Two impact craters at Emmerting, Germany: field documentation and geophysics

dc.citation.epage44
dc.citation.issue2(37)
dc.citation.journalTitleГеодинаміка
dc.citation.spage27
dc.contributor.affiliationЧеський технічний університет
dc.contributor.affiliationІнститут ядерної фізики Чеської академії наук
dc.contributor.affiliationКарлів університет
dc.contributor.affiliationІнститут геоніки Чеської академії наук
dc.contributor.affiliationУніверситет Аляски – Фербенкс
dc.contributor.affiliationCoalExp Pražmo, Czechia
dc.contributor.affiliationCzech Technical University
dc.contributor.affiliationRTG-Tengler
dc.contributor.affiliationNuclear Physics Institute of the Czech Academy of Sciences
dc.contributor.affiliationCharles University
dc.contributor.affiliationUniversity of Alaska – Fairbanks
dc.contributor.authorКаленда, Павел
dc.contributor.authorТінова, Ленка
dc.contributor.authorТенглер, Рудольф
dc.contributor.authorПрохазка, Вацлав
dc.contributor.authorМізера, Їржі
dc.contributor.authorМартінец, Петр
dc.contributor.authorКлетечка, Гюнтер
dc.contributor.authorТройек, Томаш
dc.contributor.authorKalenda, Pavel
dc.contributor.authorThinová, Lenka
dc.contributor.authorTengler, Rudolf
dc.contributor.authorProcházka, Václav
dc.contributor.authorMizera, Jiří
dc.contributor.authorMartinec, Petr
dc.contributor.authorKletetschka, Günther
dc.contributor.authorTrojek, Tomáš
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-10-20T09:56:06Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractОписано нові дослідження двох кратерів у Еммертінгу (№ 4 і № 5), Німеччина. Ця стаття – перша частина із двох статей, які стосуються ймовірних ударних кратерів у Еммертінгу. Друга стаття міститиме аналіз мінералогії / петрології, впливу температури та тиску. Метеоритний матеріал із домінуванням енстатиту, знайдений у кратері № 4 [Procházka et al., 2022; Procházka, 2023], – предмет окремого детального дослідження. В обох кратерах виявлено значні високотемпературні ефекти та екстремальні деформації, які пояснюються впливом хвилі тиску та подальшої декомпресії в місці удару, де переважають великі, але рихлі гальки. Задокументовано взаємні зіткнення гальок та “вторинні снаряди” (викиди із кратера). Хоча більша частина гальки в кратері № 4 зазнала термічного впливу, дрібнозерниста фракція заповнення містить мало такого матеріалу. З цього випливає, що дрібні частинки випаровувалися та/або видувались під час утворення кратера, або переносилися пізніше (наприклад, ґрунтовими водами). Гамма-спектрометрія показала, що стінки кратера № 4 істотно збагачені основними природними радіонуклідами Th, K і частково U, тоді як внутрішній простір кратера збіднений ними, ці елементи зосереджені переважно в дрібнозернистих фракціях. Це свідчить про вибіркове видалення та випаровування дрібнозернистого матеріалу під час утворення кратера. Георадарні вимірювання в обох кратерах показали, що краї кратера (стінки) були частково витиснені знизу, а частково засипані зверху матеріалом, що надійшов із внутрішньої частини кратера. Георадар виявив компактне тіло під дном кратера, що підтверджують результати вимірювань питомого опору. Комплекс геофізичних, геохімічних, мікроскопічних і мінералогічних вимірювань довів, що походження кратерів у Еммертінгу ударне. Екстремально високі температури (HT) всередині кратера та невеликий діаметр обох кратерів вказують на можливе існування дуже маленьких метеороїдів, які здатні проникати в атмосферу Землі із високою швидкістю удару (понад 30 км/с). Цей факт вважаємо викликом для моделей проникнення болідів через атмосферу.
dc.description.abstractNew research of two craters at Emmerting (No. 4 and No. 5), Germany, is presented. This paper should be the first part of two papers concerning presumed impact craters at Emmerting. The second paper will be about mineralogical / petrological, temperature and stress analyses. The enstatite-dominated meteoritic material, found in the crater No. 4 [Procházka et al., 2022; Procházka, 2023], is the subject of a separate detailed research. Hightemperature effects and extreme deformation are significant in both craters. This deformation is explained with the effects of pressure wave(s) and later decompression in a target dominated by large but unconsolidated pebbles. Mutual collisions and secondary projectiles were documented. While most pebbles in the Crater No. 4 were thermally affected, the fine-grained fraction of the filling is poor in such material. It follows that small particles were volatilized and/or blown away during crater formation, or transported away later (e. g., by groundwater). Gamma-ray spectrometry has indicated that the walls of Crater No. 4 are significantly enriched in major natural radionuclides of Th, K and partly U, while the crater interior is depleted in these elements which are concentrated mainly in fine-grained fractions. This suggests a selective removal and volatilization of finegrained material during the crater formation. The georadar measurements at both craters show that crater rims (walls) were partly pushed from below and partly heaped up from above with material that came from the crater interior. Georadar detected a compact body below the crater floor which is supported by results of resistivity measurements. A set of geophysical, geochemical, microscopic and mineralogical measurements proved that the craters at Emmerting are of impact origin. Extreme high temperature (HT) conditions inside the crater and small diameter of both craters indicate possible existence of very small meteoroids that are able to penetrate Earth´s atmosphere with high impact velocity (more than 30 km/s). This fact should challenge current models of bolide penetration through atmosphere.
dc.format.extent27-44
dc.format.pages18
dc.identifier.citationTwo impact craters at Emmerting, Germany: field documentation and geophysics / Pavel Kalenda, Lenka Thinová, Rudolf Tengler, Václav Procházka, Jiří Mizera, Petr Martinec, Günther Kletetschka, Tomáš Trojek // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2024. — No 2(37). — P. 27–44.
dc.identifier.citationenTwo impact craters at Emmerting, Germany: field documentation and geophysics / Pavel Kalenda, Lenka Thinová, Rudolf Tengler, Václav Procházka, Jiří Mizera, Petr Martinec, Günther Kletetschka, Tomáš Trojek // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2024. — No 2(37). — P. 27–44.
dc.identifier.doidoi.org/10.23939/jgd2024.02.027
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/113871
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofГеодинаміка, 2(37), 2024
dc.relation.ispartofGeodynamics, 2(37), 2024
dc.relation.referencesAcevedo, R. D., J. Rabassa, J. F. Ponce, O. Martínez, M. J. Orgeira, C. Prezzi, H. Corbella, M. González-Guillot, M. Rocca, I. Subías, & C. Vásquez (2012). The Bajada del Diablo astrobleme-strewn field, central Patagonia, Argentina: Extending the exploration to surrounding areas. Geomorphology, 169−170, 151−164. https://doi.org/10.1016/j.geomorph.2012.04.020
dc.relation.referencesAnfinogenov, J., Budaeva, L., Kuznetsov, D., & Anfinogenova, Y. (2014). John’s Stone: A possible fragment of the 1908 Tunguska meteorite. Icarus, 243, 139–147. https://doi.org/10.1016/j.icarus.2014.09.006.
dc.relation.referencesAnonymous (1996). Geologische Karte von Bayern 1:500.000, 4. Auflage. Bayerisches Geologisches Landesamt, München (in German).
dc.relation.referencesBerger, N. (2014). Analyse eines möglichen Meteoritenimpakts im Bereich der Prims (Nalbach, Saarland). Master thesis, Univ. Trier, 107 p. (in German).
dc.relation.referencesBerger, N., Müller, W., & Ernstson, K. (2015). Strong shock metamorphism and a crater: evidence of a holocene meteorite impact event near Nalbach (Saarland, Germany). In 46th Annual Lunar and Planetary Science Conference (No. 1832, p. 1255).
dc.relation.referencesBorovička, J., & Kalenda, P. (2003). The Morávka meteorite fall. 4. Meteoroid dynamics and fragmentation in the atmosphere. Meteorit. & Planet. Sci. 38(7), 1023−1043. https://doi.org/10.1111/j.1945-5100.2003.tb00296.x.
dc.relation.referencesBunch, T. E., M. A. LeCompte, A. V. Adedeji, J. H. Wittke, T. D. Burleigh, R. E. Hermes, C. Mooney, D. Batchelor, W. S. Wolbach, J. Kathan, G. Kletetschka, M. C. L. Patterson, E. C. Swindel, T. Witwer, G. A. Howard, S. Mitra, C. R. Moore, K. Langworthy, J. P. Kennett, A. West, & P. J. Silvia (2021). A Tunguska sized airburst destroyed Tall el Hammam a Middle Bronze Age city in the Jordan Valley near the Dead Sea. Scientific reports, 11(1), 1−64, https://doi.org/10.1038/s41598-021-97778-3.
dc.relation.referencesDoppler, G., & Geiss, E. (2005). Der Tüttensee im Chiemgau–Toteiskessel statt Impaktkrater. Bayerisches Landesamt für Umwelt, online aufrufbar: https://www.lfu.bayern.de/geologie/meteorite/bayern/doc/tuettensee.pdf (letzter Zugriff: 10 (in German).
dc.relation.referencesEarth Impact Database (accessed on August 21st, 2022). University of New Brunsvick, Canada.
dc.relation.referencesErnstson, K. (2016). Evidence of a meteorite impactinduced tsunami in Lake Chiemsee (Southeast Germany) strengthened. In 47th Annual Lunar and Planetary Science Conference (No. 1903, p. 1263).
dc.relation.referencesErnstson, K. (2017). The Digital Terrain Model (DTM) and the evaluation of known and the search for new craters in the Chiemgau meteorite impact strewn field. Chiemgau Impact Research Team. URL: https://www.chiemgau-impakt.de/wp-content/uploads/2017/01/DGM-1-final-1.pdf.
dc.relation.referencesErnstson, K., Mayer, W., Neumair, A., Rappenglück, B., Rappenglück, M. A., Sudhaus, D., & Zeller, K. W. (2010). The Chiemgau crater strewn field: evidence of a Holocene large impact event in southeast Bavaria, Germany. J. Sib. Federal Univ., Eng. Technol., 1, 72−103. https://cyberleninka.ru/article/n/the-chiemgau-crater-strewn-field-evidence-of-a-holocene-large-impact-event-in-southeast-bavaria-germany.
dc.relation.referencesFehr K. T., Pohl J., Mayer W., Hochleitner R., Faßbinder J., Geiß E., & Kerscher Y. (2005). A meteorite impact crater field in eastern Bavaria? A preliminary report. Meteor. Planet. Sci. 40, 187–194. https://doi.org/10.1111/j.1945-5100.2005.tb00374.x
dc.relation.referencesHuber, R., Darga, R., & Lauterbach, H. (2020). Der späteiszeitliche Tüttensee-Komplex als Ergebnis der Abschmelzgeschichte am Ostrand des Chiemsee-Gletschers und sein Bezug zum. “Chiemgau Impakt” (Landkreis Traunstein, Oberbayern). Quarternary Sci. J. 69, 93−120 (in German). https://doi.org/10.5194/egqsj-69-93-2020.
dc.relation.referencesJull, A. J. T. (2001). Terrestrial ages of meteorites. In: Peucker-Ehrenbrink B., Schmitz B. (Eds.). Accretion of extraterrestrial matter throughout Earth’s history. Springer US, Boston, 241–266. https://link.springer.com/chapter/10.1007/978-1-4419-8694-8_14.
dc.relation.referencesKiefer, S. W. (1971). Shock metamorphism of the Coconino Sandstone at Meteor Crater, Arizona. J. Geophys. Res. 76, 5449-5473. https://doi.org/10.1029/JB076i023p05449.
dc.relation.referencesKletetschka, G., Prochazka, V., Fantucci, R. & Trojek, T. (2017). Survival Response of Larix Sibirica to the Tunguska Explosion. Tree-Ring Res. 73, 75–90, https://doi.org/10.3959/1536-1098-73.2.75.
dc.relation.referencesKletetschka, G., Vyhnanek, J., Kawasumiova, D., Nabelek, L. & Petrucha, V. (2015). Localization of the Chelyabinsk Meteorite from Magnetic Field Survey and GPS Data. Ieee Sensors Journal, 15, 4875–4881, https://doi.org/10.1109/jsen.2015.2435252.
dc.relation.referencesMoore, A. M., Kennett, J. P., Napier, W. M., Bunch, T. E., Weaver, J. C., LeCompte, M., ... & West, A. (2020). Evidence of cosmic impact at Abu Hureyra, Syria at the Younger Dryas onset (~12.8 ka): Hightemperature melting at >2200°C. Scientific Reports 10, 4815, 22 p. https://doi.org/10.1038/s41598-020-60867-w.
dc.relation.referencesNeumair, A., & Ernstson K. (2011). Geomagnetic and morphological signature of small crateriform structures in the Alpine Foreland, Southeast Germany. AGU Fall Meeting, No. GP11A-1023. https://ui.adsabs.harvard.edu/abs/2011AGUFMGP11A1023N/abstract
dc.relation.referencesNeumair, A., Waitzinger, M., & Finger, F. (2016). Interesting glass coatings on cobbles and rock fragments from the Alpine foreland, SE-Bavaria, Germany, and their possible origin. GeoTirol 2016, A233. https://uni-salzburg.elsevierpure.com/en/-publications/interesting-glass-coatings-on-cobbles-and-rock-fragments-from-the.
dc.relation.referencesOsinski, G. R., R. A. F. Grieve, L. Ferrière, A. Losiak, A. E. Pickersgill, A. J. Cavosie, S. M. Hibbard, P. J. A. Hill, J. J. Bermudez, C. L. Marion, J. D. Newman, & S. L. Simpson. (2022). Impact Earth: A review of the terrestrial impact record. Earth-Sci. Rev. 232, 104112, 48 p. https://doi.org/10.1016/j.earscirev.2022.104112).
dc.relation.referencesPlado, J., Losiak, A., Jõeleht, A., Ormö, J., Alexanderson, H., Alwmark, C., Wild, E. M., Steier, P., Awdankiewicz, M., & Belcher, C. (2022). Discriminating between impact or nonimpact origin of small meteorite crater candidates: No evidence for an impact origin for the Tor crater, Sweden. Meteor. Planet. Sci., 16 pp., https://doi.org/10.1111/maps.13914.
dc.relation.referencesPoßekel J., & Ernstson K. (2019). Anatomy of young meteorite craters in a soft target (Chiemgau impact strewn field, SE Germany) from ground penetrating radar (GPR) measurements. 50th LPSC, A1204. https://ui.adsabs.harvard.edu/abs/2019LPI....50.1204P/abstract.
dc.relation.referencesProcházka, V., & Kletetschka, G. (2016). Evidence for superaparamagnetic nanoparticles in limestones from Chiemgau crater field, SE Germany. 47th LPSC, A2763. https://ui.adsabs.harvard.edu/abs/2016LPI....47.2763P/abstract.
dc.relation.referencesProcházka, V. (2023). Melt behavior in two impact craters at Emmerting, Germany: expansion, injections, and the role of underpressure and mutual collisions of pebbles. 54th LPSC, A2102.
dc.relation.referencesProcházka V., Kalenda P., Trojek T., Faltus M. (2021): Geologicky mladé “zamrzlé” tavení hornin na několika lokalitách v Bavorsku: neobvyklý typ impaktu a výbuchy ve vzduchu? (Geologically young “frozen” melting of rocks at several sites in Bavaria: an unusual type of impact and explosions in the air?). Proc. 26th Quaternary Seminary Meeting, Brno, Czech Republic.
dc.relation.referencesProcházka V., Martinec P., Štorc R., Kalenda P., Trojek T., Thinová L., Tengler R., Mizera J., (2022). Holocenní impaktní kráter u Emmertingu (Bavorsko): mineralogie výplně včetně meteoritu a možné vysvětlení kompaktního tělesa pode dnem kráteru (Holocene impact crater at Emmerting (Bavaria): mineralogy of the filling including meteorite and a possible explanation of the compact body below the crater bottom). Proc. 27th Quaternary Seminary Meeting, Brno.
dc.relation.referencesRappenglück M. A., Ernstson K., Mayer W., Beer R., Benske G., Siegl C., Sporn R., Bliemetsrieder T., & Schüssler U. (2004). The Chiemgau impact event in the Celtic Period: evidence of a crater strewnfield and a cometary impactor containing presolar matter. Chiemgau Impact Research Team. URL: https://www.chiemgau-impakt.de/pdfs/Chiemgau_impact.pdf.
dc.relation.referencesRappenglück B., Rappenglück M.A., Ernstson K., Mayer W., Neumair A., Sudhaus D., & Liritzis I. (2010): The fall of Phaethon: a Greco-Roman geomyth preserves the memory of a meteorite impact in Bavaria (south east Germany). Antiquity 84, 428−439. https://doi.org/10.1017/S0003598X00066680.
dc.relation.referencesRösch M., Friedmann A., Rieckhoff S., Stojako wits P., & Sudhaus D. (2021). A Late Würmian and Holocene pollen profile from Tüttensee, Upper Bavaria, as evidence of 15 Millennia of landscape history in the Chiemsee glacier region. Acta Palaeobotanica, 61/2, 136−147. https://doi.org/10.35535/acpa2021-0008
dc.relation.referencesRösler W., Patzelt A., Hoffmann V., & Raeymaekers B. (2006). Characterization of a small craterlike structure in S.E. Bavaria, Germany. Proc. First International Conference on Impact Cratering in the Solar System, Noordwijk, pp. 67−71. European Space Agency.
dc.relation.referencesSchüssler U. (2005). Chiemgau-Impakt: Petrographie und Geochemie von Geröllen mit Deformationsmerkmalen und starker thermischer Beanspruchung aus dem nördlichen Bereich des Impakt Areals. Chiemgau Impact Research Team. (research report, 28 p.). URL: urn:nbn:de:101:1201005228993.
dc.relation.referencesTancredi, G., Ishitsuka, J., Schultz, P. H., Harris, R. S., Brown, P., Revelle, D. O., Antier, K., Pichon, A. L., Rosales, D., Vidal, E., Varela, M. E., Sánchez, L., Benavente, S., Bojorquez, J., Cabezas, D. and Dalmau, A. (2009). A meteorite crater on Earth formed on September 15, 2007: The Carancas hypervelocity impact. Meteor. Planet. Sci., 44: 1967−1984. https://doi.org/10.1111/j.19455100.2009.tb02006.x.
dc.relation.referencesTengler R. 2013. RTG-Tengler www pages. http://georadar.rtg-tengler.cz/geologicky-zlom-u-sobotky.
dc.relation.referencesVan Husen D. (1987). Die Ostalpen in den Eiszeiten. Veröffentlichung der Geologischen Bundesanstalt, 2, 24 p. (in German).
dc.relation.referencesenAcevedo, R. D., J. Rabassa, J. F. Ponce, O. Martínez, M. J. Orgeira, C. Prezzi, H. Corbella, M. González-Guillot, M. Rocca, I. Subías, & C. Vásquez (2012). The Bajada del Diablo astrobleme-strewn field, central Patagonia, Argentina: Extending the exploration to surrounding areas. Geomorphology, 169−170, 151−164. https://doi.org/10.1016/j.geomorph.2012.04.020
dc.relation.referencesenAnfinogenov, J., Budaeva, L., Kuznetsov, D., & Anfinogenova, Y. (2014). John’s Stone: A possible fragment of the 1908 Tunguska meteorite. Icarus, 243, 139–147. https://doi.org/10.1016/j.icarus.2014.09.006.
dc.relation.referencesenAnonymous (1996). Geologische Karte von Bayern 1:500.000, 4. Auflage. Bayerisches Geologisches Landesamt, München (in German).
dc.relation.referencesenBerger, N. (2014). Analyse eines möglichen Meteoritenimpakts im Bereich der Prims (Nalbach, Saarland). Master thesis, Univ. Trier, 107 p. (in German).
dc.relation.referencesenBerger, N., Müller, W., & Ernstson, K. (2015). Strong shock metamorphism and a crater: evidence of a holocene meteorite impact event near Nalbach (Saarland, Germany). In 46th Annual Lunar and Planetary Science Conference (No. 1832, p. 1255).
dc.relation.referencesenBorovička, J., & Kalenda, P. (2003). The Morávka meteorite fall. 4. Meteoroid dynamics and fragmentation in the atmosphere. Meteorit. & Planet. Sci. 38(7), 1023−1043. https://doi.org/10.1111/j.1945-5100.2003.tb00296.x.
dc.relation.referencesenBunch, T. E., M. A. LeCompte, A. V. Adedeji, J. H. Wittke, T. D. Burleigh, R. E. Hermes, C. Mooney, D. Batchelor, W. S. Wolbach, J. Kathan, G. Kletetschka, M. C. L. Patterson, E. C. Swindel, T. Witwer, G. A. Howard, S. Mitra, C. R. Moore, K. Langworthy, J. P. Kennett, A. West, & P. J. Silvia (2021). A Tunguska sized airburst destroyed Tall el Hammam a Middle Bronze Age city in the Jordan Valley near the Dead Sea. Scientific reports, 11(1), 1−64, https://doi.org/10.1038/s41598-021-97778-3.
dc.relation.referencesenDoppler, G., & Geiss, E. (2005). Der Tüttensee im Chiemgau–Toteiskessel statt Impaktkrater. Bayerisches Landesamt für Umwelt, online aufrufbar: https://www.lfu.bayern.de/geologie/meteorite/bayern/doc/tuettensee.pdf (letzter Zugriff: 10 (in German).
dc.relation.referencesenEarth Impact Database (accessed on August 21st, 2022). University of New Brunsvick, Canada.
dc.relation.referencesenErnstson, K. (2016). Evidence of a meteorite impactinduced tsunami in Lake Chiemsee (Southeast Germany) strengthened. In 47th Annual Lunar and Planetary Science Conference (No. 1903, p. 1263).
dc.relation.referencesenErnstson, K. (2017). The Digital Terrain Model (DTM) and the evaluation of known and the search for new craters in the Chiemgau meteorite impact strewn field. Chiemgau Impact Research Team. URL: https://www.chiemgau-impakt.de/wp-content/uploads/2017/01/DGM-1-final-1.pdf.
dc.relation.referencesenErnstson, K., Mayer, W., Neumair, A., Rappenglück, B., Rappenglück, M. A., Sudhaus, D., & Zeller, K. W. (2010). The Chiemgau crater strewn field: evidence of a Holocene large impact event in southeast Bavaria, Germany. J. Sib. Federal Univ., Eng. Technol., 1, 72−103. https://cyberleninka.ru/article/n/the-chiemgau-crater-strewn-field-evidence-of-a-holocene-large-impact-event-in-southeast-bavaria-germany.
dc.relation.referencesenFehr K. T., Pohl J., Mayer W., Hochleitner R., Faßbinder J., Geiß E., & Kerscher Y. (2005). A meteorite impact crater field in eastern Bavaria? A preliminary report. Meteor. Planet. Sci. 40, 187–194. https://doi.org/10.1111/j.1945-5100.2005.tb00374.x
dc.relation.referencesenHuber, R., Darga, R., & Lauterbach, H. (2020). Der späteiszeitliche Tüttensee-Komplex als Ergebnis der Abschmelzgeschichte am Ostrand des Chiemsee-Gletschers und sein Bezug zum. "Chiemgau Impakt" (Landkreis Traunstein, Oberbayern). Quarternary Sci. J. 69, 93−120 (in German). https://doi.org/10.5194/egqsj-69-93-2020.
dc.relation.referencesenJull, A. J. T. (2001). Terrestrial ages of meteorites. In: Peucker-Ehrenbrink B., Schmitz B. (Eds.). Accretion of extraterrestrial matter throughout Earth’s history. Springer US, Boston, 241–266. https://link.springer.com/chapter/10.1007/978-1-4419-8694-8_14.
dc.relation.referencesenKiefer, S. W. (1971). Shock metamorphism of the Coconino Sandstone at Meteor Crater, Arizona. J. Geophys. Res. 76, 5449-5473. https://doi.org/10.1029/JB076i023p05449.
dc.relation.referencesenKletetschka, G., Prochazka, V., Fantucci, R. & Trojek, T. (2017). Survival Response of Larix Sibirica to the Tunguska Explosion. Tree-Ring Res. 73, 75–90, https://doi.org/10.3959/1536-1098-73.2.75.
dc.relation.referencesenKletetschka, G., Vyhnanek, J., Kawasumiova, D., Nabelek, L. & Petrucha, V. (2015). Localization of the Chelyabinsk Meteorite from Magnetic Field Survey and GPS Data. Ieee Sensors Journal, 15, 4875–4881, https://doi.org/10.1109/jsen.2015.2435252.
dc.relation.referencesenMoore, A. M., Kennett, J. P., Napier, W. M., Bunch, T. E., Weaver, J. C., LeCompte, M., ... & West, A. (2020). Evidence of cosmic impact at Abu Hureyra, Syria at the Younger Dryas onset (~12.8 ka): Hightemperature melting at >2200°C. Scientific Reports 10, 4815, 22 p. https://doi.org/10.1038/s41598-020-60867-w.
dc.relation.referencesenNeumair, A., & Ernstson K. (2011). Geomagnetic and morphological signature of small crateriform structures in the Alpine Foreland, Southeast Germany. AGU Fall Meeting, No. GP11A-1023. https://ui.adsabs.harvard.edu/abs/2011AGUFMGP11A1023N/abstract
dc.relation.referencesenNeumair, A., Waitzinger, M., & Finger, F. (2016). Interesting glass coatings on cobbles and rock fragments from the Alpine foreland, SE-Bavaria, Germany, and their possible origin. GeoTirol 2016, A233. https://uni-salzburg.elsevierpure.com/en/-publications/interesting-glass-coatings-on-cobbles-and-rock-fragments-from-the.
dc.relation.referencesenOsinski, G. R., R. A. F. Grieve, L. Ferrière, A. Losiak, A. E. Pickersgill, A. J. Cavosie, S. M. Hibbard, P. J. A. Hill, J. J. Bermudez, C. L. Marion, J. D. Newman, & S. L. Simpson. (2022). Impact Earth: A review of the terrestrial impact record. Earth-Sci. Rev. 232, 104112, 48 p. https://doi.org/10.1016/j.earscirev.2022.104112).
dc.relation.referencesenPlado, J., Losiak, A., Jõeleht, A., Ormö, J., Alexanderson, H., Alwmark, C., Wild, E. M., Steier, P., Awdankiewicz, M., & Belcher, C. (2022). Discriminating between impact or nonimpact origin of small meteorite crater candidates: No evidence for an impact origin for the Tor crater, Sweden. Meteor. Planet. Sci., 16 pp., https://doi.org/10.1111/maps.13914.
dc.relation.referencesenPoßekel J., & Ernstson K. (2019). Anatomy of young meteorite craters in a soft target (Chiemgau impact strewn field, SE Germany) from ground penetrating radar (GPR) measurements. 50th LPSC, A1204. https://ui.adsabs.harvard.edu/abs/2019LPI....50.1204P/abstract.
dc.relation.referencesenProcházka, V., & Kletetschka, G. (2016). Evidence for superaparamagnetic nanoparticles in limestones from Chiemgau crater field, SE Germany. 47th LPSC, A2763. https://ui.adsabs.harvard.edu/abs/2016LPI....47.2763P/abstract.
dc.relation.referencesenProcházka, V. (2023). Melt behavior in two impact craters at Emmerting, Germany: expansion, injections, and the role of underpressure and mutual collisions of pebbles. 54th LPSC, A2102.
dc.relation.referencesenProcházka V., Kalenda P., Trojek T., Faltus M. (2021): Geologicky mladé "zamrzlé" tavení hornin na několika lokalitách v Bavorsku: neobvyklý typ impaktu a výbuchy ve vzduchu? (Geologically young "frozen" melting of rocks at several sites in Bavaria: an unusual type of impact and explosions in the air?). Proc. 26th Quaternary Seminary Meeting, Brno, Czech Republic.
dc.relation.referencesenProcházka V., Martinec P., Štorc R., Kalenda P., Trojek T., Thinová L., Tengler R., Mizera J., (2022). Holocenní impaktní kráter u Emmertingu (Bavorsko): mineralogie výplně včetně meteoritu a možné vysvětlení kompaktního tělesa pode dnem kráteru (Holocene impact crater at Emmerting (Bavaria): mineralogy of the filling including meteorite and a possible explanation of the compact body below the crater bottom). Proc. 27th Quaternary Seminary Meeting, Brno.
dc.relation.referencesenRappenglück M. A., Ernstson K., Mayer W., Beer R., Benske G., Siegl C., Sporn R., Bliemetsrieder T., & Schüssler U. (2004). The Chiemgau impact event in the Celtic Period: evidence of a crater strewnfield and a cometary impactor containing presolar matter. Chiemgau Impact Research Team. URL: https://www.chiemgau-impakt.de/pdfs/Chiemgau_impact.pdf.
dc.relation.referencesenRappenglück B., Rappenglück M.A., Ernstson K., Mayer W., Neumair A., Sudhaus D., & Liritzis I. (2010): The fall of Phaethon: a Greco-Roman geomyth preserves the memory of a meteorite impact in Bavaria (south east Germany). Antiquity 84, 428−439. https://doi.org/10.1017/S0003598X00066680.
dc.relation.referencesenRösch M., Friedmann A., Rieckhoff S., Stojako wits P., & Sudhaus D. (2021). A Late Würmian and Holocene pollen profile from Tüttensee, Upper Bavaria, as evidence of 15 Millennia of landscape history in the Chiemsee glacier region. Acta Palaeobotanica, 61/2, 136−147. https://doi.org/10.35535/acpa2021-0008
dc.relation.referencesenRösler W., Patzelt A., Hoffmann V., & Raeymaekers B. (2006). Characterization of a small craterlike structure in S.E. Bavaria, Germany. Proc. First International Conference on Impact Cratering in the Solar System, Noordwijk, pp. 67−71. European Space Agency.
dc.relation.referencesenSchüssler U. (2005). Chiemgau-Impakt: Petrographie und Geochemie von Geröllen mit Deformationsmerkmalen und starker thermischer Beanspruchung aus dem nördlichen Bereich des Impakt Areals. Chiemgau Impact Research Team. (research report, 28 p.). URL: urn:nbn:de:101:1201005228993.
dc.relation.referencesenTancredi, G., Ishitsuka, J., Schultz, P. H., Harris, R. S., Brown, P., Revelle, D. O., Antier, K., Pichon, A. L., Rosales, D., Vidal, E., Varela, M. E., Sánchez, L., Benavente, S., Bojorquez, J., Cabezas, D. and Dalmau, A. (2009). A meteorite crater on Earth formed on September 15, 2007: The Carancas hypervelocity impact. Meteor. Planet. Sci., 44: 1967−1984. https://doi.org/10.1111/j.19455100.2009.tb02006.x.
dc.relation.referencesenTengler R. 2013. RTG-Tengler www pages. http://georadar.rtg-tengler.cz/geologicky-zlom-u-sobotky.
dc.relation.referencesenVan Husen D. (1987). Die Ostalpen in den Eiszeiten. Veröffentlichung der Geologischen Bundesanstalt, 2, 24 p. (in German).
dc.relation.urihttps://doi.org/10.1016/j.geomorph.2012.04.020
dc.relation.urihttps://doi.org/10.1016/j.icarus.2014.09.006
dc.relation.urihttps://doi.org/10.1111/j.1945-5100.2003.tb00296.x
dc.relation.urihttps://doi.org/10.1038/s41598-021-97778-3
dc.relation.urihttps://www.lfu.bayern.de/geologie/meteorite/bayern/doc/tuettensee.pdf
dc.relation.urihttps://www.chiemgau-impakt.de/wp-content/uploads/2017/01/DGM-1-final-1.pdf
dc.relation.urihttps://cyberleninka.ru/article/n/the-chiemgau-crater-strewn-field-evidence-of-a-holocene-large-impact-event-in-southeast-bavaria-germany
dc.relation.urihttps://doi.org/10.1111/j.1945-5100.2005.tb00374.x
dc.relation.urihttps://doi.org/10.5194/egqsj-69-93-2020
dc.relation.urihttps://link.springer.com/chapter/10.1007/978-1-4419-8694-8_14
dc.relation.urihttps://doi.org/10.1029/JB076i023p05449
dc.relation.urihttps://doi.org/10.3959/1536-1098-73.2.75
dc.relation.urihttps://doi.org/10.1109/jsen.2015.2435252
dc.relation.urihttps://doi.org/10.1038/s41598-020-60867-w
dc.relation.urihttps://ui.adsabs.harvard.edu/abs/2011AGUFMGP11A1023N/abstract
dc.relation.urihttps://uni-salzburg.elsevierpure.com/en/-publications/interesting-glass-coatings-on-cobbles-and-rock-fragments-from-the
dc.relation.urihttps://doi.org/10.1016/j.earscirev.2022.104112
dc.relation.urihttps://doi.org/10.1111/maps.13914
dc.relation.urihttps://ui.adsabs.harvard.edu/abs/2019LPI....50.1204P/abstract
dc.relation.urihttps://ui.adsabs.harvard.edu/abs/2016LPI....47.2763P/abstract
dc.relation.urihttps://www.chiemgau-impakt.de/pdfs/Chiemgau_impact.pdf
dc.relation.urihttps://doi.org/10.1017/S0003598X00066680
dc.relation.urihttps://doi.org/10.35535/acpa2021-0008
dc.relation.urihttps://doi.org/10.1111/j.19455100.2009.tb02006.x
dc.relation.urihttp://georadar.rtg-tengler.cz/geologicky-zlom-u-sobotky
dc.rights.holder© Національний університет “Львівська політехніка”, 2024; © Інститут геофізики ім. С. І. Субботіна Національної академії наук України, 2024
dc.rights.holder© P. Kalenda, L. Thinová, R. Tengler, V. Procházka, J. Mizera, P. Martinec, G. Kletetschka, T. Trojek
dc.subjectголоценові кратери
dc.subjectтерасні відкладення
dc.subjectморени
dc.subjectгеорадар
dc.subjectрадіометричні методи
dc.subjectавтоматизована система вимірювання питомого опору (ARES)
dc.subjectутворення кратерів
dc.subjectударні кратери
dc.subjectHolocene craters
dc.subjectterrace sediments
dc.subjectmoraines
dc.subjectgeoradar
dc.subjectradiometric methods
dc.subjectautomated resistivity system (ARES)
dc.subjectcratering
dc.subjectimpact craters
dc.subject.udc550.83
dc.subject.udc551.3
dc.subject.udc551.794
dc.subject.udc552.5
dc.subject.udc523.681.8
dc.titleTwo impact craters at Emmerting, Germany: field documentation and geophysics
dc.title.alternativeДва ударні кратери в Еммертінгу, Німеччина: польові дослідження та геофізика
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024n2_37__Kalenda_P-Two_impact_craters_at_Emmerting_27-44.pdf
Size:
2.3 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024n2_37__Kalenda_P-Two_impact_craters_at_Emmerting_27-44__COVER.png
Size:
569.51 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.07 KB
Format:
Plain Text
Description: