lakes" in Earth sciences, 2021. DOI: 10.33619/2414-2948/72/08
dc.relation.referencesen[5] S. Bilson, A. Thompson, D. Tucker, J. Pierce "A machine learning approach to automation and uncertainty evaluation for self-validating thermocouples" in NIST.SP.2100-05, Digest Conference ITS10, 2023.
dc.relation.referencesen[6] J. V. Pierce, O. Ongrey, G. Machin, S. D. Sweeney. "Self Validating Thermocouples Based on Fixed Points at High Temperatures" in Metrologia, Vol. 47, No. 1, 2010. DOI: 10.1088/0026-1394/47/1/L01
dc.relation.referencesen[7] M. Y. Krajnyuk. "Deep Learning for Measurements: Application of Neural Networks in Solving Real Problems" in Metrological Aspects of Decision Making in the Conditions of Work at Technogenic Hazardous Objects [Online]. Available: https://er.chdtu.edu.ua/bitstream/ChSTU/4662/1/sbornik_konf_2023.pdf#page=21
dc.relation.referencesen[8] O. M. Vasilevsky. "Concept of Metrological Support in Industry 4.0" in Information Technologies and Computer Engineering, Vol. 48, No. 2, 2020. DOI: 10.31649/1999-9941-2020-48-2-37-44
dc.relation.referencesen[9] Padraig Timoney et al. "Implementation of machine learning for high-volume manufacturing metrology challenges" in Proceedings, Vol. 10585, Metrology, Inspection, and Process Control for Microlithography XXXII; 105850X, 2018. DOI: 10.1117/12.2300167
dc.relation.referencesen[10] Marcela Vallejo, Carolina de la Espriella, Juliana Gómez Santamaría, Andrés Felipe Ramírez-Barrera, and Edilson Delgado-Trejos. "Soft metrology based on machine learning: a review" in Measurement Science and Technology, Vol. 31, No. 3, 2019. DOI: 10.1088/1361-6501/ab4b39
dc.relation.urihttps://openarchive.nure.ua/entities/publication/6c386f59-2585-4e39-82a0-f452a70a8494
dc.relation.urihttps://library-it.com/wp-content/uploads/2021/01/a_myuller_s_gvido_vvedenie_
dc.relation.urihttps://www.znanstvena-journal.com/wpcontent/uploads/2020/10/Znanstvena-misel-journal-%E2%84%9639-2020-VOL.1.pdf#page=55
dc.relation.urihttps://er.chdtu.edu.ua/bitstream/ChSTU/4662/1/sbornik_konf_2023.pdf#page=21
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.subjectmachine learning
dc.subjectmetrology
dc.subjectmeasurement accuracy
dc.subjectinstrument calibration
dc.subjectdata analysis
dc.subjectforecasting
dc.titleMethods of machine learning in modern metrology
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v85n1_Aschepkov_V-Methods_of_machine_learning_57-60.pdf
Size:
105.27 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v85n1_Aschepkov_V-Methods_of_machine_learning_57-60__COVER.png
Size:
512.57 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Plain Text
Description: