Methods for determination of deformations with the use of digital image correlation technologies
dc.citation.epage | 75 | |
dc.citation.issue | 2 | |
dc.citation.spage | 67 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Бліхарський, Я. З. | |
dc.contributor.author | Копійка, Н. С. | |
dc.contributor.author | Blikharskyy, Yaroslav | |
dc.contributor.author | Kopiika, Nadiia | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-04-10T08:44:31Z | |
dc.date.available | 2023-04-10T08:44:31Z | |
dc.date.created | 2021-11-11 | |
dc.date.issued | 2021-11-11 | |
dc.description.abstract | Останнім часом особливо актуальним стало питання достовірної оцінки фактичного стану будівельних конструкцій, що містяться під навантаженням і, відповідно, прийняття оптимальних проектних рішень з реконструкції та підсилення. Для отримання достовірної інформації про напружено-деформований стан конструкції, що зазнає навантаження, необхідно визначити розподіл деформацій. У деяких випадках оцінити напружено-деформований стан традиційними підходами практично неможливо. Однак методи цифрової кореляції зображень забезпечують достовірну інформацію про поля переміщень та деформації і можна застосовувати майже без обмежень. Такі підходи досить ефективні для визначення напружено-деформованого стану на гладких поверхнях та в зонах з концентраторами напружень. Метод цифрової кореляції зображень заснований на порівнянні інтенсивності розподілу спекл-картинок оптично шорстких поверхонь. Поєднання інтенсивності кореляційних піків з відповідними алгоритмами розрахунків на рівні субпікселів дає змогу отримати високу точність вимірювання за допомогою простішого обладнання порівняно з технологіями електронної інтерферометрії. Основною метою цієї роботи є детальний аналіз прийомів і методів визначення деформацій із застосуванням цифрової кореляції зображення. Стаття містить детальний огляд наявних досліджень цієї теми та опис основних принципів аналітичного обчислення оптичних даних. На основі проведеного ретельного аналізу можна стверджувати, що методи ЦКЗ є досить перспективними інноваційними технологіями, які можна використовувати для широкого спектру застосувань. Серед перспективних напрямків їх використання – діагностика, моніторинг та контроль стану будівельних конструкцій та матеріалів. Важливо зазначити, що використання методів ЦКЗ для визначення деформацій потребує використання комплексного аналітичного підходу з ітераційними алгоритмами розрахунків. Крім того, точність та ефективність можна збільшити, якщо для цього використовують спеціалізоване програмне забезпечення. Загалом кореляція цифрових зображень – це єдиний підхід, який дає змогу отримати повну інформаційну модель конструкції, що зазнає різного рівня навантаження. | |
dc.description.abstract | In order to obtain reliable information about the stress-strain state of the structure, subjected to loading, it is necessary to determine deformations` distribution. In some cases, it is almost impossible to assess stress-strain state with the traditional approaches. However, the DIC methods provide reliable information about the fields of displacement and deformation almost without limitations. Such approaches are rather effective for determination of the stress-strain state on smooth surfaces and in zones with stress concentrators. The DIC method is based on the comparison of the intensity of speckle pictures` distribution of optically rough surfaces. The combination of the intensities of correlation peaks with the corresponding calculation algorithms at the subpixel level makes it possible to obtain high measurement accuracy with simpler hardware compared to electronic interferometry technologies. The main purpose of this work is the detailed analysis of techniques and methods for determination of deformations with the use of digital image correlation. The article includes detailed review of existing studies of this topic and description of main principles for analytical computation of the optical data. | |
dc.format.extent | 67-75 | |
dc.format.pages | 9 | |
dc.identifier.citation | Blikharskyy Y. Methods for determination of deformations with the use of digital image correlation technologies / Yaroslav Blikharskyy, Nadiia Kopiika // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 3. — No 2. — P. 67–75. | |
dc.identifier.citationen | Blikharskyy Y., Kopiika N. (2021) Methods for determination of deformations with the use of digital image correlation technologies. Theory and Building Practice (Lviv), vol. 3, no 2, pp. 67-75. | |
dc.identifier.doi | https://doi.org/10.23939/jtbp2021.02.067 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/57932 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Theory and Building Practice, 2 (3), 2021 | |
dc.relation.references | Blikharskyy Ya. Z. & Kopiika N. S. Digital image correlation method for analysis of reinforced concrete | |
dc.relation.references | structures (2020). Bulletin of Odessa State Academy of Civil Engineering and Architecture, 2020, 78, 27–33 doi: 10.31650/2415-377X-2020-78-27-33 | |
dc.relation.references | Bomarito, G. F., Hochhalter, J. D., Ruggles, T. J., & Cannon, A. H. (2017). Increasing accuracy and | |
dc.relation.references | precision of digital image correlation through pattern optimization. Optics and Lasers in Engineering, 91, 73–85. doi: 10.1016/j.optlaseng.2016.11.005 | |
dc.relation.references | Bomarito, G. F., Ruggles, T. J., Hochhalter, J. D., & Cannon, A. H. (2017). Investigation of optimal digital | |
dc.relation.references | image correlation patterns for deformation measurement. In International Digital Imaging Correlation Society | |
dc.relation.references | (pp. 217–218). Springer, Cham. doi: 10.1007/978-3-319-51439-0_51. | |
dc.relation.references | Bracewell, R. N., & Bracewell, R. N. (1986). The Fourier transform and its applications (Vol. 31999, | |
dc.relation.references | pp. 267–272). New York: McGraw-Hill. | |
dc.relation.references | Buljac, A., Jailin, C., Mendoza, A., Neggers, J., Taillandier-Thomas, T., Bouterf, A., & Roux, S. (2020). Digital | |
dc.relation.references | volume correlation: progress and challenges. In Advancements in Optical Methods & Digital Image Correlation in | |
dc.relation.references | Experimental Mechanics, Volume 3 (pp. 113–115). Springer, Cham. doi: 10.1007/978-3-030-30009-8_17 | |
dc.relation.references | Cannon, A. H., Hochhalter, J. D., Bomarito, G. F., & Ruggles, T. (2017). Micro speckle stamping: High | |
dc.relation.references | contrast, no basecoat, repeatable, well-adhered. In International Digital Imaging Correlation Society (pp. 141–143). | |
dc.relation.references | Springer, Cham. doi: 10.1007/978-3-319-51439-0_34 | |
dc.relation.references | Carter, J. L., Uchic, M. D., & Mills, M. J. (2015). Impact of speckle pattern parameters on DIC strain | |
dc.relation.references | resolution calculated from in-situ SEM experiments. In Fracture, Fatigue, Failure, and Damage Evolution, Volume 5 (pp. 119-126). Springer, Cham. doi: 10.1007/978-3-319-06977-7_16 | |
dc.relation.references | Chen D. J., Chiang F. P. Computer speckle interferometry // Proc. Of Intern. Confer. On Hologram interferometry | |
dc.relation.references | and Speckle Metrology. – Baltimore: Society for Experimental Mechanics, 1990. – P.49–58. | |
dc.relation.references | Chen, D. J., & Chiang, F. P. (1993). Computer-aided speckle interferometry using spectral amplitude fringes. | |
dc.relation.references | Applied Optics, 32(2), 225–236. doi: 10.1364/AO.32.000225 | |
dc.relation.references | Chen, D. J., Chiang, F. P., Tan, Y. S., & Don, H. S. (1993). Digital speckle-displacement measurement using | |
dc.relation.references | a complex spectrum method. Applied optics, 32(11), 1839–1849. doi: doi.org/10.1364/AO.32.001839 | |
dc.relation.references | Chen, Z., Quan, C., Zhu, F., & He, X. (2015). A method to transfer speckle patterns for digital image | |
dc.relation.references | correlation. Measurement science and technology, 26(9), 095201. doi: 10.1088/0957-0233/26/9/095201 | |
dc.relation.references | Chen, Z., Xu, X., Wu, J., & He, X. (2017). Optimization of speckle pattern for digital image correlation. In | |
dc.relation.references | International Digital Imaging Correlation Society (pp. 29–31). Springer, Cham. doi: 10.1007/978-3-319-51439-0_7 | |
dc.relation.references | Cintrón, R., & Saouma, V. (2008). Strain measurements with the digital image correlation system Vic2D. System, 106, 2D. | |
dc.relation.references | Denys, K., Coppieters, S., & Debruyne, D. (2017). Identification of a 3D Anisotropic Yield Surface Using a | |
dc.relation.references | Multi-DIC Setup. In International Digital Imaging Correlation Society (pp. 101–104). Springer, Cham.. doi: 10.1007/978-3-319-51439-0_24 | |
dc.relation.references | Greivenkamp, J. E. (1992). Phase shifting interferometers. Optical shop testing, 501–598. | |
dc.relation.references | Jones, E. M. C., Carroll, J. D., Karlson, K. N., Kramer, S. L. B., Lehoucq, R. B., Reu, P. L., & Turner, D. Z. | |
dc.relation.references | (2017). Combining Full-Field Measurements and Inverse Techniques for Smart Material Testing. In International | |
dc.relation.references | Digital Imaging Correlation Society (pp. 37–39). Springer, Cham. doi: 10.1007/978-3-319-51439-0_9 | |
dc.relation.references | Jones, R., Wykes, C., & Wykes, J. (1989). Holographic and speckle interferometry (No. 6). Cambridge | |
dc.relation.references | university press. | |
dc.relation.references | Kramer, S., Reu, P., & Bonk, S. (2017). A speckle patterning study for laboratory-scale DIC experiments. In | |
dc.relation.references | International Digital Imaging Correlation Society (pp. 33–35). Springer, Cham. doi: 10.1007/978-3-319-51439-0_8 | |
dc.relation.references | Kumar, B. V., & Hassebrook, L. (1990). Performance measures for correlation filters. Applied optics, 29(20), 2997-3006.doi: 10.1364/AO.29.002997 | |
dc.relation.references | Lee, J., Kim, E. J., Gwon, S., Cho, S., & Sim, S. H. (2019). Uniaxial static stress estimation for concrete | |
dc.relation.references | structures using digital image correlation. Sensors, 19(2), 319.doi: 10.3390/s19020319 | |
dc.relation.references | Majumder, S., Gupta, S., & Dubey, S. (2020). Spectral imaging using compressive sensing-based singlepixel modality. Electronics Letters, 56(19), 1013–1016. doi: 10.1049/el.2020.0757 | |
dc.relation.references | Mazzoleni, P., Zappa, E., Matta, F., & Sutton, M. A. (2015). Thermo-mechanical toner transfer for highquality digital image correlation speckle patterns. Optics and Lasers in Engineering, 75, 72–80. doi: 10.1016/ | |
dc.relation.references | j.optlaseng.2015.06.009 | |
dc.relation.references | Optical 3D Deformation Analysis. ARAMIS Manual (GOM Company) Retrieved from: | |
dc.relation.references | http://www.henindo.co.id/home/ARAMIS_EN_RevB.pdf | |
dc.relation.references | Poozesh, P., Sarrafi, A., Niezrecki, C., Mao, Z., & Avitabile, P. (2017). Extracting high frequency operating | |
dc.relation.references | shapes from 3D DIC measurements and phased-based motion magnified images. In International Digital Imaging | |
dc.relation.references | Correlation Society (pp. 81–83). Springer, Cham. doi: 10.1007/978-3-319-51439-0_20. | |
dc.relation.references | Rossi, M., Cortese, L., Genovese, K., Lattanzi, A., Nalli, F., & Pierron, F. (2018). Evaluation of volume | |
dc.relation.references | deformation from surface DIC measurement. Experimental Mechanics, 58(7), 1181–1194. doi: 10.1007/s11340-018-0409-0 | |
dc.relation.references | Saldaña, H.A., Márquez Aguilar, P.A. & Molina, O.A. (2015) Concrete Stress-Strain Characterization by | |
dc.relation.references | Digital Image Correlation, Journal of Applied Mechanical Engineering, 4 (189), 6,1–5. doi: 10.4172/2168-9873.1000189 | |
dc.relation.references | Schreier, H. W., Braasch, J. R., & Sutton, M. A. (2000). Systematic errors in digital image correlation caused | |
dc.relation.references | by intensity interpolation. Optical engineering, 39(11), 2915-2921. doi: 10.1117/1.1314593 | |
dc.relation.references | Segouin, V., Domenjoud, M., Bernard, Y., & Daniel, L. (2017). Development of a 2D DIC experimental tool | |
dc.relation.references | for piezoelectric strains measurements. In International Digital Imaging Correlation Society (pp. 45–50). Springer, | |
dc.relation.references | Cham. doi: 10.1007/978-3-319-51439-0_11. | |
dc.relation.references | Sjodahl M. (2001) Digital speckle pattern interferometry and related techniques. Digital Speckle | |
dc.relation.references | Photography/ Ed. By P. K. Rastogi.- Chichester; John Wiley and Sons. – P. 289–336. | |
dc.relation.references | Sjödahl, M. (1994). Electronic speckle photography: increased accuracy by nonintegral pixel shifting. | |
dc.relation.references | Applied Optics, 33(28), 6667–6673. doi: 10.1364/AO.33.006667 | |
dc.relation.references | Sjödahl, M. (1998). Some recent advances in electronic speckle photography. Optics and lasers in | |
dc.relation.references | engineering, 29(2–3), 125–144. doi: 10.1016/S0143-8166(97)00081-X. | |
dc.relation.references | Sjödahl, M., & Benckert, L. R. (1993). Electronic speckle photography: analysis of an algorithm giving the | |
dc.relation.references | displacement with subpixel accuracy. Applied Optics, 32(13), 2278–2284.doi: doi.org/10.1364/AO.32.002278 | |
dc.relation.references | Sutton, M. A., Wolters, W. J., Peters, W. H., Ranson, W. F., & McNeill, S. R. (1983). Determination of | |
dc.relation.references | displacements using an improved digital correlation method. Image and vision computing, 1(3), 133–139. doi:10.1016/0262-8856(83)90064-1 | |
dc.relation.references | VIC-2D. Refrence Manual. Correlated Solutions. Retrieved from: http://www.correlatedsolutions.com/ | |
dc.relation.references | installs/Vic-2D-2009-Manual.pdf | |
dc.relation.references | Yamaguchi, I. (2003, May). Fundamentals and applications of speckle. In Speckle Metrology 2003 | |
dc.relation.references | (Vol. 4933, pp. 1–8). International Society for Optics and Photonics. doi: 10.1117/12.516567 | |
dc.relation.references | Yasmeen, F., Rajan, S., Sutton, M. A., & Schreier, H. W. (2017). Experimental study of measurement errors | |
dc.relation.references | in 3D-DIC due to out-of-plane specimen rotation. In International Digital Imaging Correlation Society (pp. 211–215). | |
dc.relation.references | Springer, Cham. doi: 10.1007/978-3-319-51439-0_50 | |
dc.relation.references | Zappa, E., & Hasheminejad, N. (2017). Digital image correlation technique in dynamic applications on | |
dc.relation.references | deformable targets. Experimental Techniques, 41(4), 377–387. doi: 10.1007/s40799-017-0184-3 | |
dc.relation.referencesen | Blikharskyy Ya. Z. & Kopiika N. S. Digital image correlation method for analysis of reinforced concrete | |
dc.relation.referencesen | structures (2020). Bulletin of Odessa State Academy of Civil Engineering and Architecture, 2020, 78, 27–33 doi: 10.31650/2415-377X-2020-78-27-33 | |
dc.relation.referencesen | Bomarito, G. F., Hochhalter, J. D., Ruggles, T. J., & Cannon, A. H. (2017). Increasing accuracy and | |
dc.relation.referencesen | precision of digital image correlation through pattern optimization. Optics and Lasers in Engineering, 91, 73–85. doi: 10.1016/j.optlaseng.2016.11.005 | |
dc.relation.referencesen | Bomarito, G. F., Ruggles, T. J., Hochhalter, J. D., & Cannon, A. H. (2017). Investigation of optimal digital | |
dc.relation.referencesen | image correlation patterns for deformation measurement. In International Digital Imaging Correlation Society | |
dc.relation.referencesen | (pp. 217–218). Springer, Cham. doi: 10.1007/978-3-319-51439-0_51. | |
dc.relation.referencesen | Bracewell, R. N., & Bracewell, R. N. (1986). The Fourier transform and its applications (Vol. 31999, | |
dc.relation.referencesen | pp. 267–272). New York: McGraw-Hill. | |
dc.relation.referencesen | Buljac, A., Jailin, C., Mendoza, A., Neggers, J., Taillandier-Thomas, T., Bouterf, A., & Roux, S. (2020). Digital | |
dc.relation.referencesen | volume correlation: progress and challenges. In Advancements in Optical Methods & Digital Image Correlation in | |
dc.relation.referencesen | Experimental Mechanics, Volume 3 (pp. 113–115). Springer, Cham. doi: 10.1007/978-3-030-30009-8_17 | |
dc.relation.referencesen | Cannon, A. H., Hochhalter, J. D., Bomarito, G. F., & Ruggles, T. (2017). Micro speckle stamping: High | |
dc.relation.referencesen | contrast, no basecoat, repeatable, well-adhered. In International Digital Imaging Correlation Society (pp. 141–143). | |
dc.relation.referencesen | Springer, Cham. doi: 10.1007/978-3-319-51439-0_34 | |
dc.relation.referencesen | Carter, J. L., Uchic, M. D., & Mills, M. J. (2015). Impact of speckle pattern parameters on DIC strain | |
dc.relation.referencesen | resolution calculated from in-situ SEM experiments. In Fracture, Fatigue, Failure, and Damage Evolution, Volume 5 (pp. 119-126). Springer, Cham. doi: 10.1007/978-3-319-06977-7_16 | |
dc.relation.referencesen | Chen D. J., Chiang F. P. Computer speckle interferometry, Proc. Of Intern. Confer. On Hologram interferometry | |
dc.relation.referencesen | and Speckle Metrology, Baltimore: Society for Experimental Mechanics, 1990, P.49–58. | |
dc.relation.referencesen | Chen, D. J., & Chiang, F. P. (1993). Computer-aided speckle interferometry using spectral amplitude fringes. | |
dc.relation.referencesen | Applied Optics, 32(2), 225–236. doi: 10.1364/AO.32.000225 | |
dc.relation.referencesen | Chen, D. J., Chiang, F. P., Tan, Y. S., & Don, H. S. (1993). Digital speckle-displacement measurement using | |
dc.relation.referencesen | a complex spectrum method. Applied optics, 32(11), 1839–1849. doi: doi.org/10.1364/AO.32.001839 | |
dc.relation.referencesen | Chen, Z., Quan, C., Zhu, F., & He, X. (2015). A method to transfer speckle patterns for digital image | |
dc.relation.referencesen | correlation. Measurement science and technology, 26(9), 095201. doi: 10.1088/0957-0233/26/9/095201 | |
dc.relation.referencesen | Chen, Z., Xu, X., Wu, J., & He, X. (2017). Optimization of speckle pattern for digital image correlation. In | |
dc.relation.referencesen | International Digital Imaging Correlation Society (pp. 29–31). Springer, Cham. doi: 10.1007/978-3-319-51439-0_7 | |
dc.relation.referencesen | Cintrón, R., & Saouma, V. (2008). Strain measurements with the digital image correlation system Vic2D. System, 106, 2D. | |
dc.relation.referencesen | Denys, K., Coppieters, S., & Debruyne, D. (2017). Identification of a 3D Anisotropic Yield Surface Using a | |
dc.relation.referencesen | Multi-DIC Setup. In International Digital Imaging Correlation Society (pp. 101–104). Springer, Cham.. doi: 10.1007/978-3-319-51439-0_24 | |
dc.relation.referencesen | Greivenkamp, J. E. (1992). Phase shifting interferometers. Optical shop testing, 501–598. | |
dc.relation.referencesen | Jones, E. M. C., Carroll, J. D., Karlson, K. N., Kramer, S. L. B., Lehoucq, R. B., Reu, P. L., & Turner, D. Z. | |
dc.relation.referencesen | (2017). Combining Full-Field Measurements and Inverse Techniques for Smart Material Testing. In International | |
dc.relation.referencesen | Digital Imaging Correlation Society (pp. 37–39). Springer, Cham. doi: 10.1007/978-3-319-51439-0_9 | |
dc.relation.referencesen | Jones, R., Wykes, C., & Wykes, J. (1989). Holographic and speckle interferometry (No. 6). Cambridge | |
dc.relation.referencesen | university press. | |
dc.relation.referencesen | Kramer, S., Reu, P., & Bonk, S. (2017). A speckle patterning study for laboratory-scale DIC experiments. In | |
dc.relation.referencesen | International Digital Imaging Correlation Society (pp. 33–35). Springer, Cham. doi: 10.1007/978-3-319-51439-0_8 | |
dc.relation.referencesen | Kumar, B. V., & Hassebrook, L. (1990). Performance measures for correlation filters. Applied optics, 29(20), 2997-3006.doi: 10.1364/AO.29.002997 | |
dc.relation.referencesen | Lee, J., Kim, E. J., Gwon, S., Cho, S., & Sim, S. H. (2019). Uniaxial static stress estimation for concrete | |
dc.relation.referencesen | structures using digital image correlation. Sensors, 19(2), 319.doi: 10.3390/s19020319 | |
dc.relation.referencesen | Majumder, S., Gupta, S., & Dubey, S. (2020). Spectral imaging using compressive sensing-based singlepixel modality. Electronics Letters, 56(19), 1013–1016. doi: 10.1049/el.2020.0757 | |
dc.relation.referencesen | Mazzoleni, P., Zappa, E., Matta, F., & Sutton, M. A. (2015). Thermo-mechanical toner transfer for highquality digital image correlation speckle patterns. Optics and Lasers in Engineering, 75, 72–80. doi: 10.1016/ | |
dc.relation.referencesen | j.optlaseng.2015.06.009 | |
dc.relation.referencesen | Optical 3D Deformation Analysis. ARAMIS Manual (GOM Company) Retrieved from: | |
dc.relation.referencesen | http://www.henindo.co.id/home/ARAMIS_EN_RevB.pdf | |
dc.relation.referencesen | Poozesh, P., Sarrafi, A., Niezrecki, C., Mao, Z., & Avitabile, P. (2017). Extracting high frequency operating | |
dc.relation.referencesen | shapes from 3D DIC measurements and phased-based motion magnified images. In International Digital Imaging | |
dc.relation.referencesen | Correlation Society (pp. 81–83). Springer, Cham. doi: 10.1007/978-3-319-51439-0_20. | |
dc.relation.referencesen | Rossi, M., Cortese, L., Genovese, K., Lattanzi, A., Nalli, F., & Pierron, F. (2018). Evaluation of volume | |
dc.relation.referencesen | deformation from surface DIC measurement. Experimental Mechanics, 58(7), 1181–1194. doi: 10.1007/s11340-018-0409-0 | |
dc.relation.referencesen | Saldaña, H.A., Márquez Aguilar, P.A. & Molina, O.A. (2015) Concrete Stress-Strain Characterization by | |
dc.relation.referencesen | Digital Image Correlation, Journal of Applied Mechanical Engineering, 4 (189), 6,1–5. doi: 10.4172/2168-9873.1000189 | |
dc.relation.referencesen | Schreier, H. W., Braasch, J. R., & Sutton, M. A. (2000). Systematic errors in digital image correlation caused | |
dc.relation.referencesen | by intensity interpolation. Optical engineering, 39(11), 2915-2921. doi: 10.1117/1.1314593 | |
dc.relation.referencesen | Segouin, V., Domenjoud, M., Bernard, Y., & Daniel, L. (2017). Development of a 2D DIC experimental tool | |
dc.relation.referencesen | for piezoelectric strains measurements. In International Digital Imaging Correlation Society (pp. 45–50). Springer, | |
dc.relation.referencesen | Cham. doi: 10.1007/978-3-319-51439-0_11. | |
dc.relation.referencesen | Sjodahl M. (2001) Digital speckle pattern interferometry and related techniques. Digital Speckle | |
dc.relation.referencesen | Photography/ Ed. By P. K. Rastogi, Chichester; John Wiley and Sons, P. 289–336. | |
dc.relation.referencesen | Sjödahl, M. (1994). Electronic speckle photography: increased accuracy by nonintegral pixel shifting. | |
dc.relation.referencesen | Applied Optics, 33(28), 6667–6673. doi: 10.1364/AO.33.006667 | |
dc.relation.referencesen | Sjödahl, M. (1998). Some recent advances in electronic speckle photography. Optics and lasers in | |
dc.relation.referencesen | engineering, 29(2–3), 125–144. doi: 10.1016/S0143-8166(97)00081-X. | |
dc.relation.referencesen | Sjödahl, M., & Benckert, L. R. (1993). Electronic speckle photography: analysis of an algorithm giving the | |
dc.relation.referencesen | displacement with subpixel accuracy. Applied Optics, 32(13), 2278–2284.doi: doi.org/10.1364/AO.32.002278 | |
dc.relation.referencesen | Sutton, M. A., Wolters, W. J., Peters, W. H., Ranson, W. F., & McNeill, S. R. (1983). Determination of | |
dc.relation.referencesen | displacements using an improved digital correlation method. Image and vision computing, 1(3), 133–139. doi:10.1016/0262-8856(83)90064-1 | |
dc.relation.referencesen | VIC-2D. Refrence Manual. Correlated Solutions. Retrieved from: http://www.correlatedsolutions.com/ | |
dc.relation.referencesen | installs/Vic-2D-2009-Manual.pdf | |
dc.relation.referencesen | Yamaguchi, I. (2003, May). Fundamentals and applications of speckle. In Speckle Metrology 2003 | |
dc.relation.referencesen | (Vol. 4933, pp. 1–8). International Society for Optics and Photonics. doi: 10.1117/12.516567 | |
dc.relation.referencesen | Yasmeen, F., Rajan, S., Sutton, M. A., & Schreier, H. W. (2017). Experimental study of measurement errors | |
dc.relation.referencesen | in 3D-DIC due to out-of-plane specimen rotation. In International Digital Imaging Correlation Society (pp. 211–215). | |
dc.relation.referencesen | Springer, Cham. doi: 10.1007/978-3-319-51439-0_50 | |
dc.relation.referencesen | Zappa, E., & Hasheminejad, N. (2017). Digital image correlation technique in dynamic applications on | |
dc.relation.referencesen | deformable targets. Experimental Techniques, 41(4), 377–387. doi: 10.1007/s40799-017-0184-3 | |
dc.relation.uri | http://www.henindo.co.id/home/ARAMIS_EN_RevB.pdf | |
dc.relation.uri | http://www.correlatedsolutions.com/ | |
dc.rights.holder | © Національний університет „Львівська політехніка“, 2021 | |
dc.rights.holder | © Blikharskyy Y., Kopiika N., 2021 | |
dc.subject | деформації | |
dc.subject | цифрова кореляція зображень | |
dc.subject | напружено-деформований стан | |
dc.subject | інформаційна модель конструкції | |
dc.subject | deformations | |
dc.subject | digital image correlation | |
dc.subject | stress-strain state | |
dc.subject | information model | |
dc.title | Methods for determination of deformations with the use of digital image correlation technologies | |
dc.title.alternative | Методи визначення деформацій з використанням цифрової кореляції зображень | |
dc.type | Article |