Optimising the construction process through digitalisation: Case studies of projects under unstable resource supply

dc.citation.epage105
dc.citation.issue1
dc.citation.journalTitleАрхітектурні дослідження
dc.citation.spage92
dc.contributor.affiliationКиївський національний університет будівництва та архітектури
dc.contributor.affiliationКиївський національний університет будівництва та архітектури
dc.contributor.affiliationКиївський національний університет будівництва та архітектури
dc.contributor.affiliationКиївський національний університет будівництва та архітектури
dc.contributor.affiliationКиївський національний університет будівництва та архітектури
dc.contributor.affiliationKyiv National University of Construction and Architecture
dc.contributor.affiliationKyiv National University of Construction and Architecture
dc.contributor.affiliationKyiv National University of Construction and Architecture
dc.contributor.affiliationKyiv National University of Construction and Architecture
dc.contributor.affiliationKyiv National University of Construction and Architecture
dc.contributor.authorОлійник, Валерій
dc.contributor.authorКонончук, Роман
dc.contributor.authorКобельчук, Олександр
dc.contributor.authorТугай, Олексій
dc.contributor.authorДубинка, Олександр
dc.contributor.authorOliinyk, Valerii
dc.contributor.authorKononchuk, Roman
dc.contributor.authorKobelchuk, Oleksandr
dc.contributor.authorTugay, Alexei
dc.contributor.authorDubynka, Oleksandr
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-11-24T12:02:55Z
dc.date.created2025-04-10
dc.date.issued2025-04-10
dc.description.abstractМетою роботи було дослідити вплив цифрових технологій на оптимізацію будівельного процесу за умов нестійкого ресурсозабезпечення та сформувати практичні рекомендації для їх ефективного впровадження. Методологія дослідження включала аналіз сучасних тенденцій у сфері цифрових рішень, зокрема інформаційного моделювання будівель, технологій Інтернету речей, штучного інтелекту, цифрових двійників та хмарних платформ. Було розглянуто можливості інтеграції цих технологій для покращення планування, будівництва та експлуатації об’єктів, а також їхній вплив на підвищення ефективності управління ресурсами. Проведений аналіз реальних кейсів, зокрема впровадження інформаційного моделювання будівель у проєкті ASTON HALL компанії DEHAUSS, який підтвердив значний потенціал цифрових технологій. Також розглянуто проєкт Crossrail, де BIM-технології забезпечили ефективну координацію між підрядниками, і використання цифрових двійників у Сінгапурі, які використовуються для управління міськими ресурсами. Дослідження показало, що інформаційне моделювання будівель сприяє зменшенню помилок у проєктуванні та будівництві, покращенню координації між учасниками проєкту та зниженню витрат. Технології Інтернету речей забезпечують моніторинг стану будівельних матеріалів та обладнання у реальному часі, що підвищує рівень безпеки та зменшує ризики простоїв. Використання штучного інтелекту дає змогу прогнозувати можливі затримки, оптимізувати логістику та автоматизувати процеси управління. Цифрові двійники дозволяють тестувати різні сценарії будівельного процесу, що позитивно впливає на якість кінцевого результату. Основними викликами цифровізації будівництва залишаються висока вартість впровадження технологій, необхідність навчання персоналу, складнощі інтеграції програмних платформ та питання кібербезпеки. Водночас переваги, такі як автоматизація процесів, підвищена точність розрахунків навантажень та енергоефективності, оптимізація ресурсозабезпечення та вдосконалений контроль за будівельними проектами, підтверджують стратегічну важливість цифрових рішень у розвитку будівельної галузі. Результати дослідження продемонстрували, що комплексний підхід до впровадження цифрових технологій, адаптація будівельних процесів та ефективна інтеграція цифрових платформ можуть суттєво підвищити продуктивність будівельних проєктів, особливо в умовах нестійкого ресурсозабезпечення
dc.description.abstractThis study aimed to investigate the impact of digital technologies on the optimisation of the construction process under conditions of unstable resource supply and to formulate practical recommendations for their effective implementation. The research methodology included an analysis of current trends in the field of digital solutions, including Building Information Modelling, Internet of Things technologies, artificial intelligence, digital twins, and cloud platforms. The possibilities of integrating these technologies to improve the planning, construction, and operation of facilities were considered, as well as their impact on increasing the efficiency of resource management. An analysis of real-world case studies was conducted, including the implementation of Building Information Modelling in the ASTON HALL project by the company DEHAUSS, which confirmed the significant potential of digital technologies. The Crossrail project was also considered, where BIM technologies ensured effective coordination between contractors, as well as digital twins in Singapore, which are used for the management of urban resources. The research showed that Building Information Modelling contributes to reducing errors in design and construction, improving coordination between project participants, and lowering costs. Internet of Things technologies provide real-time monitoring of the condition of building materials and equipment, which increases the level of safety and reduces the risks of downtime. The use of artificial intelligence enables the prediction of potential delays, the optimisation of logistics, and the automation of management processes. Digital twins allow for the testing of different construction process scenarios, which positively impacts the quality of the final outcome. The main challenges of construction digitalisation remain the high cost of technology implementation, the need for staff training, the difficulties of integrating software platforms, and cybersecurity issues. At the same time, the advantages, such as process automation, increased accuracy of load and energy efficiency calculations, optimisation of resource supply, and improved control over construction projects, confirm the strategic importance of digital solutions in the development of the construction industry. The results of the research demonstrated that a comprehensive approach to the implementation of digital technologies, the adaptation of construction processes, and the effective integration of digital platforms can significantly increase the productivity of construction projects, especially under conditions of unstable resource supply
dc.format.extent92-105
dc.format.pages14
dc.identifier.citationOptimising the construction process through digitalisation: Case studies of projects under unstable resource supply / Valerii Oliinyk, Roman Kononchuk, Oleksandr Kobelchuk, Alexei Tugay, Oleksandr Dubynka // Architectural Studies. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 11. — No 1. — P. 92–105.
dc.identifier.citation2015Optimising the construction process through digitalisation: Case studies of projects under unstable resource supply / Oliinyk V. та ін. // Architectural Studies, Lviv. 2025. Vol 11. No 1. P. 92–105.
dc.identifier.citationenAPAOliinyk, V., Kononchuk, R., Kobelchuk, O., Tugay, A., & Dubynka, O. (2025). Optimising the construction process through digitalisation: Case studies of projects under unstable resource supply. Architectural Studies, 11(1), 92-105. Lviv Politechnic Publishing House..
dc.identifier.citationenCHICAGOOliinyk V., Kononchuk R., Kobelchuk O., Tugay A., Dubynka O. (2025) Optimising the construction process through digitalisation: Case studies of projects under unstable resource supply. Architectural Studies (Lviv), vol. 11, no 1, pp. 92-105.
dc.identifier.doi10.56318/as/1.2025.92
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/121564
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofАрхітектурні дослідження, 1 (11), 2025
dc.relation.ispartofArchitectural Studies, 1 (11), 2025
dc.relation.references[1] Abdelalim, A.M., Shawky, K., Salem, M., Alnaser, A.A., & Sherif, A. (2025). Digital transformation of BIM execution plans for effective BIM implementation in mega construction projects. Annals of Civil Engineering and Management, 2(1), 1-15.
dc.relation.references[2] Anh, L.D.H., & Pásztory, Z. (2021). An overview of factors influencing thermal conductivity of building insulation materials. Journal of Building Engineering, 44, article number 102604. doi: 10.1016/j.jobe.2021.102604.
dc.relation.references[3] Bashynskyi, O. (2018). Methods for designing high-rise buildings using information modelling technology based on the SAPPHIRE PC. Retrieved from https://surl.li/qnccnq.
dc.relation.references[4] Berlak, J., Hafner, S., & Kuppelwieser, V.G. (2020). Digitalization’s impacts on productivity: A model-based approach and evaluation in Germany’s building construction industry. Production Planning & Control, 32(4), 335-345. doi: 10.1080/09537287.2020.1740815.
dc.relation.references[5] BIM and GIS integration: Implementation and case studies. (n.d.). Retrieved from https://surl.li/xltcnn.
