Folding at inversion of paleorift sedimentary basin(on the example of Dnieper-Donets aulakogen)

dc.citation.epage91
dc.citation.issue1(32)
dc.citation.journalTitleГеодинаміка
dc.citation.spage80
dc.contributor.authorГончар, Віктор
dc.contributor.authorGonchar, Victor
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-07-03T08:11:47Z
dc.date.available2023-07-03T08:11:47Z
dc.date.created2028-02-22
dc.date.issued2028-02-22
dc.description.abstractДосліджено механізми становлення різноманітних складчастих форм інверсії осадового басейну на прикладі та з урахуванням особливостей будови Дніпровсько-Донецької палеорифтової системи. З цією метою систематизовано дані про структури і літофаціальне наповнення ДДЗ-Донбасу, застосовано числове моделювання деформацій континентальної літосфери і чохла басейну в умовах колізійного стиснення. Показано, що прояв основних форм складчастості – переривчастої, перехідної, повної – супроводжується характерними літофаціальними особливостями чохла; відповідно до цього сформульовано базове припущення про залежність процесу складкоутворення від літофаціального і літогенетичного факторів, що визначили властивості міцності осадової товщі, яка вступає у стадію деформаційної інверсії (принцип літофаціальної механіки). Загалом моделюванням підтверджено вирішальне значення умов горизонтального стиснення в становленні складчастих структур; відзначено роль осадового басейну як самодостатнього атрактора деформацій в масштабі літосфери. Встановлено, що перехідний складчастий парагенезис Донбасу – гребнеподібна Головна антикліналь і прилеглі положисті структури – може бути наслідком неоднорідностей міцності особливого роду: осьової ослабленої зони в чохлі й високоміцного (компетентного) шару з осьовим мінімумом потужності; сам механізм формування парагенезису Головної антикліналі визначається як комплексний, що включає вертикальну в’язкопластичну течію уздовж осі басейну і вигин на видаленні. Показано, що переривчасті складки (підняття) ДДЗ можна трактувати як результат стискання чохла з довільним сполученням ослаблених і зміцнених порід; натомість повна складчастість Східного Донбасу і кряжа Карпінського зв’язується з вигином компетентного шару постійної потужності. Наукова новизна. Вперше отримано модельне підтвердження механізмів формування складчастих структур первиного (основного) етапу інверсії ДДЗ і Донбасу (зокрема Головної антикліналі), які тривалий час являли собою проблему в регіональних тектонічних дослідженнях і реконструкціях. Складкоутворення безпосередньо пов’язане з особливостями осадового наповнення западин у межах сформульованого принципу літофаціальної механіки. Результати моделювання і висновки з необхідною обережністю можна запропонувати як основу для пояснення походження основних типів складчастості в межах як внутрішньоконтинентальних осадових басейнів, так і крайових складчастих поясів. Практичне значення. Виконано числове моделювання, розроблені принципи аналізу можуть бути використані в реконструкціях, кількісному дослідженні розвитку складчастих структур (підняттів) інверсованих басейнів, зокрема під час вивчення і прогнозування зв’язаних з ними покладів корисних копалин.
dc.description.abstractThe article focuses on the formation mechanisms of fold’s diversity of sedimentary basin inversion. They are investigated on the example of structures of the Dnieper-Donets paleorift system. To achieve this aim we systematized structural and lithofacial data of the Dnieper-Donets basin and Donbas; used numerical modelling to establish the regularities of deformations within lithosphere and sedimentary cover in collisional compression setting. It is shown that the formation of main folding styles as discontinuous (intermittent), transitional and continuous (full) is accompanied by characteristic features of the cover. In this respect, we formulated the basic dependence principle of folding from lithofacial and lithogenic factors, which defined different mechanical properties of sedimentary cover complexes (the lithomechanics principle). Modelling results confirm prime significance of horizontal compressional conditions of basin’s folds development. Moreover, the sedimentary basin plays the role of independent deformation attractor in the lithosphere. The main conclusion is that the transitional fold paragenesis of Donbas with crest-like Main anticline may be the result of particular strength’s distribution, i.e. axial weak zone and competent layer of variable thickness with central minimum. Main anticline formation mechanism is complex. It includes vertical, axial-parallel viscous-plastical flow with distant bending. It is shown that intermittent folds (uplifts) of the Dnieper-Donets basin may be a result of sedimentary cover compression with a random combination of weakened and strengthened zones. On the contrary, full folding of East Donbas and the Karpinsky ridge corresponds to a bending mechanism of competent layer compression of constant thickness. For the first time we obtained the evidence for the folding inversion mechanisms within Dnieper-Donets aulagogen (including Main anticline), which was problematic for many years. Folding is directly related to peculiarities of sedimentary basin infilling within formulated principle of lithofacial mechanics. With necessary caution, the study offers the results of modelling and conclusions for explanations of fold development within intracontinental basins and marginal folded belts. Practical significance. Numerical modelling and elaborated principles of analysis may be used in reconstructions, numerical investigations of fold structures (uplift) within inverted basins, as well as in prognosis of ore, oil-and-gas deposits.
dc.format.extent80-91
dc.format.pages12
dc.identifier.citationGonchar V. Folding at inversion of paleorift sedimentary basin(on the example of Dnieper-Donets aulakogen) / Victor Gonchar // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2022. — No 1(32). — P. 80–91.
dc.identifier.citationenGonchar V. Folding at inversion of paleorift sedimentary basin(on the example of Dnieper-Donets aulakogen) / Victor Gonchar // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2022. — No 1(32). — P. 80–91.
dc.identifier.doidoi.org/10.23939/jgd2022.02.080
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/59373
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofГеодинаміка, 1(32), 2022
dc.relation.ispartofGeodynamics, 1(32), 2022
dc.relation.referencesBartashchuk, O, & Suyarko, V. (2020). Geodynamics
dc.relation.referencesof formation of the transition zone between the
dc.relation.referencesDnieper-Donets basin and the Donbas foldbelt.
dc.relation.referencesTectonic style of inversion deformations. Geodynamics. 29(2), 51–65. https://doi.org/10.23939/jgd2020.02.051
dc.relation.referencesBelichenko P. V., Gintov O. B., Gordienko V. V.,
dc.relation.referencesKorchemagin V. A., Panov B. S., Pavlov I. A., &
dc.relation.referencesUsenko O. V. (1999). The main stages in the
dc.relation.referencesdevelopment of the Olkhovatsko-Volintsevo
dc.relation.referencesanticline of the Donbass in connection with its ore
dc.relation.referencescontent (according to tectonophysical, geothermal
dc.relation.referencesand gravimetric data). Geophysical Journal, 21(2).
dc.relation.references(in Russian). https://scholar.google.com.ua/scholar_host?q=info:4AGxrCEra24J:scholar.google.com/&output=viewport&pg=69&hl=uk&as_sdt=0,5Belousov V. V. Structural geology. M.:
dc.relation.referencesPublishing House of Moscow. un-t, 1986. 248 p.
dc.relation.referencesBelousov, V. V. (1986). Structural geology. M.: Publishing House of Moscow University, 248 p.
dc.relation.referencesBugrov, A. K. (1974). On the solution of a mixed
dc.relation.referencesproblem of the theory of elasticity and the theory
dc.relation.referencesof plasticity of soils. Foundations, foundations and
dc.relation.referencessoil mechanics. No. 6, 21–23 (in Russian).
dc.relation.referencesBrun, J. P., & Nalpas, T. (1996). Graben inversion in
dc.relation.referencesnature and experiments. Tectonics, 15(3), 677-687. https://doi.org/10.1029/95TC03853
dc.relation.referencesChekunov, A. V., Garvish, V. K., Kutas, R. I., &
dc.relation.referencesRyabchun, L. I. (1992). Dnieper-Donets palaeorift.
dc.relation.referencesTectonophysics, 208(1–3), 257–272. https://doi.org/10.1016/0040-1951(92)90348-A
dc.relation.referencesDubinsky, A. Ya. (1982). On the ratios of the
dc.relation.referencesparalytic and flyschoid formations of the
dc.relation.referencesCarboniferous of the Donetsk-Borievksinsk fold
dc.relation.referencessystem. Soviet Geology, (11), 94. (in Russian).
dc.relation.referencesFadeev A. B. (1987). The Finite Element Method in
dc.relation.referencesGeomechanics. Moscow: Nedra, 221 p. (in
dc.relation.referencesRussian).
dc.relation.referencesGavrish, V. K. (1974). Deep faults, geotectonic
dc.relation.referencesdevelopment and oil and gas potential of riftogens.
dc.relation.referencesKyiv: Naukova Dumka, 160 p. (in Russian).
dc.relation.referencesGonchar, V. V. (2000). Finite and progressive deformations in non-coaxial flow: an application in
dc.relation.referencesstructural analysis. Izv. universities. Geology and
dc.relation.referencesexploration. No. 6, 30–34 (in Russian).
dc.relation.referencesGonchar, V. V. (2018). Formation and sedimentary
dc.relation.referencesfilling of the Dnieper- Donets depression (geodynamics and facies) in the light of new data of
dc.relation.referencespaleotectonic modeling. Geofizicheskiy Zhurnal, 40(2), 67–94 (in Russian). https://doi.org/10.24028/gzh.0203-3100.v40i2.2018.128931
dc.relation.referencesGonchar, V. V. (2019). Tectonic inversion of the
dc.relation.referencesDnieper-Donets depression and the Donbas (models
dc.relation.referencesand reconstructions). Geofizicheskiy Zhurnal, 41(5), 47–86 (in Russian). https://doi.org/10.24028/gzh.0203-3100.v41i5.2019.184444
dc.relation.referencesGordienko, V. V., Gordienko, I. V., Zavhorodnya, O. V.,
dc.relation.referencesLogvinov, I. M., & Tarasov, V. N. (2015). Donbass
dc.relation.references(geophysics, deep processes). Kyiv: Logos, 123 p.
dc.relation.references(in Russian). https://drive.google.com/file/d/1QrCyDa_JU065oJlJS748Mzdok8UJkNAt/view
dc.relation.referencesJarosinski, M., Beekman, F., Matenco, L., &
dc.relation.referencesCloetingh, S. A. P. L. (2011). Mechanics of basin
dc.relation.referencesinversion: Finite element modelling of the
dc.relation.referencesPannonian Basin System. Tectonophysics, 502(1-2), 121–145. https://doi.org/10.1016/j.tecto.2009.09.015
dc.relation.referencesKhain, V. E. (1977). Regional geotectonics. ExtraAlpine Europe and West Asia. Moscow: Nedra, 335 p. (in Russian).
dc.relation.referencesKonstantinovskaya, E. A., Harris, L. B., Poulin, J., &
dc.relation.referencesIvanov, G. M. (2007). Transfer zones and fault
dc.relation.referencesreactivation in inverted rift basins: Insights from
dc.relation.referencesphysical modelling. Tectonophysics, 441(1-4), 1-26. https://doi.org/10.1016/j.tecto.2007.06.002
dc.relation.referencesLobkovsky, L. I., Nikishin, A. M., & Khain, V. E.
dc.relation.references(2004). Current problems of geotectonics and
dc.relation.referencesgeodynamics. Moscow. Nauchnyi mir, 612 p. (in
dc.relation.referencesRussian). https://www.elibrary.ru/item.asp?id=19475639
dc.relation.referencesMaidanovich I. A., & Radziwill A. Ya. (1984).
dc.relation.referencesTectonic singularities of coal basins of the
dc.relation.referencesUkraine. Kyiv: Naukova Dumka, 120 p. (in
dc.relation.referencesRussian).
dc.relation.referencesNagorny, V. N., & Nagorny, Yu. N. (1976). Features
dc.relation.referencesof tectonic development of the Donetsk basin in
dc.relation.referencesthe early Permian time. In: Tectonics of coal
dc.relation.referencesbasins and deposits of the USSR . Moscow: Nauka 93–98 (in Russian).
dc.relation.referencesProspects for the development of shale gas and shale
dc.relation.referencesoil resources of the Eastern oil and gas region of
dc.relation.referencesUkraine. Unconventional sources of hydrocarbons
dc.relation.referencesof Ukraine. Book V. Kyiv: 2013. 240 p. (in
dc.relation.referencesUkrainian).
dc.relation.referencesPatalakha, E. I., Senchenkov, I. K., & Trofimenko, G. L.
dc.relation.references(2004). The problems of tectonic-geodynamic
dc.relation.referencesevolution of the southwestern forelands of the East
dc.relation.referencesEuropean Craton and its orogenic bordering. Kyiv:
dc.relation.referencesEKMO, 233 p. (in Russian).
dc.relation.referencesPopov, V. S. (1963). Donets Basin: Tectonics.
dc.relation.referencesIn Geology of coal deposits and oil shales of the
dc.relation.referencesUSSR Vol. 1, 103–151. Moscow: GONTI (in
dc.relation.referencesRussian).
dc.relation.referencesRaznitsyn, V. A. (1976). Tectonic zoning and genesis
dc.relation.referencesof the structures of the northern zone of fine
dc.relation.referencesfolding of the Donets Basin. Geotectonics. No. 1, 57–73 (in Russian).
dc.relation.referencesSaintot, A., Stephenson, R., Stovba, S., & Maystrenko, Y. (2003). Structures associated with inversion of the Donbas Foldbelt (Ukraine and Russia).
dc.relation.referencesTectonophysics, 373(1–4), 181–207. https://doi.org/10.1016/S0040-1951(03)00290-7
dc.relation.referencesSpiegel, C., Sachsenhofer, R. F., Privalov, V. A.,
dc.relation.referencesZhykalyak, M. V., & Panova, E. A. (2004).
dc.relation.referencesThermotectonic evolution of the Ukrainian
dc.relation.referencesDonbas Foldbelt: evidence from zircon and apatite
dc.relation.referencesfission track data. Tectonophysics, 383(3–4), 193–215. https://doi.org/10.1016/j.tecto.2004.03.007
dc.relation.referencesStovba, S. N. (2008). Geodynamic evolution of the
dc.relation.referencesDnieper-Donets Basin and Donbass: Doctor’s
dc.relation.referencesthesis. Kiev, 495 p. (in Ukrainian).
dc.relation.referenceshttp://www.disslib.org/heodynamichna-evoljutsiadniprovsko-donetskoyi-zapadyny-ta-donbasu.html
dc.relation.referencesSubbotin, S. I., Sollogub, V. B., & Chekunov, A. V.
dc.relation.references(1976). The structure and evolution of the earth's
dc.relation.referencescrust of Ukraine and the adjacent regions of
dc.relation.referencesTethys in the light of new data and ideas.
dc.relation.referencesGeofizicheskiy sbornik, 70, 13–45 (in Russian).
dc.relation.referencesTkachenko, V. F. (1976). Time of occurrence and
dc.relation.referencesmechanism of formation of folding in the Donets
dc.relation.referencesBasin. Sovetskaya geologia. No. 9, 98–107 (in
dc.relation.referencesRussian).
dc.relation.referencesYudin, V. V. (2003). Geodynamics of the South
dc.relation.referencesDonbass. Kiev, 292 p. (in Russian).
dc.relation.referenceshttps://www.researchgate.net/profile/ViktorYudin/publication/259041291_217_Geodinamika_Uznogo_Donbassa_Monografia/links/00b49529cb583d9b6d000000/217-Geodinamika-UznogoDonbassa-Monografia.pdf
dc.relation.referencesVolozh, Yu. A., Antipov, M. P., Leonov, Yu. G.,
dc.relation.referencesMorozov, A. F., & Yurov, Yu. A. (1999). The
dc.relation.referencesstructure of the Karpinsky Ridge. Geotectonics,
dc.relation.referencesNo. 1, 28–43. (in Russian).
dc.relation.referencesenBartashchuk, O, & Suyarko, V. (2020). Geodynamics
dc.relation.referencesenof formation of the transition zone between the
dc.relation.referencesenDnieper-Donets basin and the Donbas foldbelt.
dc.relation.referencesenTectonic style of inversion deformations. Geodynamics. 29(2), 51–65. https://doi.org/10.23939/jgd2020.02.051
dc.relation.referencesenBelichenko P. V., Gintov O. B., Gordienko V. V.,
dc.relation.referencesenKorchemagin V. A., Panov B. S., Pavlov I. A., &
dc.relation.referencesenUsenko O. V. (1999). The main stages in the
dc.relation.referencesendevelopment of the Olkhovatsko-Volintsevo
dc.relation.referencesenanticline of the Donbass in connection with its ore
dc.relation.referencesencontent (according to tectonophysical, geothermal
dc.relation.referencesenand gravimetric data). Geophysical Journal, 21(2).
dc.relation.referencesen(in Russian). https://scholar.google.com.ua/scholar_host?q=info:4AGxrCEra24J:scholar.google.com/&output=viewport&pg=69&hl=uk&as_sdt=0,5Belousov V. V. Structural geology. M.:
dc.relation.referencesenPublishing House of Moscow. un-t, 1986. 248 p.
dc.relation.referencesenBelousov, V. V. (1986). Structural geology. M., Publishing House of Moscow University, 248 p.
dc.relation.referencesenBugrov, A. K. (1974). On the solution of a mixed
dc.relation.referencesenproblem of the theory of elasticity and the theory
dc.relation.referencesenof plasticity of soils. Foundations, foundations and
dc.relation.referencesensoil mechanics. No. 6, 21–23 (in Russian).
dc.relation.referencesenBrun, J. P., & Nalpas, T. (1996). Graben inversion in
dc.relation.referencesennature and experiments. Tectonics, 15(3), 677-687. https://doi.org/10.1029/95TC03853
dc.relation.referencesenChekunov, A. V., Garvish, V. K., Kutas, R. I., &
dc.relation.referencesenRyabchun, L. I. (1992). Dnieper-Donets palaeorift.
dc.relation.referencesenTectonophysics, 208(1–3), 257–272. https://doi.org/10.1016/0040-1951(92)90348-A
dc.relation.referencesenDubinsky, A. Ya. (1982). On the ratios of the
dc.relation.referencesenparalytic and flyschoid formations of the
dc.relation.referencesenCarboniferous of the Donetsk-Borievksinsk fold
dc.relation.referencesensystem. Soviet Geology, (11), 94. (in Russian).
dc.relation.referencesenFadeev A. B. (1987). The Finite Element Method in
dc.relation.referencesenGeomechanics. Moscow: Nedra, 221 p. (in
dc.relation.referencesenRussian).
dc.relation.referencesenGavrish, V. K. (1974). Deep faults, geotectonic
dc.relation.referencesendevelopment and oil and gas potential of riftogens.
dc.relation.referencesenKyiv: Naukova Dumka, 160 p. (in Russian).
dc.relation.referencesenGonchar, V. V. (2000). Finite and progressive deformations in non-coaxial flow: an application in
dc.relation.referencesenstructural analysis. Izv. universities. Geology and
dc.relation.referencesenexploration. No. 6, 30–34 (in Russian).
dc.relation.referencesenGonchar, V. V. (2018). Formation and sedimentary
dc.relation.referencesenfilling of the Dnieper- Donets depression (geodynamics and facies) in the light of new data of
dc.relation.referencesenpaleotectonic modeling. Geofizicheskiy Zhurnal, 40(2), 67–94 (in Russian). https://doi.org/10.24028/gzh.0203-3100.v40i2.2018.128931
dc.relation.referencesenGonchar, V. V. (2019). Tectonic inversion of the
dc.relation.referencesenDnieper-Donets depression and the Donbas (models
dc.relation.referencesenand reconstructions). Geofizicheskiy Zhurnal, 41(5), 47–86 (in Russian). https://doi.org/10.24028/gzh.0203-3100.v41i5.2019.184444
dc.relation.referencesenGordienko, V. V., Gordienko, I. V., Zavhorodnya, O. V.,
dc.relation.referencesenLogvinov, I. M., & Tarasov, V. N. (2015). Donbass
dc.relation.referencesen(geophysics, deep processes). Kyiv: Logos, 123 p.
dc.relation.referencesen(in Russian). https://drive.google.com/file/d/1QrCyDa_JU065oJlJS748Mzdok8UJkNAt/view
dc.relation.referencesenJarosinski, M., Beekman, F., Matenco, L., &
dc.relation.referencesenCloetingh, S. A. P. L. (2011). Mechanics of basin
dc.relation.referenceseninversion: Finite element modelling of the
dc.relation.referencesenPannonian Basin System. Tectonophysics, 502(1-2), 121–145. https://doi.org/10.1016/j.tecto.2009.09.015
dc.relation.referencesenKhain, V. E. (1977). Regional geotectonics. ExtraAlpine Europe and West Asia. Moscow: Nedra, 335 p. (in Russian).
dc.relation.referencesenKonstantinovskaya, E. A., Harris, L. B., Poulin, J., &
dc.relation.referencesenIvanov, G. M. (2007). Transfer zones and fault
dc.relation.referencesenreactivation in inverted rift basins: Insights from
dc.relation.referencesenphysical modelling. Tectonophysics, 441(1-4), 1-26. https://doi.org/10.1016/j.tecto.2007.06.002
dc.relation.referencesenLobkovsky, L. I., Nikishin, A. M., & Khain, V. E.
dc.relation.referencesen(2004). Current problems of geotectonics and
dc.relation.referencesengeodynamics. Moscow. Nauchnyi mir, 612 p. (in
dc.relation.referencesenRussian). https://www.elibrary.ru/item.asp?id=19475639
dc.relation.referencesenMaidanovich I. A., & Radziwill A. Ya. (1984).
dc.relation.referencesenTectonic singularities of coal basins of the
dc.relation.referencesenUkraine. Kyiv: Naukova Dumka, 120 p. (in
dc.relation.referencesenRussian).
dc.relation.referencesenNagorny, V. N., & Nagorny, Yu. N. (1976). Features
dc.relation.referencesenof tectonic development of the Donetsk basin in
dc.relation.referencesenthe early Permian time. In: Tectonics of coal
dc.relation.referencesenbasins and deposits of the USSR . Moscow: Nauka 93–98 (in Russian).
dc.relation.referencesenProspects for the development of shale gas and shale
dc.relation.referencesenoil resources of the Eastern oil and gas region of
dc.relation.referencesenUkraine. Unconventional sources of hydrocarbons
dc.relation.referencesenof Ukraine. Book V. Kyiv: 2013. 240 p. (in
dc.relation.referencesenUkrainian).
dc.relation.referencesenPatalakha, E. I., Senchenkov, I. K., & Trofimenko, G. L.
dc.relation.referencesen(2004). The problems of tectonic-geodynamic
dc.relation.referencesenevolution of the southwestern forelands of the East
dc.relation.referencesenEuropean Craton and its orogenic bordering. Kyiv:
dc.relation.referencesenEKMO, 233 p. (in Russian).
dc.relation.referencesenPopov, V. S. (1963). Donets Basin: Tectonics.
dc.relation.referencesenIn Geology of coal deposits and oil shales of the
dc.relation.referencesenUSSR Vol. 1, 103–151. Moscow: GONTI (in
dc.relation.referencesenRussian).
dc.relation.referencesenRaznitsyn, V. A. (1976). Tectonic zoning and genesis
dc.relation.referencesenof the structures of the northern zone of fine
dc.relation.referencesenfolding of the Donets Basin. Geotectonics. No. 1, 57–73 (in Russian).
dc.relation.referencesenSaintot, A., Stephenson, R., Stovba, S., & Maystrenko, Y. (2003). Structures associated with inversion of the Donbas Foldbelt (Ukraine and Russia).
dc.relation.referencesenTectonophysics, 373(1–4), 181–207. https://doi.org/10.1016/S0040-1951(03)00290-7
dc.relation.referencesenSpiegel, C., Sachsenhofer, R. F., Privalov, V. A.,
dc.relation.referencesenZhykalyak, M. V., & Panova, E. A. (2004).
dc.relation.referencesenThermotectonic evolution of the Ukrainian
dc.relation.referencesenDonbas Foldbelt: evidence from zircon and apatite
dc.relation.referencesenfission track data. Tectonophysics, 383(3–4), 193–215. https://doi.org/10.1016/j.tecto.2004.03.007
dc.relation.referencesenStovba, S. N. (2008). Geodynamic evolution of the
dc.relation.referencesenDnieper-Donets Basin and Donbass: Doctor’s
dc.relation.referencesenthesis. Kiev, 495 p. (in Ukrainian).
dc.relation.referencesenhttp://www.disslib.org/heodynamichna-evoljutsiadniprovsko-donetskoyi-zapadyny-ta-donbasu.html
dc.relation.referencesenSubbotin, S. I., Sollogub, V. B., & Chekunov, A. V.
dc.relation.referencesen(1976). The structure and evolution of the earth's
dc.relation.referencesencrust of Ukraine and the adjacent regions of
dc.relation.referencesenTethys in the light of new data and ideas.
dc.relation.referencesenGeofizicheskiy sbornik, 70, 13–45 (in Russian).
dc.relation.referencesenTkachenko, V. F. (1976). Time of occurrence and
dc.relation.referencesenmechanism of formation of folding in the Donets
dc.relation.referencesenBasin. Sovetskaya geologia. No. 9, 98–107 (in
dc.relation.referencesenRussian).
dc.relation.referencesenYudin, V. V. (2003). Geodynamics of the South
dc.relation.referencesenDonbass. Kiev, 292 p. (in Russian).
dc.relation.referencesenhttps://www.researchgate.net/profile/ViktorYudin/publication/259041291_217_Geodinamika_Uznogo_Donbassa_Monografia/links/00b49529cb583d9b6d000000/217-Geodinamika-UznogoDonbassa-Monografia.pdf
dc.relation.referencesenVolozh, Yu. A., Antipov, M. P., Leonov, Yu. G.,
dc.relation.referencesenMorozov, A. F., & Yurov, Yu. A. (1999). The
dc.relation.referencesenstructure of the Karpinsky Ridge. Geotectonics,
dc.relation.referencesenNo. 1, 28–43. (in Russian).
dc.relation.urihttps://doi.org/10.23939/jgd2020.02.051
dc.relation.urihttps://scholar.google.com.ua/scholar_host?q=info:4AGxrCEra24J:scholar.google.com/&output=viewport&pg=69&hl=uk&as_sdt=0,5Belousov
dc.relation.urihttps://doi.org/10.1029/95TC03853
dc.relation.urihttps://doi.org/10.1016/0040-1951(92)90348-A
dc.relation.urihttps://doi.org/10.24028/gzh.0203-3100.v40i2.2018.128931
dc.relation.urihttps://doi.org/10.24028/gzh.0203-3100.v41i5.2019.184444
dc.relation.urihttps://drive.google.com/file/d/1QrCyDa_JU065oJlJS748Mzdok8UJkNAt/view
dc.relation.urihttps://doi.org/10.1016/j.tecto.2009.09.015
dc.relation.urihttps://doi.org/10.1016/j.tecto.2007.06.002
dc.relation.urihttps://www.elibrary.ru/item.asp?id=19475639
dc.relation.urihttps://doi.org/10.1016/S0040-1951(03)00290-7
dc.relation.urihttps://doi.org/10.1016/j.tecto.2004.03.007
dc.relation.urihttp://www.disslib.org/heodynamichna-evoljutsiadniprovsko-donetskoyi-zapadyny-ta-donbasu.html
dc.relation.urihttps://www.researchgate.net/profile/ViktorYudin/publication/259041291_217_Geodinamika_Uznogo_Donbassa_Monografia/links/00b49529cb583d9b6d000000/217-Geodinamika-UznogoDonbassa-Monografia.pdf
dc.rights.holder© Інститут геології і геохімії горючих копалин Національної академії наук України, 2022
dc.rights.holder© Інститут геофізики ім. С. І. Субботіна Національної академії наук України, 2022
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.rights.holder© Gonchar Victor
dc.subjectтектонічна інверсія
dc.subjectпалеорифтовий осадовий басейн
dc.subjectмеханізми складкоутворення
dc.subjectДніпровсько-Донецький авлакоген
dc.subjectГоловна антикліналь
dc.subjectлітофаціальна будова
dc.subjectчисельне моделювання
dc.subjectnumerical modelling
dc.subjectsedimentary basin inversion
dc.subjectfolding mechanisms
dc.subjectDnieper-Donets aulacogen
dc.subjectMain anticline
dc.subjectlithofacial structure
dc.subject.udc551.243
dc.titleFolding at inversion of paleorift sedimentary basin(on the example of Dnieper-Donets aulakogen)
dc.title.alternativeСкладкоутворення при інверсії палеорифтового осадового басейну (на прикладі Дніпровсько-Донецького авлакогену)
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2022n1_32__Gonchar_V-Folding_at_inversion_of_paleorift_80-91.pdf
Size:
1.02 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2022n1_32__Gonchar_V-Folding_at_inversion_of_paleorift_80-91__COVER.png
Size:
583.56 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.77 KB
Format:
Plain Text
Description: