Enhancement of medical MRI images based on the Atangan-Baleanu fractal operator

dc.citation.epage78
dc.citation.issue3
dc.citation.journalTitleКомп’ютерні системи проектування. Теорія і практика
dc.citation.spage65
dc.contributor.affiliationНаціональний лісотехнічний університет України
dc.contributor.affiliationНаціональний університет "Львівська політехніка"
dc.contributor.affiliationNational Forestry University of Ukraine
dc.contributor.affiliationLviv Polutechnic National University
dc.contributor.authorБерезюк, Володимир
dc.contributor.authorСоколовський, Ярослав
dc.contributor.authorBereziuk, Volodymyr
dc.contributor.authorSokolovskyy, Yaroslav
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-12-16T08:41:09Z
dc.description.abstractУ статті описано використання фрактального оператора Атангана – Балеану для завдання покращення текстур медичних МРТ зображень. Детально викладено математичний апарат фрактального диференціала Атангана – Балеану. Розглянуто числовий підхід до обчислення фрак- тального диференціала за допомогою методу скінченних різниць. На основі апроксимованого розв’я- зання визначено коефіцієнти апроксимації. Їх використано для створення восьми різнонаправлених масок, які застосовано як фільтри для просторового оброблення зображень у різних напрямках. Створено й описано відповідний алгоритм застосування фрактальних масок. Виконано порівняння результатів роботи алгоритму оброблення медичних зображень. Досліджено зміни параметрів зображень у результаті роботи алгоритму покращення зображень, а також здійснено порівняння роботи алгоритму з іншими алгоритмами для поліпшення текстур.
dc.description.abstractThis article describes the use of the Atangana-Baleanu fractal operator for the task of enhancing textures in medical MRI images. It provides a detailed explanation of the mathematical framework of the Atangana-Baleanu fractal differential. A numerical approach for calculating the fractal differential using the finite difference method is considered. Based on the approximated solution, approximation coefficients are determined. These coefficients are used to create eight differently oriented masks, which serve as filters for spatial image processing in various directions. A corresponding algorithm for applying fractal masks is developed and described. The obtained results of the algorithm’s performance on medical image processing are compared. The impact of the image enhancement algorithm on image parameters is also investigated. Furthermore, a comparison with other texture enhancement algorithms is conducted.
dc.format.extent65-78
dc.format.pages14
dc.identifier.citationBereziuk V. Enhancement of medical MRI images based on the Atangan-Baleanu fractal operator / Volodymyr Bereziuk, Yaroslav Sokolovskyy // Computer Systems of Design. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 3. — P. 65–78.
dc.identifier.citation2015Bereziuk V., Sokolovskyy Y. Enhancement of medical MRI images based on the Atangan-Baleanu fractal operator // Computer Systems of Design. Theory and Practice, Lviv. 2024. Vol 6. No 3. P. 65–78.
dc.identifier.citationenAPABereziuk, V., & Sokolovskyy, Y. (2024). Enhancement of medical MRI images based on the Atangan-Baleanu fractal operator. Computer Systems of Design. Theory and Practice, 6(3), 65-78. Lviv Politechnic Publishing House..
dc.identifier.citationenCHICAGOBereziuk V., Sokolovskyy Y. (2024) Enhancement of medical MRI images based on the Atangan-Baleanu fractal operator. Computer Systems of Design. Theory and Practice (Lviv), vol. 6, no 3, pp. 65-78.
dc.identifier.doihttps://doi.org/10.23939/cds2024.03.065
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/124103
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofКомп’ютерні системи проектування. Теорія і практика, 3 (6), 2024
dc.relation.ispartofComputer Systems of Design. Theory and Practice, 3 (6), 2024
dc.relation.references[1] J. K. Author, ―Ttlie of chapter in the book‖, in Title of the Published Book, xth ed. City of Publisher, Country if not USA: Abbrev. of Publisher, year, chapter x, section x, pp. xxx–xxx.
dc.relation.references[2] Sobel, Irwin & Feldman, Gary (1973). A 3×3 isotropic gradient operator for image processing. Pattern Classification and Scene Analysis, 271–272.
dc.relation.references[3] Prewitt, J. M. S. ―Object Enhancement and Extraction‖. In Picture Processing and Psychopictorics, edited by B. S. Lipkin and A. Rosenfeld, 75–149. New York: Academic Press, 1970.
dc.relation.references[4] Marr, D., and E. Hildreth. ―Theory of Edge Detection‖. Proceedings of the Royal Society of London. Series B, Biological Sciences, 207, No. 1167 (1980): 187–217.
dc.relation.references[5] Y.-F. Pu, J.-L. Zhou and X. Yuan, ―Fractional Differential Mask: A Fractional Differential-Based Approach for Multiscale Texture Enhancement‖, in IEEE Transactions on Image Processing, Vol. 19, No. 2, pp. 491–511, Feb. 2010. DOI: 10.1109/TIP.2009.2035980.
dc.relation.references[6] Van Rossum, G., and F. L. Drake Jr. Python Reference Manual. PythonLabs, 2001.
dc.relation.references[7] Virtanen, P., R. Gommers, T. E. Oliphant, et al. ―SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python‖. Nature Methods, 17, 261–272 (2020). DOI: 10.1038/s41592-019-0686-2
dc.relation.references[8] Bradski, G. ―The OpenCV Library‖. Dr. Dobb’s Journal of Software Tools, 2000.
dc.relation.references[9] R. E. Twogood and F. G. Sommer, ―Digital Image Processing‖, in IEEE Transactions on Nuclear Science, Vol. 29, No. 3, pp. 1075–1086, June 1982. DOI: 10.1109/TNS.1982.4336327.
dc.relation.references[10] https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection/data
dc.relation.references[11] Haralick, R. M., Shanmugam, K., and Dinstein, I. ―Textural Features for Image Classification‖. IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-3, No. 6, 1973, pp. 610–621.
dc.relation.references[12] Greenspan, H., Anderson, C. H., and Akber, S. ―Image enhancement by nonlinear extrapolation in frequency space‖. IEEE Transactions on Image Processing, Vol. 9, No. 6, pp. 1035–1048, Jun. 2000.
dc.relation.references[13] Dippel, S., Stahl, M., Wiemker, R., and Blaffert, T. ―Multiscale contrast enhancement for radiographies: Laplacian pyramid versus fast wavelet transform‖. IEEE Transactions on Medical Imaging, Vol. 21, No. 4, pp. 343–353, Apr. 2002.
dc.relation.references[14] Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal,27(3), 379–423, 623–656.
dc.relation.references[15] Paris, S., Hasler, D., and Morel, J. M. ―A Fast Algorithm for the Computation of the Exact Euclidean Distance Transform‖. IEEE Transactions on Image Processing, Vol. 21, No. 1, pp. 22–30, Jan. 2012.
dc.relation.references[16] Manokhin D., Sokolovskyy Ya., ―Intracranial Hemorrhage Segmentation Using Neural Network and Riesz Fractional Order Derivative-based Texture Enhancement‖, Computer Design Systems. Theory and Practice,2024; Vol. 6, Number 1:1–16, https://doi.org/10.23939/cds2024.01.001
dc.relation.references[17] Massopust, Peter (1997). Fractal Functions and their Applications. Chaos Solitons & Fractals, 8, 171–190. 10.1016/S0960-0779(96)00047-1.
dc.relation.referencesen[1] J. K. Author, ―Ttlie of chapter in the book‖, in Title of the Published Book, xth ed. City of Publisher, Country if not USA: Abbrev. of Publisher, year, chapter x, section x, pp. xxx–xxx.
dc.relation.referencesen[2] Sobel, Irwin & Feldman, Gary (1973). A 3×3 isotropic gradient operator for image processing. Pattern Classification and Scene Analysis, 271–272.
dc.relation.referencesen[3] Prewitt, J. M. S. ―Object Enhancement and Extraction‖. In Picture Processing and Psychopictorics, edited by B. S. Lipkin and A. Rosenfeld, 75–149. New York: Academic Press, 1970.
dc.relation.referencesen[4] Marr, D., and E. Hildreth. ―Theory of Edge Detection‖. Proceedings of the Royal Society of London. Series B, Biological Sciences, 207, No. 1167 (1980): 187–217.
dc.relation.referencesen[5] Y.-F. Pu, J.-L. Zhou and X. Yuan, ―Fractional Differential Mask: A Fractional Differential-Based Approach for Multiscale Texture Enhancement‖, in IEEE Transactions on Image Processing, Vol. 19, No. 2, pp. 491–511, Feb. 2010. DOI: 10.1109/TIP.2009.2035980.
dc.relation.referencesen[6] Van Rossum, G., and F. L. Drake Jr. Python Reference Manual. PythonLabs, 2001.
dc.relation.referencesen[7] Virtanen, P., R. Gommers, T. E. Oliphant, et al. ―SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python‖. Nature Methods, 17, 261–272 (2020). DOI: 10.1038/s41592-019-0686-2
dc.relation.referencesen[8] Bradski, G. ―The OpenCV Library‖. Dr. Dobb’s Journal of Software Tools, 2000.
dc.relation.referencesen[9] R. E. Twogood and F. G. Sommer, ―Digital Image Processing‖, in IEEE Transactions on Nuclear Science, Vol. 29, No. 3, pp. 1075–1086, June 1982. DOI: 10.1109/TNS.1982.4336327.
dc.relation.referencesen[10] https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection/data
dc.relation.referencesen[11] Haralick, R. M., Shanmugam, K., and Dinstein, I. ―Textural Features for Image Classification‖. IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-3, No. 6, 1973, pp. 610–621.
dc.relation.referencesen[12] Greenspan, H., Anderson, C. H., and Akber, S. ―Image enhancement by nonlinear extrapolation in frequency space‖. IEEE Transactions on Image Processing, Vol. 9, No. 6, pp. 1035–1048, Jun. 2000.
dc.relation.referencesen[13] Dippel, S., Stahl, M., Wiemker, R., and Blaffert, T. ―Multiscale contrast enhancement for radiographies: Laplacian pyramid versus fast wavelet transform‖. IEEE Transactions on Medical Imaging, Vol. 21, No. 4, pp. 343–353, Apr. 2002.
dc.relation.referencesen[14] Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal,27(3), 379–423, 623–656.
dc.relation.referencesen[15] Paris, S., Hasler, D., and Morel, J. M. ―A Fast Algorithm for the Computation of the Exact Euclidean Distance Transform‖. IEEE Transactions on Image Processing, Vol. 21, No. 1, pp. 22–30, Jan. 2012.
dc.relation.referencesen[16] Manokhin D., Sokolovskyy Ya., ―Intracranial Hemorrhage Segmentation Using Neural Network and Riesz Fractional Order Derivative-based Texture Enhancement‖, Computer Design Systems. Theory and Practice,2024; Vol. 6, Number 1:1–16, https://doi.org/10.23939/cds2024.01.001
dc.relation.referencesen[17] Massopust, Peter (1997). Fractal Functions and their Applications. Chaos Solitons & Fractals, 8, 171–190. 10.1016/S0960-0779(96)00047-1.
dc.relation.urihttps://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection/data
dc.relation.urihttps://doi.org/10.23939/cds2024.01.001
dc.rights.holder© Національний університет „Львівська політехніка“, 2024
dc.rights.holder© Bereziuk V., Sokolovskyy Ya., 2024
dc.subjectмагнітно-резонансна томографія (МРТ)
dc.subjectфрактальний оператор Атангана – Балеану
dc.subjectпокращення зображень
dc.subjectPython
dc.subjectMagnetic Resonance Imaging (MRI)
dc.subjectAtangana-Baleanu Fractal Operator
dc.subjectImage Enhancement
dc.subjectPython
dc.titleEnhancement of medical MRI images based on the Atangan-Baleanu fractal operator
dc.title.alternativeПокращення медичних МРТ зображень на підставі фрактального оператора Атангана-Балеану
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2024v6n3_Bereziuk_V-Enhancement_of_medical_MRI_65-78.pdf
Size:
3.08 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.83 KB
Format:
Plain Text
Description: