Mathematical modelling of flux-cored layer formation

dc.citation.epage34
dc.citation.issue1
dc.citation.journalTitleУкраїнський журнал із машинобудування і матеріалознавства
dc.citation.spage26
dc.citation.volume9
dc.contributor.affiliationDonbass State Engineering Academy
dc.contributor.authorKassov, Valery
dc.contributor.authorVasylchenko, Yana
dc.contributor.authorBerezhnaya, Elena
dc.contributor.authorMalyhina, Svetlana
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-07T08:18:46Z
dc.date.available2024-02-07T08:18:46Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractMathematical model for the calculation of the chemical composition of deposited metal with sufficient accuracy has been developed. The presented mathematical model has been developed taking into account shares of base and clad metal, the metal of the previous roll in the subsequent one, and the relative step of cladding. Based on the calculated composition of deposited metal by flux-cored wire it has been proved and experimentally confirmed that the required chemical composition of deposited metal is achieved in the second-third layer regardless of the surfacing step. Theoretically established and experimentally verified the effective relative step of cladding. The established relative pitch allows for minimizing waste when cladding with flux-cored wire. In this case, the cross-sectional area of the roll reinforcement after the finishing run will be minimal.
dc.format.extent26-34
dc.format.pages9
dc.identifier.citationMathematical modelling of flux-cored layer formation / Valery Kassov, Yana Vasylchenko, Elena Berezhnaya, Svetlana Malyhina // Ukrainian Journal of Mechanical Engineering and Materials Science. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 9. — No 1. — P. 26–34.
dc.identifier.citationenMathematical modelling of flux-cored layer formation / Valery Kassov, Yana Vasylchenko, Elena Berezhnaya, Svetlana Malyhina // Ukrainian Journal of Mechanical Engineering and Materials Science. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 9. — No 1. — P. 26–34.
dc.identifier.doidoi.org/10.23939/ujmems2023.01.026
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61134
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofУкраїнський журнал із машинобудування і матеріалознавства, 1 (9), 2023
dc.relation.ispartofUkrainian Journal of Mechanical Engineering and Materials Science, 1 (9), 2023
dc.relation.references[1] Buntoeng Srikarun, Hein Zaw Oo, Prapas Muangjunburee Influence of Different Welding Processes on Microstructure, Hardness, and Wear Behavior of Martensitic Hardfaced Cladding [Journal of Materials Engineering and Performance]. 2021 (30), pp. 8984–8995. https://doi.org/10.1007/s11665-021-06109-0.
dc.relation.references[2] Venkatesh B. Mechanical Behavior of Single and Multilayer Hardfacing on Ferrous Alloys [Tribology and Characterization of Surface Coatings]. 2022. https://doi.org/10.1002/9781119818878.ch13
dc.relation.references[3] Dmitry A. Chinakhov, Kirill O. Akimov Formation of the Structure and Properties of Deposited Multilayer Specimens from Austenitic Steel under Various Heat Removal Conditions [Metals]. 12(9), 1527; https://doi.org/10.3390/met1209152.
dc.relation.references[4] João V. S. Matias, Manuel J. C. Lourenço, Jorge C. F. Jorge Behavior of a superaustenitic stainless steel weld cladding deposited by the gas metal arc welding process [Materials Today Communications]. 2022. https://doi.org/10.1016/j.mtcomm.2022.104978.
dc.relation.references[5] Najafi M., Moshkbar M. Bakhshayesh, Farzadi A. Microstructure and Phase Analysis of Multilayer Ni–Cr–Mo Clad for Corrosion Protection [Transactions of the Indian Institute of Metals]. 2021 (74), pp. 1663–1672. https://doi.org/10.1007/s12666-021-02256-z.
dc.relation.references[6] Sokolov G. N., Zorin I. V., Artem’ev A. A., Elsukov S. K., Dubtsov Yu. N., Lysak V. I. Thermal- and wearresistant alloy arc welding depositions using composite and flux-cored wires with TiN, TiCN, and WC nanoparticles [Journal of Materials Processing Technology]. 2019, pp. 100–110. https://doi.org/10.1016/j.jmatprotec.2019.05.014.
dc.relation.references[7] Michael P. Shalimov, Votinova E. B. Appication of the Complete Material Balance Method to Estimate the Transition of Elements in Flux Cored Arc Welding [Solid State Phenomena]. 2020, pp. 559–564. https://www.scientific.net/SSP.299.559.
dc.relation.references[8] Jingli Zhang, Jianjun Wei Effect of interlayer temperature and extremely low terminal cooling temperature on the microstructure and wear resistance of Fe-based hardfacing alloy [Journal of Materials Research and Technology]. 2023. https://doi.org/10.1016/j.jmrt.2023.02.012.
dc.relation.references[9] Vitaliy Ivanov, Elena Lavrova Improving the Efficiency of Strip Cladding by the Control of Electrode Metal Transfer [Applied Mechanics and Materials]. 2014, pp. 266–269. https://doi.org/10.4028/www.scientific.net/AMM.682.266.
dc.relation.references[10] Weingrill L., Nasiri M. B., Enzinger N. Thermo-metallurgically coupled numerical simulation and validation of multi-layer gas metal arc welding of high strength pearlitic rails [Welding in the World]. 2019 (63), pp. 63–73. https://link.springer.com/article/10.1007/s40194-018-0639-x.
dc.relation.references[11] Fengjing Xu, Runquan Xiao, Zhen Hou, Yanling Xu, Huajun Zhang, Shanben Chen Multi-layer Multi-pass Welding of Medium Thickness Plate: Technologies, Advances and Future Prospects [Transactions on Intelligent Welding Manufacturing]. 2021. https://link.springer.com/chapter/10.1007/978-981-33-6502-5_1.
dc.relation.references[12] Kassov V., Razumovich O. Mathematical simulation of the metal deposited cored wire complex design [Bulletin of Kharkiv National Automobile and Highway University]. 2014 (65–66). pp. 131–134.
dc.relation.referencesen[1] Buntoeng Srikarun, Hein Zaw Oo, Prapas Muangjunburee Influence of Different Welding Processes on Microstructure, Hardness, and Wear Behavior of Martensitic Hardfaced Cladding [Journal of Materials Engineering and Performance]. 2021 (30), pp. 8984–8995. https://doi.org/10.1007/s11665-021-06109-0.
dc.relation.referencesen[2] Venkatesh B. Mechanical Behavior of Single and Multilayer Hardfacing on Ferrous Alloys [Tribology and Characterization of Surface Coatings]. 2022. https://doi.org/10.1002/9781119818878.ch13
dc.relation.referencesen[3] Dmitry A. Chinakhov, Kirill O. Akimov Formation of the Structure and Properties of Deposited Multilayer Specimens from Austenitic Steel under Various Heat Removal Conditions [Metals]. 12(9), 1527; https://doi.org/10.3390/met1209152.
dc.relation.referencesen[4] João V. S. Matias, Manuel J. C. Lourenço, Jorge C. F. Jorge Behavior of a superaustenitic stainless steel weld cladding deposited by the gas metal arc welding process [Materials Today Communications]. 2022. https://doi.org/10.1016/j.mtcomm.2022.104978.
dc.relation.referencesen[5] Najafi M., Moshkbar M. Bakhshayesh, Farzadi A. Microstructure and Phase Analysis of Multilayer Ni–Cr–Mo Clad for Corrosion Protection [Transactions of the Indian Institute of Metals]. 2021 (74), pp. 1663–1672. https://doi.org/10.1007/s12666-021-02256-z.
dc.relation.referencesen[6] Sokolov G. N., Zorin I. V., Artem’ev A. A., Elsukov S. K., Dubtsov Yu. N., Lysak V. I. Thermal- and wearresistant alloy arc welding depositions using composite and flux-cored wires with TiN, TiCN, and WC nanoparticles [Journal of Materials Processing Technology]. 2019, pp. 100–110. https://doi.org/10.1016/j.jmatprotec.2019.05.014.
dc.relation.referencesen[7] Michael P. Shalimov, Votinova E. B. Appication of the Complete Material Balance Method to Estimate the Transition of Elements in Flux Cored Arc Welding [Solid State Phenomena]. 2020, pp. 559–564. https://www.scientific.net/SSP.299.559.
dc.relation.referencesen[8] Jingli Zhang, Jianjun Wei Effect of interlayer temperature and extremely low terminal cooling temperature on the microstructure and wear resistance of Fe-based hardfacing alloy [Journal of Materials Research and Technology]. 2023. https://doi.org/10.1016/j.jmrt.2023.02.012.
dc.relation.referencesen[9] Vitaliy Ivanov, Elena Lavrova Improving the Efficiency of Strip Cladding by the Control of Electrode Metal Transfer [Applied Mechanics and Materials]. 2014, pp. 266–269. https://doi.org/10.4028/www.scientific.net/AMM.682.266.
dc.relation.referencesen[10] Weingrill L., Nasiri M. B., Enzinger N. Thermo-metallurgically coupled numerical simulation and validation of multi-layer gas metal arc welding of high strength pearlitic rails [Welding in the World]. 2019 (63), pp. 63–73. https://link.springer.com/article/10.1007/s40194-018-0639-x.
dc.relation.referencesen[11] Fengjing Xu, Runquan Xiao, Zhen Hou, Yanling Xu, Huajun Zhang, Shanben Chen Multi-layer Multi-pass Welding of Medium Thickness Plate: Technologies, Advances and Future Prospects [Transactions on Intelligent Welding Manufacturing]. 2021. https://link.springer.com/chapter/10.1007/978-981-33-6502-5_1.
dc.relation.referencesen[12] Kassov V., Razumovich O. Mathematical simulation of the metal deposited cored wire complex design [Bulletin of Kharkiv National Automobile and Highway University]. 2014 (65–66). pp. 131–134.
dc.relation.urihttps://doi.org/10.1007/s11665-021-06109-0
dc.relation.urihttps://doi.org/10.1002/9781119818878.ch13
dc.relation.urihttps://doi.org/10.3390/met1209152
dc.relation.urihttps://doi.org/10.1016/j.mtcomm.2022.104978
dc.relation.urihttps://doi.org/10.1007/s12666-021-02256-z
dc.relation.urihttps://doi.org/10.1016/j.jmatprotec.2019.05.014
dc.relation.urihttps://www.scientific.net/SSP.299.559
dc.relation.urihttps://doi.org/10.1016/j.jmrt.2023.02.012
dc.relation.urihttps://doi.org/10.4028/www.scientific.net/AMM.682.266
dc.relation.urihttps://link.springer.com/article/10.1007/s40194-018-0639-x
dc.relation.urihttps://link.springer.com/chapter/10.1007/978-981-33-6502-5_1
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Kassov V., Vasylchenko Y., Berezhnaya E., Malyhina S., 2023
dc.subjectelectric arc cladding
dc.subjectweld metal
dc.subjectflux-cored wire
dc.subjectmathematical modeling
dc.subjectchemical composition
dc.titleMathematical modelling of flux-cored layer formation
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v9n1_Kassov_V-Mathematical_modelling_of_26-34.pdf
Size:
685.27 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v9n1_Kassov_V-Mathematical_modelling_of_26-34__COVER.png
Size:
484.02 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.79 KB
Format:
Plain Text
Description: