Покращення можливостей пошуку відео: інтеграція нейронної мережі прямого поширення для ефективного фрагментного пошуку
dc.citation.epage | 160 | |
dc.citation.issue | 1 | |
dc.citation.journalTitle | Комп’ютерні системи проектування. Теорія і практика | |
dc.citation.spage | 149 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Мельникова, Наталія | |
dc.contributor.author | Поберейко, Петро | |
dc.contributor.author | Melnykova, Nataliia | |
dc.contributor.author | Pobereiko, Petro | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-11T09:52:33Z | |
dc.date.created | 2024-02-27 | |
dc.date.issued | 2024-02-27 | |
dc.description.abstract | В умовах стрімкого збільшення обсягів відеоданих актуалізується проблема їх ефективного пошуку та аналізу. Це дослідження має на меті розробку та апробацію інноваційної системи для покращення швидкості та точності пошуку відео, використовуючи можливості глибоких згорткових нейронних мереж (DCNN) та нейронних мереж прямого поширення (FFNN). У рамках методології, розробленої для цього дослідження, відеодані обробляються через декілька послідовних етапів: від вилучення ознак до ідентифікації ключових кадрів і формування абстрактного векторного представлення. Центральне місце в системі відводиться глибоким згортковим нейронним мережам для аналізу зображень та нейронним мережам прямого пошорення для оптимізації процесу пошуку. Основними результатами дослідження є підвищення ефективності пошуку відео за рахунок зниження часу обробки даних та підвищення точності ідентифікації відповідних фрагментів. Оригінальність роботи полягає в інтеграції двох типів нейронних мереж для структурованого аналізу відеоданих, що є новим кроком у розвитку технологій пошуку відео. Практичне значення дослідження виражається у можливості застосування розробленої системи у різноманітних сферах, де потрібен швидкий та точний пошук відео: від медіаіндустрії до систем безпеки. Масштаби подальших досліджень включають адаптацію системи під специфічні типи відеоконтенту та розширення можливостей штучного інтелекту для глибшого розуміння відеоданих. | |
dc.description.abstract | In the context of rapidly increasing volumes of video data, the problem of their efficient search and analysis becomes more acute. This research aims to develop and test an innovative system to improve the speed and accuracy of video search, utilizing the capabilities of Deep Convolutional Neural Networks (DCNN) and Feedforward Neural Networks (FFNN). Within the methodology developed for this study, video data are processed through several sequential stages: from feature extraction to key frame identification and the formation of an abstract vector representation. Deep Convolutional Neural Networks are central to the system for image analysis and Feedforward Neural Networks for optimizing the search process. The main results of the study include an increase in video search efficiency by reducing data processing time and increasing the accuracy of identifying relevant fragments. The originality of the work lies in the integration of two types of neural networks for structured analysis of video data, which is a new step in the development of video search technologies. The practical significance of the research is expressed in the possibility of applying the developed system in various areas where fast and accurate video search is needed: from the media industry to security systems. The scope of further research includes adapting the system to specific types of video content and expanding the capabilities of artificial intelligence for a deeper understanding of video data. | |
dc.format.extent | 149-160 | |
dc.format.pages | 12 | |
dc.identifier.citation | Мельникова Н. Покращення можливостей пошуку відео: інтеграція нейронної мережі прямого поширення для ефективного фрагментного пошуку / Наталія Мельникова, Петро Поберейко // Комп’ютерні системи проектування. Теорія і практика. — Львів : Видавництво Львівської політехніки, 2024. — Том 6. — № 1. — С. 149–160. | |
dc.identifier.citationen | Melnykova N. Advancing video search capabilities: integrating feedforward neural networks for efficient fragment-based retrieval / Nataliia Melnykova, Petro Pobereiko // Computer Systems of Design. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 1. — P. 149–160. | |
dc.identifier.doi | doi.org/10.23939/cds2024.01.149 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/64106 | |
dc.language.iso | uk | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Комп’ютерні системи проектування. Теорія і практика, 1 (6), 2024 | |
dc.relation.ispartof | Computer Systems of Design. Theory and Practice, 1 (6), 2024 | |
dc.relation.references | [1] Indriyani and P. Dewanti, “Analysis of the Effect of Social Media on the Marketing Process in a Store or Business Entity ‘Social Media Store’,” Budapest International Research and Critics Institute-Journal, vol. 4, no. 4, pp. 9804-9814, 2021 | |
dc.relation.references | [2] A. W. Bridges, “Skills, content knowledge, and tools needed in a 21st century university-level graphic design program,” Visual Communications Journal, vol. 52, no. 2, pp. 1–12, 2016. | |
dc.relation.references | [3] M. Y. Saragih and A. I. Harahap, “The Challenges of Print Media Journalism in the Digital Era. Budapest International Research and Critics Institute,” BIRCI-Journal, vol. 3, no. 1, pp. 540-548, 2020. https://doi.org/10.33258/birci.v3i1.805 | |
dc.relation.references | [4] Konrad J, Wang M, Ishwar P, Wu C, Mukherjee D. LearningBased, Automatic 2D-to-3D Image and Video Conversion. IEEE Transactions on Image Processing. 2013; 22(9):3485–96. https://doi.org/10.1109/TIP.2013.2270375 | |
dc.relation.references | [5] B. Gong, W.-L. Chao, K. Grauman, and F. Sha. Diverse sequential subset selection for supervised video summarization. In Advances in Neural Information Processing Systems, pages 2069–2077, 2014. | |
dc.relation.references | [6] Zhang HJ, Wu J, Zhong D, Smoliar SW (1997) An integrated system for content-based video retrieval and browsing. Pattern Recognit 30(4):643–658 https://doi.org/10.1016/S0031-3203(96)00109-4 | |
dc.relation.references | [7] C. Cotsaces, N. Nikolaidis, and I. Pitas. Shot detection and condensed representation – a review. IEEE Signal Processing Magazine, 23:28–37, 2006. https://doi.org/10.1109/MSP.2006.1621446 | |
dc.relation.references | [8] D. Mohammad, I. Aljarrah, and M. Jarrah. Searching surveillance video contents using convolutional neural network. IJECE, vol. 11, no. 2, pp. 1656-1665, 2021 https://doi.org/10.11591/ijece.v11i2.pp1656-1665 | |
dc.relation.references | [9] D. Varshni, K. Thakral, L. Agarwal, R. Nijhawan and A. Mittal, "Pneumonia Detection Using CNN based Feature Extraction", 2019 IEEE International Conference on Electrical Computer and Communication Technologies (ICECCT), pp. 1-7, 2019. https://doi.org/10.1109/ICECCT.2019.8869364 | |
dc.relation.references | [10] G. Huang, Z. Liu, L. V. D. Maaten and K. Q. Weinberger, "Densely connected convolutional networks", CVPR, pp. 2261-2269, July 2017. https://doi.org/10.1109/CVPR.2017.243 | |
dc.relation.references | [11]. L. Shao, F. Zhu, X. Li, Transfer learning for visual categorization: A survey, IEEE transactions on neural networks and learning systems vol. 26, pp. 1019–1034, 2014. https://doi.org/10.1109/TNNLS.2014.2330900 | |
dc.relation.references | [12]. P. Naveen and B. Diwan, "Relative Analysis of ML Algorithm QDA LR and SVM for Credit Card Fraud Detection Dataset", 2020 Fourth International Conference on I-SMAC (IoT in Social Mobile Analytics and Cloud) (I-SMAC), pp. 976-981, 2020. https://doi.org/10.1109/I-SMAC49090.2020.9243602 | |
dc.relation.references | [13]. Y. Zhuang, Y. Rui, T. S. Huang, and S. Mehrotra. Adaptive key frame extracting using unsupervised clustering. Proc. of IEEE Int Conf on Image Processing, pages 866–870, 1998. | |
dc.relation.references | [14]. Wolf. Key frame selection by motion analysis. IEEE International Conference on Acoustics, Speech and Signal Processing, pages 1228–1231, 1996. | |
dc.relation.references | [15]. Li, D.; Wang, R.; Xie, C.; Liu, L.; Zhang, J.; Li, R.; Wang, F.; Zhou, M.; Liu, W. A Recognition Method for Rice Plant Diseases and Pests Video Detection Based on Deep Convolutional Neural Network. Sensors 2020, 20, 578. https://doi.org/10.3390/s20030578 | |
dc.relation.references | [16]. Liu, Z.G., Zhang, X.Y., Wu, C.C.: A flame detection algorithm based on bag-of-features in the YUV color space. In: Proceedings on International Conference on Intelligent Computing and Internet of Things, Harbin, pp. 64–67 (2015). | |
dc.relation.references | [17]. Divya Shree, Chander Kant. Building Efficient Neural Networks For Brain Tumor Detection. Journal of Positive School Psychology, vol. 6, no. 11, 2022. | |
dc.relation.references | [18]. Z. Qiumei, T. Dan and W. Fenghua, "Improved Convolutional Neural Network Based on Fast Exponentially Linear Unit Activation Function," in IEEE Access, vol. 7, pp. 151359-151367, 2019, https://doi.org/10.1109/ACCESS.2019.2948112 | |
dc.relation.references | [19]. L. Li, M. Doroslovački and M. H. Loew, "Approximating the Gradient of Cross-Entropy Loss Function," in IEEE Access, vol. 8, pp. 111626-111635, 2020, https://doi.org/10.1109/ACCESS.2020.3001531 | |
dc.relation.references | [20]. N. Ohadi, A. Kamandi, M. Shabankhah, S. M. Fatemi, S. M. Hosseini and A. Mahmoudi, "SW-DBSCAN: A Grid-based DBSCAN Algorithm for Large Datasets," 2020 6th International Conference on Web Research (ICWR), Tehran, Iran, 2020, pp. 139-145, https://doi.org/10.1109/ICWR49608.2020.9122313 | |
dc.relation.references | [21]. T. Kwon, "Average Data Rate Analysis for Hierachical Cell Structure under Nakagami-m Fading Channel with a Two-layer Feed-Forward Neural Network," 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Barcelona, Spain, 2019, pp. 1-4, https://doi.org/10.1109/WiMOB.2019.8923280 | |
dc.relation.references | [22]. L. D. Medus, T. Iakymchuk, J. V. Frances-Villora, M. Bataller-Mompeán and A. Rosado-Muñoz, "A Novel Systolic Parallel Hardware Architecture for the FPGA Acceleration of Feedforward Neural Networks," in IEEE Access, vol. 7, pp. 76084-76103, 2019, https://doi.org/10.1109/ACCESS.2019.2920885 | |
dc.relation.references | [23]. X. Luo, O. Ye and B. Zhou, "An Modified Video Stream Classification Method Which Fuses Three-Dimensional Convolutional Neural Network," 2019 International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI), Taiyuan, China, 2019, pp. 105-108, https://doi.org/10.1109/MLBDBI48998.2019.00026. | |
dc.relation.referencesen | [1] Indriyani and P. Dewanti, "Analysis of the Effect of Social Media on the Marketing Process in a Store or Business Entity ‘Social Media Store’," Budapest International Research and Critics Institute-Journal, vol. 4, no. 4, pp. 9804-9814, 2021 | |
dc.relation.referencesen | [2] A. W. Bridges, "Skills, content knowledge, and tools needed in a 21st century university-level graphic design program," Visual Communications Journal, vol. 52, no. 2, pp. 1–12, 2016. | |
dc.relation.referencesen | [3] M. Y. Saragih and A. I. Harahap, "The Challenges of Print Media Journalism in the Digital Era. Budapest International Research and Critics Institute," BIRCI-Journal, vol. 3, no. 1, pp. 540-548, 2020. https://doi.org/10.33258/birci.v3i1.805 | |
dc.relation.referencesen | [4] Konrad J, Wang M, Ishwar P, Wu C, Mukherjee D. LearningBased, Automatic 2D-to-3D Image and Video Conversion. IEEE Transactions on Image Processing. 2013; 22(9):3485–96. https://doi.org/10.1109/TIP.2013.2270375 | |
dc.relation.referencesen | [5] B. Gong, W.-L. Chao, K. Grauman, and F. Sha. Diverse sequential subset selection for supervised video summarization. In Advances in Neural Information Processing Systems, pages 2069–2077, 2014. | |
dc.relation.referencesen | [6] Zhang HJ, Wu J, Zhong D, Smoliar SW (1997) An integrated system for content-based video retrieval and browsing. Pattern Recognit 30(4):643–658 https://doi.org/10.1016/S0031-3203(96)00109-4 | |
dc.relation.referencesen | [7] C. Cotsaces, N. Nikolaidis, and I. Pitas. Shot detection and condensed representation – a review. IEEE Signal Processing Magazine, 23:28–37, 2006. https://doi.org/10.1109/MSP.2006.1621446 | |
dc.relation.referencesen | [8] D. Mohammad, I. Aljarrah, and M. Jarrah. Searching surveillance video contents using convolutional neural network. IJECE, vol. 11, no. 2, pp. 1656-1665, 2021 https://doi.org/10.11591/ijece.v11i2.pp1656-1665 | |
dc.relation.referencesen | [9] D. Varshni, K. Thakral, L. Agarwal, R. Nijhawan and A. Mittal, "Pneumonia Detection Using CNN based Feature Extraction", 2019 IEEE International Conference on Electrical Computer and Communication Technologies (ICECCT), pp. 1-7, 2019. https://doi.org/10.1109/ICECCT.2019.8869364 | |
dc.relation.referencesen | [10] G. Huang, Z. Liu, L. V. D. Maaten and K. Q. Weinberger, "Densely connected convolutional networks", CVPR, pp. 2261-2269, July 2017. https://doi.org/10.1109/CVPR.2017.243 | |
dc.relation.referencesen | [11]. L. Shao, F. Zhu, X. Li, Transfer learning for visual categorization: A survey, IEEE transactions on neural networks and learning systems vol. 26, pp. 1019–1034, 2014. https://doi.org/10.1109/TNNLS.2014.2330900 | |
dc.relation.referencesen | [12]. P. Naveen and B. Diwan, "Relative Analysis of ML Algorithm QDA LR and SVM for Credit Card Fraud Detection Dataset", 2020 Fourth International Conference on I-SMAC (IoT in Social Mobile Analytics and Cloud) (I-SMAC), pp. 976-981, 2020. https://doi.org/10.1109/I-SMAC49090.2020.9243602 | |
dc.relation.referencesen | [13]. Y. Zhuang, Y. Rui, T. S. Huang, and S. Mehrotra. Adaptive key frame extracting using unsupervised clustering. Proc. of IEEE Int Conf on Image Processing, pages 866–870, 1998. | |
dc.relation.referencesen | [14]. Wolf. Key frame selection by motion analysis. IEEE International Conference on Acoustics, Speech and Signal Processing, pages 1228–1231, 1996. | |
dc.relation.referencesen | [15]. Li, D.; Wang, R.; Xie, C.; Liu, L.; Zhang, J.; Li, R.; Wang, F.; Zhou, M.; Liu, W. A Recognition Method for Rice Plant Diseases and Pests Video Detection Based on Deep Convolutional Neural Network. Sensors 2020, 20, 578. https://doi.org/10.3390/s20030578 | |
dc.relation.referencesen | [16]. Liu, Z.G., Zhang, X.Y., Wu, C.C., A flame detection algorithm based on bag-of-features in the YUV color space. In: Proceedings on International Conference on Intelligent Computing and Internet of Things, Harbin, pp. 64–67 (2015). | |
dc.relation.referencesen | [17]. Divya Shree, Chander Kant. Building Efficient Neural Networks For Brain Tumor Detection. Journal of Positive School Psychology, vol. 6, no. 11, 2022. | |
dc.relation.referencesen | [18]. Z. Qiumei, T. Dan and W. Fenghua, "Improved Convolutional Neural Network Based on Fast Exponentially Linear Unit Activation Function," in IEEE Access, vol. 7, pp. 151359-151367, 2019, https://doi.org/10.1109/ACCESS.2019.2948112 | |
dc.relation.referencesen | [19]. L. Li, M. Doroslovački and M. H. Loew, "Approximating the Gradient of Cross-Entropy Loss Function," in IEEE Access, vol. 8, pp. 111626-111635, 2020, https://doi.org/10.1109/ACCESS.2020.3001531 | |
dc.relation.referencesen | [20]. N. Ohadi, A. Kamandi, M. Shabankhah, S. M. Fatemi, S. M. Hosseini and A. Mahmoudi, "SW-DBSCAN: A Grid-based DBSCAN Algorithm for Large Datasets," 2020 6th International Conference on Web Research (ICWR), Tehran, Iran, 2020, pp. 139-145, https://doi.org/10.1109/ICWR49608.2020.9122313 | |
dc.relation.referencesen | [21]. T. Kwon, "Average Data Rate Analysis for Hierachical Cell Structure under Nakagami-m Fading Channel with a Two-layer Feed-Forward Neural Network," 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Barcelona, Spain, 2019, pp. 1-4, https://doi.org/10.1109/WiMOB.2019.8923280 | |
dc.relation.referencesen | [22]. L. D. Medus, T. Iakymchuk, J. V. Frances-Villora, M. Bataller-Mompeán and A. Rosado-Muñoz, "A Novel Systolic Parallel Hardware Architecture for the FPGA Acceleration of Feedforward Neural Networks," in IEEE Access, vol. 7, pp. 76084-76103, 2019, https://doi.org/10.1109/ACCESS.2019.2920885 | |
dc.relation.referencesen | [23]. X. Luo, O. Ye and B. Zhou, "An Modified Video Stream Classification Method Which Fuses Three-Dimensional Convolutional Neural Network," 2019 International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI), Taiyuan, China, 2019, pp. 105-108, https://doi.org/10.1109/MLBDBI48998.2019.00026. | |
dc.relation.uri | https://doi.org/10.33258/birci.v3i1.805 | |
dc.relation.uri | https://doi.org/10.1109/TIP.2013.2270375 | |
dc.relation.uri | https://doi.org/10.1016/S0031-3203(96)00109-4 | |
dc.relation.uri | https://doi.org/10.1109/MSP.2006.1621446 | |
dc.relation.uri | https://doi.org/10.11591/ijece.v11i2.pp1656-1665 | |
dc.relation.uri | https://doi.org/10.1109/ICECCT.2019.8869364 | |
dc.relation.uri | https://doi.org/10.1109/CVPR.2017.243 | |
dc.relation.uri | https://doi.org/10.1109/TNNLS.2014.2330900 | |
dc.relation.uri | https://doi.org/10.1109/I-SMAC49090.2020.9243602 | |
dc.relation.uri | https://doi.org/10.3390/s20030578 | |
dc.relation.uri | https://doi.org/10.1109/ACCESS.2019.2948112 | |
dc.relation.uri | https://doi.org/10.1109/ACCESS.2020.3001531 | |
dc.relation.uri | https://doi.org/10.1109/ICWR49608.2020.9122313 | |
dc.relation.uri | https://doi.org/10.1109/WiMOB.2019.8923280 | |
dc.relation.uri | https://doi.org/10.1109/ACCESS.2019.2920885 | |
dc.relation.uri | https://doi.org/10.1109/MLBDBI48998.2019.00026 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
dc.rights.holder | © Мельникова Н., Поберейко П., 2024 | |
dc.subject | глибокі згорткові нейронні мережі | |
dc.subject | вилучення візуальних ознак | |
dc.subject | мережі прямого поширення | |
dc.subject | машинне навчання | |
dc.subject | deep convolutional neural networks | |
dc.subject | video search | |
dc.subject | data processing | |
dc.subject | feature extraction | |
dc.subject | feedforward neural networks | |
dc.title | Покращення можливостей пошуку відео: інтеграція нейронної мережі прямого поширення для ефективного фрагментного пошуку | |
dc.title.alternative | Advancing video search capabilities: integrating feedforward neural networks for efficient fragment-based retrieval | |
dc.type | Article |
Files
License bundle
1 - 1 of 1