Methods of machine learning in modern metrology
dc.citation.epage | 60 | |
dc.citation.issue | 1 | |
dc.citation.journalTitle | Вимірювальна техніка та метрологія | |
dc.citation.spage | 57 | |
dc.contributor.affiliation | Kharkiv National University of Radio Electronics | |
dc.contributor.author | Aschepkov, Valeriy | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-13T07:53:54Z | |
dc.date.created | 2024-02-27 | |
dc.date.issued | 2024-02-27 | |
dc.description.abstract | In the modern world of scientific and technological progress, the requirements for the accuracy and reliability of measurements are becoming increasingly stringent. The rapid development of machine learning (ML) methods opens up perspectives for improving metrological processes and enhancing the quality of measurements. This article explores the potential application of ML methods in metrology, outlining the main types of ML models in automatic instrument calibration, analysis, and prediction of data. Attention is paid to the development of hybrid approaches that combine ML methods with traditional metrological methods for the optimal solution of complex measurement tasks. | |
dc.format.extent | 57-60 | |
dc.format.pages | 4 | |
dc.identifier.citation | Aschepkov V. Methods of machine learning in modern metrology / Aschepkov Valeriy // Measuring Equipment and Metrology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 85. — No 1. — P. 57–60. | |
dc.identifier.citationen | Aschepkov V. Methods of machine learning in modern metrology / Aschepkov Valeriy // Measuring Equipment and Metrology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 85. — No 1. — P. 57–60. | |
dc.identifier.doi | doi.org/10.23939/istcmtm2024.01.057 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/64127 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Вимірювальна техніка та метрологія, 1 (85), 2024 | |
dc.relation.ispartof | Measuring Equipment and Metrology, 1 (85), 2024 | |
dc.relation.references | [1] S. Artemuk, I. Mykytyn, A. O. Kozhevnikov. “Investigation of methods for determining the accuracy of metrological measurements”, 2022. [Online]. Available: https://openarchive.nure.ua/entities/publication/6c386f59-2585-4e39-82a0-f452a70a8494 | |
dc.relation.references | [2] A. Mueller, S. Guido. “Introduction to Machine Learning with Python”, 2016–2017 [Online]. Available: https://library-it.com/wp-content/uploads/2021/01/a_myuller_s_gvido_vvedenie_ v_mashinnoe.pdf | |
dc.relation.references | [3] Y. O. Hryshkun, S. M. Kravchenko, A. Yu. Levchenko, Yu. I. Lysogor. “Machine Learning Methods” in Znanstvena misel journal, No. 39, 2020, p. 55 [Online]. Available: https://www.znanstvena-journal.com/wpcontent/uploads/2020/10/Znanstvena-misel-journal-%E2%84%9639-2020-VOL.1.pdf#page=55 | |
dc.relation.references | [4] A. M. Rasulova, A. V. Izmajlova. “Application of the Isolation Forest algorithm for justifying the uniqueness of water bodies in a group of karst lakes” in Earth sciences, 2021. DOI: 10.33619/2414-2948/72/08 | |
dc.relation.references | [5] S. Bilson, A. Thompson, D. Tucker, J. Pierce “A machine learning approach to automation and uncertainty evaluation for self-validating thermocouples” in NIST.SP.2100-05, Digest Conference ITS10, 2023. | |
dc.relation.references | [6] J. V. Pierce, O. Ongrey, G. Machin, S. D. Sweeney. “Self Validating Thermocouples Based on Fixed Points at High Temperatures” in Metrologia, Vol. 47, No. 1, 2010. DOI: 10.1088/0026-1394/47/1/L01 | |
dc.relation.references | [7] M. Y. Krajnyuk. “Deep Learning for Measurements: Application of Neural Networks in Solving Real Problems” in Metrological Aspects of Decision Making in the Conditions of Work at Technogenic Hazardous Objects [Online]. Available: https://er.chdtu.edu.ua/bitstream/ChSTU/4662/1/sbornik_konf_2023.pdf#page=21 | |
dc.relation.references | [8] O. M. Vasilevsky. “Concept of Metrological Support in Industry 4.0” in Information Technologies and Computer Engineering, Vol. 48, No. 2, 2020. DOI: 10.31649/1999-9941-2020-48-2-37-44 | |
dc.relation.references | [9] Padraig Timoney et al. “Implementation of machine learning for high-volume manufacturing metrology challenges” in Proceedings, Vol. 10585, Metrology, Inspection, and Process Control for Microlithography XXXII; 105850X, 2018. DOI: 10.1117/12.2300167 | |
dc.relation.references | [10] Marcela Vallejo, Carolina de la Espriella, Juliana Gómez Santamaría, Andrés Felipe Ramírez-Barrera, and Edilson Delgado-Trejos. “Soft metrology based on machine learning: a review” in Measurement Science and Technology, Vol. 31, No. 3, 2019. DOI: 10.1088/1361-6501/ab4b39 | |
dc.relation.referencesen | [1] S. Artemuk, I. Mykytyn, A. O. Kozhevnikov. "Investigation of methods for determining the accuracy of metrological measurements", 2022. [Online]. Available: https://openarchive.nure.ua/entities/publication/6c386f59-2585-4e39-82a0-f452a70a8494 | |
dc.relation.referencesen | [2] A. Mueller, S. Guido. "Introduction to Machine Learning with Python", 2016–2017 [Online]. Available: https://library-it.com/wp-content/uploads/2021/01/a_myuller_s_gvido_vvedenie_ v_mashinnoe.pdf | |
dc.relation.referencesen | [3] Y. O. Hryshkun, S. M. Kravchenko, A. Yu. Levchenko, Yu. I. Lysogor. "Machine Learning Methods" in Znanstvena misel journal, No. 39, 2020, p. 55 [Online]. Available: https://www.znanstvena-journal.com/wpcontent/uploads/2020/10/Znanstvena-misel-journal-%E2%84%9639-2020-VOL.1.pdf#page=55 | |
dc.relation.referencesen | [4] A. M. Rasulova, A. V. Izmajlova. "Application of the Isolation Forest algorithm for justifying the uniqueness of water bodies in a group of karst lakes" in Earth sciences, 2021. DOI: 10.33619/2414-2948/72/08 | |
dc.relation.referencesen | [5] S. Bilson, A. Thompson, D. Tucker, J. Pierce "A machine learning approach to automation and uncertainty evaluation for self-validating thermocouples" in NIST.SP.2100-05, Digest Conference ITS10, 2023. | |
dc.relation.referencesen | [6] J. V. Pierce, O. Ongrey, G. Machin, S. D. Sweeney. "Self Validating Thermocouples Based on Fixed Points at High Temperatures" in Metrologia, Vol. 47, No. 1, 2010. DOI: 10.1088/0026-1394/47/1/L01 | |
dc.relation.referencesen | [7] M. Y. Krajnyuk. "Deep Learning for Measurements: Application of Neural Networks in Solving Real Problems" in Metrological Aspects of Decision Making in the Conditions of Work at Technogenic Hazardous Objects [Online]. Available: https://er.chdtu.edu.ua/bitstream/ChSTU/4662/1/sbornik_konf_2023.pdf#page=21 | |
dc.relation.referencesen | [8] O. M. Vasilevsky. "Concept of Metrological Support in Industry 4.0" in Information Technologies and Computer Engineering, Vol. 48, No. 2, 2020. DOI: 10.31649/1999-9941-2020-48-2-37-44 | |
dc.relation.referencesen | [9] Padraig Timoney et al. "Implementation of machine learning for high-volume manufacturing metrology challenges" in Proceedings, Vol. 10585, Metrology, Inspection, and Process Control for Microlithography XXXII; 105850X, 2018. DOI: 10.1117/12.2300167 | |
dc.relation.referencesen | [10] Marcela Vallejo, Carolina de la Espriella, Juliana Gómez Santamaría, Andrés Felipe Ramírez-Barrera, and Edilson Delgado-Trejos. "Soft metrology based on machine learning: a review" in Measurement Science and Technology, Vol. 31, No. 3, 2019. DOI: 10.1088/1361-6501/ab4b39 | |
dc.relation.uri | https://openarchive.nure.ua/entities/publication/6c386f59-2585-4e39-82a0-f452a70a8494 | |
dc.relation.uri | https://library-it.com/wp-content/uploads/2021/01/a_myuller_s_gvido_vvedenie_ | |
dc.relation.uri | https://www.znanstvena-journal.com/wpcontent/uploads/2020/10/Znanstvena-misel-journal-%E2%84%9639-2020-VOL.1.pdf#page=55 | |
dc.relation.uri | https://er.chdtu.edu.ua/bitstream/ChSTU/4662/1/sbornik_konf_2023.pdf#page=21 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
dc.subject | machine learning | |
dc.subject | metrology | |
dc.subject | measurement accuracy | |
dc.subject | instrument calibration | |
dc.subject | data analysis | |
dc.subject | forecasting | |
dc.title | Methods of machine learning in modern metrology | |
dc.type | Article |
Files
License bundle
1 - 1 of 1