dc.relation.references[6] Bondarenko, D., & Kalashnikova, K. (2024). Digitalisation of the construction industry in Ukraine: Analysis of the state, problems and development prospects. Economy and Society, 65. doi: 10.32782/2524-0072/2024-65-2.
dc.relation.references[7] DEHAUSS. (2017). Benefits of BIM in the design and construction of high-rise buildings. Retrieved from https://dehauss.ua/ua/news/preimushchestva-bim-pri-proektirovanii-i-stroitelstve-vysotnyh-zdaniy.php.
dc.relation.references[8] Delgado, J.M.D., Oyedele, L., Ajayi, A., Akanbi, L., Akinade, O., Bilal, M., & Owolabi, H. (2019). Robotics and automated systems in construction: Understanding industry-specific challenges for adoption. Journal of Building Engineering, 26, article number 100868. doi: 10.1016/j.jobe.2019.100868.
dc.relation.references[9] Demirkesen, S., & Tezel, A. (2021). Investigating major challenges for Industry 4.0 adoption among construction companies. Engineering Construction & Architectural Management, 29(3), 1470-1503. doi: 10.1108/ecam-12-2020-1059.
dc.relation.references[10] Elghaish, F., Matarneh, S., Talebi, S., Kagioglou, M., Hosseini, M.R., & Abrishami, S. (2021), Toward digitalization in the construction industry with immersive and drones technologies: A critical literature review. Smart and Sustainable Built Environment, 10(3), 345-363. doi: 10.1108/SASBE-06-2020-0077.
dc.relation.references[11] Elizabeth Line. (n.d.). Retrieved from https://www.arup.com/projects/crossrail-elizabeth-line/.
dc.relation.references[12] Golinko, V., & Nedosnovanyi, O. (2024). Improvement of automation of geoinformation data processing using neural network technology. Technologies and Engineering, 25(4), 19-28. doi: 10.30857/2786-5371.2024.4.2.
dc.relation.references[13] Goncharenko, T. (2021). BIM technologies as a tool for creating an information model of the life cycle of a construction object. Management of the Development of Complex Systems, 47, 83-88. doi: 10.32347/2412-9933.2021.47.83-88.
dc.relation.references[14] Guo, K., & Zhang, L. (2022). Multi-objective optimization for improved project management: Current status and future directions. Automation in Construction, 139, article number 104256. doi: 10.1016/j.autcon.2022.104256.
dc.relation.references[15] Hasegawa, M., Komoto, S., Shiroiwa, T., & Fukuda, T. (2020). Formal implementation of cost-effectiveness evaluations in Japan: A unique health technology assessment system. Value in Health, 23(1), 43-51. doi: 10.1016/j.jval.2019.10.005.
dc.relation.references[16] Hendrawan, S.A., Chatra, N.A., Iman, N.N., Hidayatullah, N.S., & Suprayitno, N.D. (2024). Digital transformation in MSMEs: Challenges and opportunities in technology management. Journal of Information and Technology, 6(2), 141-149. doi: 10.60083/jidt.v6i2.551.
dc.relation.references[17] Jones, L., & Hobbs, P. (2021). The application of terrestrial LiDAR for geohazard mapping, monitoring and modelling in the British Geological Survey. Remote Sensing, 13(3), article number 395. doi: 10.3390/rs13030395.
dc.relation.references[18] Kim, K., Lee, G., & Kim, S. (2020). A study on the application of blockchain technology in the construction industry. KSCE Journal of Civil Engineering, 24(9), 2561-2571. doi: 10.1007/s12205-020-0188-x.
dc.relation.references[19] Krishnan, R., Govindaraj, M., Kandasamy, L., Perumal, E., & Mathews, S.B. (2024). Integrating logistics management with artificial intelligence and IoT for enhanced supply chain efficiency. In R. El Khoury (Ed.), Anticipating future business trends: Navigating artificial intelligence innovations (pp. 25-35). Cham: Springer. doi: 10.1007/978-3-031-63569-4_3.
dc.relation.references[20] Kuzior, A., Sira, M., & Brożek, P. (2023). Use of artificial intelligence in terms of open innovation. Sustainability, 15(9), article number 7205. doi: 10.3390/su15097205.
dc.relation.references[21] Kuznetsov, P. (2024). Development and implementation of a smart home automation system in the context of the Ukrainian housing sector: Challenges and prospects. Bulletin of Cherkasy State Technological University, 29(1), 62-72. doi: 10.62660/bcstu/1.2024.62.
dc.relation.references[22] Lavrukhina, K., Tytok, V., Chupryna, K., Biloshchytska, S., Novykova, I., & Maksiuta, A. (2024). Scientific research of the impact of globalization challenges on the process of innovative and informational development of cluster structures of the construction industry of Ukraine. In 2024 IEEE 4th international conference on smart information systems and technologies (SIST) (pp. 62-69). Astana: Institute of Electrical and Electronics Engineers. doi: 10.1109/SIST61555.2024.10629519.
dc.relation.references[23] Li, W., Wu, J., Cao, J., Chen, N., Zhang, Q., & Buyya, R. (2021). Blockchain-based trust management in cloud computing systems: A taxonomy, review and future directions. Journal of Cloud Computing Advances Systems and Applications, 10, article number 35. doi: 10.1186/s13677-021-00247-5.
dc.relation.references[24] Mhaskey, S.V. (2024). Integration of artificial intelligence (AI) in enterprise resource planning (ERP) systems: Opportunities, challenges, and implications. International Journal of Computer Engineering in Research Trends, 11(12), 1-9. doi: 10.22362/ijcert/2024/v11/i12/v11i1201.
dc.relation.references[25] Muruganandan, K., Davies, A., Denicol, J., & Whyte, J. (2022). The dynamics of systems integration: Balancing stability and change on London’s Crossrail project. International Journal of Project Management, 40(6), 608-623. doi: 10.1016/j.ijproman.2022.03.007.
dc.relation.references[26] Nikmehr, B., Hosseini, M.R., Martek, I., Zavadskas, E.K., & Antucheviciene, J. (2021). Digitalization as a strategic means of achieving sustainable efficiencies in construction management: A critical review. Sustainability, 13(9), article number 5040. doi: 10.3390/su13095040.
dc.relation.references[27] Pan, N.-H., & Isnaeni, N.N. (2024). Integration of augmented reality and building information modeling for enhanced construction inspection – a case study. Buildings, 14(3), article number 612. doi: 10.3390/buildings14030612.
dc.relation.references[28] Pargoo, N.S., & Ilbeigi, M. (2022). A scoping review for cybersecurity in the construction industry. Journal of Management in Engineering, 39(2). doi: 10.1061/jmenea.meeng-5034.
dc.relation.references[29] Schults, R., Annenkov, A., Bilous, M., & Kovtun, V. (2016). Interpretation of geodetic observations of the high-rise buildings displacements. Geodesy and Cartography, 42(2), 39-46. doi: 10.3846/20296991.2016.1198566.
dc.relation.references[30] Shchehlov, V., & Morozova, O. (2022). Methods and technologies for developing digital twins for warrantable systems of the industrial Internet of Things. Control, Navigation and Communication Systems, 4(70), 127-137. doi: 10.26906/SUNZ.2022.4.127.
dc.relation.references[31] Shults, R., & Annenkov, A. (2023). BIM and UAV photogrammetry for spatial structures sustainability inventory. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences – ISPRS Archives, 48(5/W2-2023), 99-104. doi: 10.5194/isprs-archives-XLVIII-5-W2-2023-99-2023.
dc.relation.references[32] Shults, R., Bilous, M., Ormambekova, A., Nurpeissova, T., Khailak, A., Annenkov, A., & Akhmetov, R. (2023). Analysis of overpass displacements due to subway construction land subsidence using machine learning. Urban Science, 7(4), article number 100. doi: 10.3390/urbansci7040100.
dc.relation.references[33] Somanathan, S. (2023). Risk management in cloud transformation: A project management perspective on cloud security. International Journal of Applied Engineering & Technology, 5(3), 1276-1284.
dc.relation.references[34] Sukhodub, I., & Serdechnyi, P. (2024). Analysis of scenarios for increasing the level of energy efficiency of public buildings with integration of RES. Technologies and Engineering, 25(2), 44-56. doi: 10.30857/2786-5371.2024.2.5.
dc.relation.references[35] Tetik, M., Peltokorpi, A., Seppänen, O., & Holmström, J. (2019). Direct digital construction: Technology-based operations management practice for continuous improvement of construction industry performance. Automation in Construction, 107, article number 102910. doi: 10.1016/j.autcon.2019.102910.
dc.relation.references[36] Turner, C.J., Oyekan, J., Stergioulas, L., & Griffin, D. (2020). Utilizing Industry 4.0 on the construction site: Challenges and opportunities. IEEE Transactions on Industrial Informatics, 17(2), 746-756. doi: 10.1109/tii.2020.3002197.
dc.relation.references[37] Urbach, N., Ahlemann, F., Böhmann, T., Drews, P., Brenner, W., Schaudel, F., & Schütte, R. (2018). The impact of digitalization on the IT department. Business & Information Systems Engineering, 61(1), 123-131. doi: 10.1007/s12599-018-0570-0.
dc.relation.references[38] Vapnichna, V.V. (2020). Materials science and fundamentals of construction – 2. Fundamentals of construction. Kyiv: Igor Sikorsky Kyiv Polytechnic Institute.
dc.relation.references[39] Visartsakul, B., & Damrianant, J. (2023). A review of building information modeling and simulation as virtual representations under the Digital Twin concept. Engineering Journal, 27(1), 11-27. doi: 10.4186/ej.2023.27.1.11.
dc.relation.references[40] Walker, A. (2023). Singapore’s digital twin – from science fiction to hi-tech reality. Retrieved from https://infra.global/singapores-digital-twin-from-science-fiction-to-hi-tech-reality/.
dc.relation.references[41] Wang, J., Ma, X., Zhang, J., & Zhao, X. (2022). Impacts of digital technology on energy sustainability: China case study. Applied Energy, 323, article number 119329. doi: 10.1016/j.apenergy.2022.119329.
dc.relation.references[42] Wang, M., Wang, C.C., Sepasgozar, S., & Zlatanova, S. (2020). A systematic review of digital technology adoption in off-site construction: Current status and future direction towards Industry 4.0. Buildings, 10(11), article number 204. doi: 10.3390/buildings10110204.
dc.relation.references[43] Yasinska, A., Reka, V., & Kizlyak, Y. (2023). The influence of digital transformation on the construction of the company’s information and accounting system. Economy and Society, 57. doi: 10.32782/2524-0072/2023-57-113.
dc.relation.references[44] Zheng, Y., Tang, L.C.M., & Chau, K.W. (2021). Analysis of improvement of BIM-based digitalization in engineering, procurement, and construction (EPC) projects in China. Applied Sciences, 11(24), article number 11895. doi: 10.3390/app112411895.
dc.relation.referencesen[1] Abdelalim, A.M., Shawky, K., Salem, M., Alnaser, A.A., & Sherif, A. (2025). Digital transformation of BIM execution plans for effective BIM implementation in mega construction projects. Annals of Civil Engineering and Management, 2(1), 1-15.
dc.relation.referencesen[2] Anh, L.D.H., & Pásztory, Z. (2021). An overview of factors influencing thermal conductivity of building insulation materials. Journal of Building Engineering, 44, article number 102604. doi: 10.1016/j.jobe.2021.102604.
dc.relation.referencesen[3] Bashynskyi, O. (2018). Methods for designing high-rise buildings using information modelling technology based on the SAPPHIRE PC. Retrieved from https://surl.li/qnccnq.
dc.relation.referencesen[4] Berlak, J., Hafner, S., & Kuppelwieser, V.G. (2020). Digitalization’s impacts on productivity: A model-based approach and evaluation in Germany’s building construction industry. Production Planning & Control, 32(4), 335-345. doi: 10.1080/09537287.2020.1740815.
dc.relation.referencesen[5] BIM and GIS integration: Implementation and case studies. (n.d.). Retrieved from https://surl.li/xltcnn.
dc.relation.referencesen[6] Bondarenko, D., & Kalashnikova, K. (2024). Digitalisation of the construction industry in Ukraine: Analysis of the state, problems and development prospects. Economy and Society, 65. doi: 10.32782/2524-0072/2024-65-2.
dc.relation.referencesen[7] DEHAUSS. (2017). Benefits of BIM in the design and construction of high-rise buildings. Retrieved from https://dehauss.ua/ua/news/preimushchestva-bim-pri-proektirovanii-i-stroitelstve-vysotnyh-zdaniy.php.
dc.relation.referencesen[8] Delgado, J.M.D., Oyedele, L., Ajayi, A., Akanbi, L., Akinade, O., Bilal, M., & Owolabi, H. (2019). Robotics and automated systems in construction: Understanding industry-specific challenges for adoption. Journal of Building Engineering, 26, article number 100868. doi: 10.1016/j.jobe.2019.100868.
dc.relation.referencesen[9] Demirkesen, S., & Tezel, A. (2021). Investigating major challenges for Industry 4.0 adoption among construction companies. Engineering Construction & Architectural Management, 29(3), 1470-1503. doi: 10.1108/ecam-12-2020-1059.
dc.relation.referencesen[10] Elghaish, F., Matarneh, S., Talebi, S., Kagioglou, M., Hosseini, M.R., & Abrishami, S. (2021), Toward digitalization in the construction industry with immersive and drones technologies: A critical literature review. Smart and Sustainable Built Environment, 10(3), 345-363. doi: 10.1108/SASBE-06-2020-0077.
dc.relation.referencesen[11] Elizabeth Line. (n.d.). Retrieved from https://www.arup.com/projects/crossrail-elizabeth-line/.
dc.relation.referencesen[12] Golinko, V., & Nedosnovanyi, O. (2024). Improvement of automation of geoinformation data processing using neural network technology. Technologies and Engineering, 25(4), 19-28. doi: 10.30857/2786-5371.2024.4.2.
dc.relation.referencesen[13] Goncharenko, T. (2021). BIM technologies as a tool for creating an information model of the life cycle of a construction object. Management of the Development of Complex Systems, 47, 83-88. doi: 10.32347/2412-9933.2021.47.83-88.
dc.relation.referencesen[14] Guo, K., & Zhang, L. (2022). Multi-objective optimization for improved project management: Current status and future directions. Automation in Construction, 139, article number 104256. doi: 10.1016/j.autcon.2022.104256.
dc.relation.referencesen[15] Hasegawa, M., Komoto, S., Shiroiwa, T., & Fukuda, T. (2020). Formal implementation of cost-effectiveness evaluations in Japan: A unique health technology assessment system. Value in Health, 23(1), 43-51. doi: 10.1016/j.jval.2019.10.005.
dc.relation.referencesen[16] Hendrawan, S.A., Chatra, N.A., Iman, N.N., Hidayatullah, N.S., & Suprayitno, N.D. (2024). Digital transformation in MSMEs: Challenges and opportunities in technology management. Journal of Information and Technology, 6(2), 141-149. doi: 10.60083/jidt.v6i2.551.
dc.relation.referencesen[17] Jones, L., & Hobbs, P. (2021). The application of terrestrial LiDAR for geohazard mapping, monitoring and modelling in the British Geological Survey. Remote Sensing, 13(3), article number 395. doi: 10.3390/rs13030395.
dc.relation.referencesen[18] Kim, K., Lee, G., & Kim, S. (2020). A study on the application of blockchain technology in the construction industry. KSCE Journal of Civil Engineering, 24(9), 2561-2571. doi: 10.1007/s12205-020-0188-x.
dc.relation.referencesen[19] Krishnan, R., Govindaraj, M., Kandasamy, L., Perumal, E., & Mathews, S.B. (2024). Integrating logistics management with artificial intelligence and IoT for enhanced supply chain efficiency. In R. El Khoury (Ed.), Anticipating future business trends: Navigating artificial intelligence innovations (pp. 25-35). Cham: Springer. doi: 10.1007/978-3-031-63569-4_3.
dc.relation.referencesen[20] Kuzior, A., Sira, M., & Brożek, P. (2023). Use of artificial intelligence in terms of open innovation. Sustainability, 15(9), article number 7205. doi: 10.3390/su15097205.
dc.relation.referencesen[21] Kuznetsov, P. (2024). Development and implementation of a smart home automation system in the context of the Ukrainian housing sector: Challenges and prospects. Bulletin of Cherkasy State Technological University, 29(1), 62-72. doi: 10.62660/bcstu/1.2024.62.
dc.relation.referencesen[22] Lavrukhina, K., Tytok, V., Chupryna, K., Biloshchytska, S., Novykova, I., & Maksiuta, A. (2024). Scientific research of the impact of globalization challenges on the process of innovative and informational development of cluster structures of the construction industry of Ukraine. In 2024 IEEE 4th international conference on smart information systems and technologies (SIST) (pp. 62-69). Astana: Institute of Electrical and Electronics Engineers. doi: 10.1109/SIST61555.2024.10629519.
dc.relation.referencesen[23] Li, W., Wu, J., Cao, J., Chen, N., Zhang, Q., & Buyya, R. (2021). Blockchain-based trust management in cloud computing systems: A taxonomy, review and future directions. Journal of Cloud Computing Advances Systems and Applications, 10, article number 35. doi: 10.1186/s13677-021-00247-5.
dc.relation.referencesen[24] Mhaskey, S.V. (2024). Integration of artificial intelligence (AI) in enterprise resource planning (ERP) systems: Opportunities, challenges, and implications. International Journal of Computer Engineering in Research Trends, 11(12), 1-9. doi: 10.22362/ijcert/2024/v11/i12/v11i1201.
dc.relation.referencesen[25] Muruganandan, K., Davies, A., Denicol, J., & Whyte, J. (2022). The dynamics of systems integration: Balancing stability and change on London’s Crossrail project. International Journal of Project Management, 40(6), 608-623. doi: 10.1016/j.ijproman.2022.03.007.
dc.relation.referencesen[26] Nikmehr, B., Hosseini, M.R., Martek, I., Zavadskas, E.K., & Antucheviciene, J. (2021). Digitalization as a strategic means of achieving sustainable efficiencies in construction management: A critical review. Sustainability, 13(9), article number 5040. doi: 10.3390/su13095040.
dc.relation.referencesen[27] Pan, N.-H., & Isnaeni, N.N. (2024). Integration of augmented reality and building information modeling for enhanced construction inspection – a case study. Buildings, 14(3), article number 612. doi: 10.3390/buildings14030612.
dc.relation.referencesen[28] Pargoo, N.S., & Ilbeigi, M. (2022). A scoping review for cybersecurity in the construction industry. Journal of Management in Engineering, 39(2). doi: 10.1061/jmenea.meeng-5034.
dc.relation.referencesen[29] Schults, R., Annenkov, A., Bilous, M., & Kovtun, V. (2016). Interpretation of geodetic observations of the high-rise buildings displacements. Geodesy and Cartography, 42(2), 39-46. doi: 10.3846/20296991.2016.1198566.
dc.relation.referencesen[30] Shchehlov, V., & Morozova, O. (2022). Methods and technologies for developing digital twins for warrantable systems of the industrial Internet of Things. Control, Navigation and Communication Systems, 4(70), 127-137. doi: 10.26906/SUNZ.2022.4.127.
dc.relation.referencesen[31] Shults, R., & Annenkov, A. (2023). BIM and UAV photogrammetry for spatial structures sustainability inventory. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences – ISPRS Archives, 48(5/W2-2023), 99-104. doi: 10.5194/isprs-archives-XLVIII-5-W2-2023-99-2023.
dc.relation.referencesen[32] Shults, R., Bilous, M., Ormambekova, A., Nurpeissova, T., Khailak, A., Annenkov, A., & Akhmetov, R. (2023). Analysis of overpass displacements due to subway construction land subsidence using machine learning. Urban Science, 7(4), article number 100. doi: 10.3390/urbansci7040100.
dc.relation.referencesen[33] Somanathan, S. (2023). Risk management in cloud transformation: A project management perspective on cloud security. International Journal of Applied Engineering & Technology, 5(3), 1276-1284.
dc.relation.referencesen[34] Sukhodub, I., & Serdechnyi, P. (2024). Analysis of scenarios for increasing the level of energy efficiency of public buildings with integration of RES. Technologies and Engineering, 25(2), 44-56. doi: 10.30857/2786-5371.2024.2.5.
dc.relation.referencesen[35] Tetik, M., Peltokorpi, A., Seppänen, O., & Holmström, J. (2019). Direct digital construction: Technology-based operations management practice for continuous improvement of construction industry performance. Automation in Construction, 107, article number 102910. doi: 10.1016/j.autcon.2019.102910.
dc.relation.referencesen[36] Turner, C.J., Oyekan, J., Stergioulas, L., & Griffin, D. (2020). Utilizing Industry 4.0 on the construction site: Challenges and opportunities. IEEE Transactions on Industrial Informatics, 17(2), 746-756. doi: 10.1109/tii.2020.3002197.
dc.relation.referencesen[37] Urbach, N., Ahlemann, F., Böhmann, T., Drews, P., Brenner, W., Schaudel, F., & Schütte, R. (2018). The impact of digitalization on the IT department. Business & Information Systems Engineering, 61(1), 123-131. doi: 10.1007/s12599-018-0570-0.
dc.relation.referencesen[38] Vapnichna, V.V. (2020). Materials science and fundamentals of construction – 2. Fundamentals of construction. Kyiv: Igor Sikorsky Kyiv Polytechnic Institute.
dc.relation.referencesen[39] Visartsakul, B., & Damrianant, J. (2023). A review of building information modeling and simulation as virtual representations under the Digital Twin concept. Engineering Journal, 27(1), 11-27. doi: 10.4186/ej.2023.27.1.11.
dc.relation.referencesen[40] Walker, A. (2023). Singapore’s digital twin – from science fiction to hi-tech reality. Retrieved from https://infra.global/singapores-digital-twin-from-science-fiction-to-hi-tech-reality/.
dc.relation.referencesen[41] Wang, J., Ma, X., Zhang, J., & Zhao, X. (2022). Impacts of digital technology on energy sustainability: China case study. Applied Energy, 323, article number 119329. doi: 10.1016/j.apenergy.2022.119329.
dc.relation.referencesen[42] Wang, M., Wang, C.C., Sepasgozar, S., & Zlatanova, S. (2020). A systematic review of digital technology adoption in off-site construction: Current status and future direction towards Industry 4.0. Buildings, 10(11), article number 204. doi: 10.3390/buildings10110204.
dc.relation.referencesen[43] Yasinska, A., Reka, V., & Kizlyak, Y. (2023). The influence of digital transformation on the construction of the company’s information and accounting system. Economy and Society, 57. doi: 10.32782/2524-0072/2023-57-113.
dc.relation.referencesen[44] Zheng, Y., Tang, L.C.M., & Chau, K.W. (2021). Analysis of improvement of BIM-based digitalization in engineering, procurement, and construction (EPC) projects in China. Applied Sciences, 11(24), article number 11895. doi: 10.3390/app112411895.
dc.relation.urihttps://surl.li/qnccnq
dc.relation.urihttps://surl.li/xltcnn
dc.relation.urihttps://dehauss.ua/ua/news/preimushchestva-bim-pri-proektirovanii-i-stroitelstve-vysotnyh-zdaniy.php
dc.relation.urihttps://www.arup.com/projects/crossrail-elizabeth-line/
dc.relation.urihttps://infra.global/singapores-digital-twin-from-science-fiction-to-hi-tech-reality/
dc.rights.holder© Національний університет „Львівська політехніка“, 2025
dc.subjectблокчейн
dc.subjectінформаційне моделювання будівель
dc.subjectгеоінформаційні технології
dc.subjectхмарні обчислення
dc.subjectдистанційне зондування
dc.subjectblockchain
dc.subjectbuilding information modelling
dc.subjectgeoinformation technologies
dc.subjectcloud computing
dc.subjectremote sensing
dc.subject.udc69.03
dc.subject.udc004.02
dc.titleOptimising the construction process through digitalisation: Case studies of projects under unstable resource supply
dc.title.alternativeОптимізація будівельного процесу за допомогою цифровізації на прикладах проєктів в умовах нестійкого ресурсозабезпечення
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2025v11n1_Oliinyk_V-Optimising_the_construction_92-105.pdf
Size:
1.8 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.95 KB
Format:
Plain Text
Description: