Knowledge-based Big Data Cleanup method

dc.citation.epage21
dc.citation.journalTitleComputational Linguistics and Intelligent Systems
dc.citation.spage14
dc.citation.volume2 : Proceedings of the 3nd International conference, COLINS 2019. Workshop, Kharkiv, Ukraine, April 18-19, 2019
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorBerko, Andrii
dc.coverage.placenameLviv
dc.date.accessioned2019-10-31T13:21:04Z
dc.date.available2019-10-31T13:21:04Z
dc.date.created2019-04-18
dc.date.issued2019-04-18
dc.description.abstractUnlike traditional databases, Big Data stored as NoSQL data resources. Therefore such resources are not ready for efficient use in its original form in most cases. It is due to the availability of various kinds of data anomalies. Most of these anomalies are such as data duplication, ambiguity, inaccuracy, contradiction, absence, the incompleteness of data, etc. To eliminate such incorrectness, data source special cleanup procedures are needed. Data cleanup process requires additional information about the composition, content, meaning, and function of this Big Data resource. Using the special knowledge base can provide a resolving of such problem.
dc.format.extent14-21
dc.format.pages8
dc.identifier.citationBerko A. Knowledge-based Big Data Cleanup method / Andrii Berko // Computational Linguistics and Intelligent Systems. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 2 : Proceedings of the 3nd International conference, COLINS 2019. Workshop, Kharkiv, Ukraine, April 18-19, 2019. — P. 14–21. — (Paper presentations).
dc.identifier.citationenBerko A. Knowledge-based Big Data Cleanup method / Andrii Berko // Computational Linguistics and Intelligent Systems. — Lviv Politechnic Publishing House, 2019. — Vol 2 : Proceedings of the 3nd International conference, COLINS 2019. Workshop, Kharkiv, Ukraine, April 18-19, 2019. — P. 14–21. — (Paper presentations).
dc.identifier.issn2523-4013
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/45491
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofComputational Linguistics and Intelligent Systems (2), 2019
dc.relation.referencesen1. Alieksieiev,V., Berko, A.: A method to solve uncertainty problem for big data sources. In: Proceedings of the 2018 IEEE Second International Conference on Data Stream Mining & Processing, DSMP), 32-37(2018)
dc.relation.referencesen2. Aliekseyeva, К.,Berko, A.:Quality evaluation of information resources in web-projects. Actual Problems of Economics 136(10), 226-234 (2012)
dc.relation.referencesen3. Date, C. J.: Database in Depth: Relational Theory for Practitioners. O’Reilly, CA (2005).
dc.relation.referencesen4. Jaya, M. I., Sidi, F., Ishak, I., Affendey, L. S., Jabar, M. A. : A review of data quality research in achieving high data quality within organization. Journal of Theoretical and Applied Information Technology, Vol.95, No 12, 2647-2657 (2017)
dc.relation.referencesen5. Marz, N.,Warren, J.: Big Data: Principles and best practices of scalable realtime data systems, Manning Publications (2015)
dc.relation.referencesen6. RDFa Core 1.1 - Third Edition. Syntax and processing rules for embedding RDF through attributes. W3C Recommendation, https://www.w3.org/TR/2015/REC-rdfa-core-20150317(2015)
dc.relation.referencesen7. Rubinson, С.: Nulls, Three-Valued Logic, and Ambiguity in SQL : Critiquing Date’s Critique. In: SIGMOD Record Vol. 36, No. 4, 137-143(2007)
dc.relation.urihttps://www.w3.org/TR/2015/REC-rdfa-core-20150317(2015
dc.rights.holder© 2019 for the individual papers by the papers’ authors. Copying permitted only for private and academic purposes. This volume is published and copyrighted by its editors.
dc.subjectBig Data
dc.subjectOntology
dc.subjectKnowledge Base
dc.subjectData Cleanup
dc.titleKnowledge-based Big Data Cleanup method
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2019v2___Proceedings_of_the_3nd_International_conference_COLINS_2019_Workshop_Kharkiv_Ukraine_April_18-19_2019_Berko_A-Knowledge_based_Big_Data_Cleanup_14-21.pdf
Size:
1.19 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2019v2___Proceedings_of_the_3nd_International_conference_COLINS_2019_Workshop_Kharkiv_Ukraine_April_18-19_2019_Berko_A-Knowledge_based_Big_Data_Cleanup_14-21__COVER.png
Size:
273.07 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.94 KB
Format:
Plain Text
Description: