Features of the application of traffic flow management methods and tools

dc.citation.epage74
dc.citation.issue1
dc.citation.journalTitleДосягнення у кібер-фізичних системах
dc.citation.spage68
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorDanyliuk, Andrii
dc.contributor.authorMuliarevych, Oleksandr
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-17T10:07:59Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractThis article examines the causes and consequences of traffic jams, describes typical traffic flow behavior and analyzes traffic control methods and means. The paper demonstrates the proposed classification of traffic lights by type of regulation. In summary, the article represents a detailed overview of existing cyber-physical traffic control systems, such as SEA TCS, InSync and MASSTR. The article analyzes the existing methods of traffic regulation, examines the causes and consequences of congestion, the division of intersections into regulated and unregulated, and the classification of traffic lights by type of traffic control. Among the main parameters of traffic flow used by cyberphysical traffic control systems, the primary and most used are speed, density, and volume of vehicles. The article also reviews the existing cyber-physical traffic control systems and the primary technologies.
dc.format.extent68-74
dc.format.pages7
dc.identifier.citationDanyliuk A. Features of the application of traffic flow management methods and tools / Danyliuk Andrii, Muliarevych Oleksandr // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 9. — No 1. — P. 68–74.
dc.identifier.citationenDanyliuk A. Features of the application of traffic flow management methods and tools / Danyliuk Andrii, Muliarevych Oleksandr // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 9. — No 1. — P. 68–74.
dc.identifier.doidoi.org/10.23939/acps2024.01.068
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/64182
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofДосягнення у кібер-фізичних системах, 1 (9), 2024
dc.relation.ispartofAdvances in Cyber-Physical Systems, 1 (9), 2024
dc.relation.references[1] Atta A., Abbas S., Khan M. A., Ahmed G., Farooq U. (2020). An adaptive approach: smart traffic congestion control system. Journal of King Saud University – Computer and Information Sciences, No. 32 (9), pp. 1012–1019 DOI: https://doi.org/10.1016/j. jksuci.2018.10.011
dc.relation.references[2] Noaeen M. M., Naik A., Goodman L., Crebo J. (2022). Reinforcement learning in urban network traffic signal control: A systematic literature review. Expert Systems with Applications, No. 1 (8), pp. 16830. DOI: https://doi.org/10.1016/j.eswa.2022.116830
dc.relation.references[3] Fastiuk Y., Bachynskyy R., Huzynets N. (2021). Methods of Vehicle Recognition and Detecting Traffic Rules Violations on Motion Picture Based on OpenCV Framework. Advances in Cyber-Physical Systems, No. 4(2), pp. 105–111. DOI: https://doi.org/10.23939/acps2021.02.105
dc.relation.references[4] Michelucci, U. (2019). Advanced Applied Deep Learning: Convolutional Neural Networks and Object Detection, 1st edition, TOELT LLC, Dübendorf, Switzerland, September 29 2019, 303 p. DOI: https://doi.org/10.1007/978-1-4842-4976-5
dc.relation.references[5] Wang Y., Jiang Y., Wu Y., Yao Z. (2024). Mitigating traffic oscillation through control of connected automated vehicles: A cellular automata simulation, Expert Systems with Applications, No. 235, DOI: https://doi.org/10.1016/j.eswa.2023.121275
dc.relation.references[6] Sowmya, K.M., Rekha, B., Praveen, S.K. (2021). Real Time Moving Vehicle Congestion Detection and Tracking using OpenCV. Turkish Journal of Computer and Mathematics Education, 12(10), pp. 273–279. Available: https://www.turcomat.org/index.php/turkbilmat/article/view/4139 (Accessed: 3/02/2024)
dc.relation.references[7] DSTU 4157: 2003 “Technical peripherals for automated traffic control systems”. Available at: https://docs.dbn.co.ua/3641_1583178494026.html (Accessed: 3/02/2024)
dc.relation.references[8] Yao Z., Li L., Liao W., Wang Y. (2024). Optimal lane management policy for connected automated vehicles in mixed traffic flow, Physica A: Statistical Mechanics and its Applications, No. 637, DOI: https://doi.org/10.1016/j.physa.2024.129520
dc.relation.references[9] Liu K., Feng T. (2023). Heterogeneous traffic flow cellular automata model mixed with intelligent controlled vehicles, Physica A: Statistical Mechanics and its Applications,No. 632.DOI: https://doi.org/10.1016/j.physa.2023.129316
dc.relation.references[10] Wang F., Tang K., Li K., Liu Z., Zhu L. (2019). A Group Based Signal Timing Optimization Model Considering Safety for Signalized Intersections with Mixed Traffic Flows, Journal of Advanced Transportation, Vol. 2019, DOI: https://doi.org/10.1155/2019/2747569
dc.relation.references[11] Alkhatib A. A. A., Maria A. K., AlZu`bi S. (2022). Smart Traffic Scheduling for Crowded Cities Road Networks, Egyptian Informatics Journal, Vol. 23(4), pp. 163–176. DOI: https://doi.org/10.1016/j.eij.2022.10.002
dc.relation.references[12] Bo Liu, Zhentao Ding. (2022). A distributed deep reinforcement learning method for traffic light control. Neurocomputing. No. 490, pp. 390–399 DOI: https://doi.org/10.1016/j.neucom.2021.11.106
dc.relation.references[13] Hai D. T., Manh D. V., Nhat N. M. (2022). Genetic algorithm application for optimizing traffic signal timing reflecting vehicle emission intensity, Transport Problems, No. 17(1), pp. 5–16. DOI: https://doi.org/10.20858/tp.2022.17.1.01
dc.relation.references[14] Abdou A. A., Farrag H. M., and A. S. Tolba. (2022). A Fuzzy Logic-Based Smart Traffic Management Systems, Journal of Computer Science, No. 18(11), pp. 1085–1099. DOI: https://doi.org/10.3844/jcssp.2022.1085.1099
dc.relation.references[15] Buzachis A., Celesti A., Galleta A., Fazio M., Fortino G., Villari M. (2020). A multi-agent autonomous intersection management (MA-AIM) system for smart cities leveraging edge-of-things and Blockchain. Information Sciences, No. 522, pp. 148–163. DOI: https://doi.org/10.1016/j.ins.2020.02.059
dc.relation.references[16] High Accuracy Traffic Light Controller for Increasing the Given Green Time Utilization – Scientific Figure on ResearchGate. [Online]. Available: https://www.researchgate.net/figure/Standard-four-legsintersection_fig3_270393077 [accessed 26 Apr, 2024]
dc.relation.references[17] Emergence Of Traffic Lights Synchronization – ScientificFigure on ResearchGate. [Online]. Available: https://www.researchgate.net/figure/Example-of-a-greenwave-causing-a-traffic-jam-in-secondarystreets_fig1_228566419 [accessed 26 Apr, 2024]
dc.relation.references[18] High Density Traffic Management using Image background subtraction Algorithm – Scientific Figure on ResearchGate. [Online]. Available: https://www.researchgate.net/figure/Inductive-loopdetectors-based-traffic-management_fig1_274270897 [accessed 26 Apr, 2024]
dc.relation.references[19] New Directions in Traffic Control Analysis through Video Surveillance - Scientific Figure on ResearchGate. [Online]. Available: https://www.researchgate.net/figure/VehicleDetection-in-video-Stream-b-Vehicleclassification_fig3_355121055 [accessed 26 Apr, 2024
dc.relation.referencesen[1] Atta A., Abbas S., Khan M. A., Ahmed G., Farooq U. (2020). An adaptive approach: smart traffic congestion control system. Journal of King Saud University – Computer and Information Sciences, No. 32 (9), pp. 1012–1019 DOI: https://doi.org/10.1016/j. jksuci.2018.10.011
dc.relation.referencesen[2] Noaeen M. M., Naik A., Goodman L., Crebo J. (2022). Reinforcement learning in urban network traffic signal control: A systematic literature review. Expert Systems with Applications, No. 1 (8), pp. 16830. DOI: https://doi.org/10.1016/j.eswa.2022.116830
dc.relation.referencesen[3] Fastiuk Y., Bachynskyy R., Huzynets N. (2021). Methods of Vehicle Recognition and Detecting Traffic Rules Violations on Motion Picture Based on OpenCV Framework. Advances in Cyber-Physical Systems, No. 4(2), pp. 105–111. DOI: https://doi.org/10.23939/acps2021.02.105
dc.relation.referencesen[4] Michelucci, U. (2019). Advanced Applied Deep Learning: Convolutional Neural Networks and Object Detection, 1st edition, TOELT LLC, Dübendorf, Switzerland, September 29 2019, 303 p. DOI: https://doi.org/10.1007/978-1-4842-4976-5
dc.relation.referencesen[5] Wang Y., Jiang Y., Wu Y., Yao Z. (2024). Mitigating traffic oscillation through control of connected automated vehicles: A cellular automata simulation, Expert Systems with Applications, No. 235, DOI: https://doi.org/10.1016/j.eswa.2023.121275
dc.relation.referencesen[6] Sowmya, K.M., Rekha, B., Praveen, S.K. (2021). Real Time Moving Vehicle Congestion Detection and Tracking using OpenCV. Turkish Journal of Computer and Mathematics Education, 12(10), pp. 273–279. Available: https://www.turcomat.org/index.php/turkbilmat/article/view/4139 (Accessed: 3/02/2024)
dc.relation.referencesen[7] DSTU 4157: 2003 "Technical peripherals for automated traffic control systems". Available at: https://docs.dbn.co.ua/3641_1583178494026.html (Accessed: 3/02/2024)
dc.relation.referencesen[8] Yao Z., Li L., Liao W., Wang Y. (2024). Optimal lane management policy for connected automated vehicles in mixed traffic flow, Physica A: Statistical Mechanics and its Applications, No. 637, DOI: https://doi.org/10.1016/j.physa.2024.129520
dc.relation.referencesen[9] Liu K., Feng T. (2023). Heterogeneous traffic flow cellular automata model mixed with intelligent controlled vehicles, Physica A: Statistical Mechanics and its Applications,No. 632.DOI: https://doi.org/10.1016/j.physa.2023.129316
dc.relation.referencesen[10] Wang F., Tang K., Li K., Liu Z., Zhu L. (2019). A Group Based Signal Timing Optimization Model Considering Safety for Signalized Intersections with Mixed Traffic Flows, Journal of Advanced Transportation, Vol. 2019, DOI: https://doi.org/10.1155/2019/2747569
dc.relation.referencesen[11] Alkhatib A. A. A., Maria A. K., AlZu`bi S. (2022). Smart Traffic Scheduling for Crowded Cities Road Networks, Egyptian Informatics Journal, Vol. 23(4), pp. 163–176. DOI: https://doi.org/10.1016/j.eij.2022.10.002
dc.relation.referencesen[12] Bo Liu, Zhentao Ding. (2022). A distributed deep reinforcement learning method for traffic light control. Neurocomputing. No. 490, pp. 390–399 DOI: https://doi.org/10.1016/j.neucom.2021.11.106
dc.relation.referencesen[13] Hai D. T., Manh D. V., Nhat N. M. (2022). Genetic algorithm application for optimizing traffic signal timing reflecting vehicle emission intensity, Transport Problems, No. 17(1), pp. 5–16. DOI: https://doi.org/10.20858/tp.2022.17.1.01
dc.relation.referencesen[14] Abdou A. A., Farrag H. M., and A. S. Tolba. (2022). A Fuzzy Logic-Based Smart Traffic Management Systems, Journal of Computer Science, No. 18(11), pp. 1085–1099. DOI: https://doi.org/10.3844/jcssp.2022.1085.1099
dc.relation.referencesen[15] Buzachis A., Celesti A., Galleta A., Fazio M., Fortino G., Villari M. (2020). A multi-agent autonomous intersection management (MA-AIM) system for smart cities leveraging edge-of-things and Blockchain. Information Sciences, No. 522, pp. 148–163. DOI: https://doi.org/10.1016/j.ins.2020.02.059
dc.relation.referencesen[16] High Accuracy Traffic Light Controller for Increasing the Given Green Time Utilization – Scientific Figure on ResearchGate. [Online]. Available: https://www.researchgate.net/figure/Standard-four-legsintersection_fig3_270393077 [accessed 26 Apr, 2024]
dc.relation.referencesen[17] Emergence Of Traffic Lights Synchronization – ScientificFigure on ResearchGate. [Online]. Available: https://www.researchgate.net/figure/Example-of-a-greenwave-causing-a-traffic-jam-in-secondarystreets_fig1_228566419 [accessed 26 Apr, 2024]
dc.relation.referencesen[18] High Density Traffic Management using Image background subtraction Algorithm – Scientific Figure on ResearchGate. [Online]. Available: https://www.researchgate.net/figure/Inductive-loopdetectors-based-traffic-management_fig1_274270897 [accessed 26 Apr, 2024]
dc.relation.referencesen[19] New Directions in Traffic Control Analysis through Video Surveillance - Scientific Figure on ResearchGate. [Online]. Available: https://www.researchgate.net/figure/VehicleDetection-in-video-Stream-b-Vehicleclassification_fig3_355121055 [accessed 26 Apr, 2024
dc.relation.urihttps://doi.org/10.1016/j
dc.relation.urihttps://doi.org/10.1016/j.eswa.2022.116830
dc.relation.urihttps://doi.org/10.23939/acps2021.02.105
dc.relation.urihttps://doi.org/10.1007/978-1-4842-4976-5
dc.relation.urihttps://doi.org/10.1016/j.eswa.2023.121275
dc.relation.urihttps://www.turcomat.org/index.php/turkbilmat/article/view/4139
dc.relation.urihttps://docs.dbn.co.ua/3641_1583178494026.html
dc.relation.urihttps://doi.org/10.1016/j.physa.2024.129520
dc.relation.urihttps://doi.org/10.1016/j.physa.2023.129316
dc.relation.urihttps://doi.org/10.1155/2019/2747569
dc.relation.urihttps://doi.org/10.1016/j.eij.2022.10.002
dc.relation.urihttps://doi.org/10.1016/j.neucom.2021.11.106
dc.relation.urihttps://doi.org/10.20858/tp.2022.17.1.01
dc.relation.urihttps://doi.org/10.3844/jcssp.2022.1085.1099
dc.relation.urihttps://doi.org/10.1016/j.ins.2020.02.059
dc.relation.urihttps://www.researchgate.net/figure/Standard-four-legsintersection_fig3_270393077
dc.relation.urihttps://www.researchgate.net/figure/Example-of-a-greenwave-causing-a-traffic-jam-in-secondarystreets_fig1_228566419
dc.relation.urihttps://www.researchgate.net/figure/Inductive-loopdetectors-based-traffic-management_fig1_274270897
dc.relation.urihttps://www.researchgate.net/figure/VehicleDetection-in-video-Stream-b-Vehicleclassification_fig3_355121055
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Danyliuk A., Muliarevych O., 2024
dc.subjectTraffic
dc.subjectCongestion
dc.subjectIntersection
dc.subjectTraffic light controller
dc.subjectAdaptive traffic control
dc.subjectCyber-physical system
dc.titleFeatures of the application of traffic flow management methods and tools
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v9n1_Danyliuk_A-Features_of_the_application_68-74.pdf
Size:
242.87 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v9n1_Danyliuk_A-Features_of_the_application_68-74__COVER.png
Size:
537.71 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.76 KB
Format:
Plain Text
Description: