Вплив молекулярної маси полівінілпіролідону на сорбційні та фізико-механічні властивості гідрогель/полікапроамідних двошарових мембран

dc.citation.epage177
dc.citation.issue2
dc.citation.journalTitleChemistry, Technology and Application of Substances
dc.citation.spage171
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorБаран, Н. М.
dc.contributor.authorГриценко, О. М.
dc.contributor.authorМоравський, В. С.
dc.contributor.authorBaran, N. M.
dc.contributor.authorGrytsenko, O. M.
dc.contributor.authorMoravskyi, V. S.
dc.coverage.placenameLviv
dc.coverage.placenameLviv
dc.date.accessioned2025-03-05T07:39:13Z
dc.date.created2005-03-01
dc.date.issued2005-03-01
dc.description.abstractПодано результати дослідження впливу молекулярної маси полівінілпіролідону (ПВП) на властивості композиційних гідрогель/полікапроамідних мембран, які одержували модифікуванням гідрогелевих плівок на основі кополімерів 2-гідроксіетилметакрилату (ГЕМА) з ПВП за допомогою нанесення ультратонких шарів на основі суміші поліаміду (ПА-6) з ПВП. Встановлено, що величина взаємодії між шарами композиційних мембран, а також їх властивості – водовміст, міцність під час прориву, коефіцієнти соле- та водопроникності, значною мірою залежать від молекулярної маси ПВП як у складі вихідної полімер-мономерної композиції, так і у модифікувальному ПА-6/ПВП розчині.
dc.description.abstractThe paper presents the study results of the molecular weight effect of polyvinylpyrrolidone (PVP) on the properties of composite hydrogels/polycaproamide membranes, which were obtained by modifying hydrogel films based on copolymers of 2-hydroxyethylmethacrylate (HEMA) with PVP by applying ultra- thin layers on the basis of a polyamide (PA-6) with PVP mixture. It was found that the interaction magnitude between the layers of composite membranes, as well as their properties – water content, tensile strength, salt and water permeability coefficients, largely depend on the molecular weight of PVP as in the original polymer-monomer composition and in the modifying PA-6/PVP solution.
dc.format.extent171-177
dc.format.pages7
dc.identifier.citationБаран Н. М. Вплив молекулярної маси полівінілпіролідону на сорбційні та фізико-механічні властивості гідрогель/полікапроамідних двошарових мембран / Н. М. Баран, О. М. Гриценко, В. С. Моравський // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Том 5. — № 2. — С. 171–177.
dc.identifier.citationenBaran N. M. Influence of polyvinylpyrrolidone molecular weight on the sorption and physical-mechanical properties of hydrogel/polycaproamide two-layer membranes / N. M. Baran, O. M. Grytsenko, V. S. Moravskyi // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 5. — No 2. — P. 171–177.
dc.identifier.doidoi.org/10.23939/ctas2022.02.171
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63651
dc.language.isouk
dc.publisherLviv Politechnic Publishing House
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (5), 2022
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (5), 2022
dc.relation.references1. Hoffman, A. S. (2012). Hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 64, 18-23. DOI: https://doi.org/10.1016/j.addr.2012.09.010
dc.relation.references2. Chobit, M. R. (2018). Zastosuvannia peroksydovanykh polisakharydiv dlia oderzhannia hidrohelevykh kompozytiv. Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, 1 (1), 139-144. doi.org/10.23939/ctas2018.01.139
dc.relation.references3. Abass, A., Stuart, S., Lopes, B. T. Zhou, D., Geraghty, B., Wu, R., & Elsheikh, A. (2019). Simulated optical performance of soft contact lenses on the eye. PLоS ONE, 14(5), e0216484. https://doi.org/10.1371/journal.pone.0216484
dc.relation.references4. Larrañeta, E., Stewart, S., Ervine, M., Al- Kasasbeh, R., & Donnelly, R. (2018). Hydrogels for Hydrophobic Drug Delivery. Classification, Synthesis and Applications. Journal of Functional Biomaterials, 9(1), 13. https://doi.org/10.3390/jfb9010013
dc.relation.references5. Rafieian, S., Mirzadeh, H., Mahdavi, H., & Masoumi, M. E. (2018). A review on nanocomposite hydrogels and their biomedical applications. Science and Engineering of Composite Materials, 26(1), 154-174. https://doi.org/10.1515/secm-2017-0161
dc.relation.references6. Lebediev, V. V., Tykhomyrova, T. S., Savchenko, D. O., Lozovytskyi, A. O., Lytvynenko, Ye. I. (2020). Vyvchennia osoblyvostei heleutvorennia ta reolohichnykh protsesiv hidrohelei na osnovi zhelatynu dlia kosmetolohii ta medytsyny. Intehrovani tekhnolohii ta enerhozberezhennia, 4, 3-10. doi.org/10.20998/2078- 5364.2020.4.01.
dc.relation.references7. Laftah, W. A., Hashim, S., & Ibrahim, A. N. (2011). Polymer hydrogels: A Review. Polymer-Plastics Technology and Engineering, 50, 1475-1486. DOI: https://doi.org/10.1080/03602559.2011.593082
dc.relation.references8. Mel'nyk, Yu. Ya., Baran, N. M., Yatsul'chak, H. V., & Komyshna M. H. (2017). Formuvannya ta vlastyvosti kompozytsiynykh poliamid-hidrohelevykh membran. Visnyk NU "LP" "Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya", 868, 406-412.
dc.relation.references9. Avramenko, V. L, Pidgorna, L. P, Cherkashchyna, G. M, & Bliznyuk, O. V. (2018). Technology of production and processing of polymers for medical and biological purposes: monograph. Kharkiv: Technology Center, 356. https://doi.org/10.15587/978-617-7319-17-6
dc.relation.references10. Maikovych, O. V., Nosova, N. G., Yakoviv, M. V., Varvarenko, S. M., & Voronov, S. A. (2021). Composite materials based on polyacrylamide and gelatin reinforced with polypropylene microfiber. Voprosy Khimii i Khimicheskoi Tekhnologii, 1, 45-54. DOI: https://doi.org/10.32434/0321-4095-2021-134-1-45-54
dc.relation.references11. Varvarenko, S., Voronov, А., Samaryk, V., Tarnavchyk, I., Nosova, N., Kohut, A., & Voronov, S. (2010). Covalent grafting of polyacrylamide-based hydrogels to a polypropylene surface activated with functional polyperoxide. Reactive and Functional Polymers, 70(9), 647-655. https://doi.org/10.1016/j.reactfunctpolym.2010.05.014
dc.relation.references12. Przyluski, J., Poitarzewski, Z., & Wieczorek, W. (1997). Proton-conducting hydrogel membranes. Polymer, 39(18), 4343-4347. https://doi.org/10.1016/S0032-3861(97)00525-9
dc.relation.references13. Fomina, A. P., Lesovoj, D. E., Artyuhov, A. A., & Shtilman M. I. (2011). Biodegradiruemye polimernye gidrogeli na osnove proizvodnyh krahmala i polivinilovogo spirta. Uspehi v himii i himicheskoj tehnologii, 3(19), 83-87.
dc.relation.references14. Minko, S. (2006). Responsive Polymer Brushes. J. of Macromolecular Science, Part C: Polymer Reviews, 46, 397-420. DOI: https://doi.org/10.1080/15583720600945402
dc.relation.references15. Suberlyak, O., & Skorokhoda, V. (2018). Hydrogels based on polyvinylpyrrolidone copolymers. Haider & A. Haider (Eds.), Hydrogel, 136-214. London, UK: IntechOpen. DOI: https://doi.org/10.5772/intechopen.72082
dc.relation.references16. Suberlyak, O. V., Baran, N. M., & Yatsul'chak, H. V. (2017). Physicomechanical properties of the films based on polyamide-polyvinylpyrrolidone mixtures. Materials Science, 53(3), 392-397. https://doi.org/10.1007/s11003-017-0087-6
dc.relation.references17. Montheard, J., Chatzopoulos, M., & Chappard, D. (1992). 2-Hydroxyethyl Methacrylate (HEMA): chemical properties and applications in biomedical fields. Journal of Macromolecular Science, 32, 1-34. https://doi.org/10.1080/15321799208018377
dc.relation.references18. Yanez, F., Concheiro, A., & Alvarez-Lorenzo, C. (2008). Macromolecule release and smoothness of semiinterpenetrating PVP-pHEMA networks for comfortable soft contact lenses. Eur. J. Pharm. Biopharm., 69, 1094- 1103. https://doi.org/10.1016/j.ejpb.2008.01.023
dc.relation.references19. Malešić, N., Rusmirović, J., & Jovašević, J. (2014). Antimicrobial Hydrogels Based on 2- hydroxyethylmethacrylate and Itaconic Acid Containing Silver (I) Ion. Tehnika, 69, 563-568. DOI: https://doi.org/10.5937/tehnika1404563M
dc.relation.references20. Prasitsilp, M., Siriwittayakorn, T., Molloy, R., Suebsanit, N., Siriwittayakorn, P., & Veeranondha, S., (2003). Cytotoxicity study of homopolymers and copolymers of 2-hydroxyethyl methacrylate and some alkyl acrylates for potential use as temporary skin substitutes. Journal of Materials Science: Materials in Medicine, 14, 595-600. https://doi.org/10.1023/A:1024066806347
dc.relation.references21. Teodorescu, M., & Bercea, M. (2015). Poly(vinylpyrrolidone) - a versatile polymer for biomedical and beyond medical applications. Polymer-Plastics Technology and Engineering, 54, 923-943. https://doi.org/10.1080/03602559.2014.979506
dc.relation.references22. Baran, N. M., Grytsenko, O. M., Mel'nyk, Yu. Ya., Yatsul'chak, H. V. (2021). Osoblyvosti oderzhannya ta vlastyvosti kombinovanykh hidrohelevykh membran na osnovi polikaproamidu i kopolimeriv polivinilpirolidonu. Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya, 4(2), 203-209. https://doi.org/10.23939/ctas2021.02.203
dc.relation.references23. Baran, N. M., Mel'nyk, Yu. Ya., Suberlyak, S. A., Yatsul'chak, H. V., & Zemke, V. M. (2018). Formuvannya kompozytsiynykh plivkovykh hidrohelevykh membran. Visnyk Natsional'noho universytetu "L'vivs'ka politekhnika". Seriya: Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya, 1(2), 132-135. https://ena.lpnu.ua/handle/ntb/46344
dc.relation.references24. Suberlyak, O., Grytsenko, O., Baran, N., Yatsulchak, G., & Berezhnyy, B. (2020). Formation Features of Tubular Products on the Basis of Composite Hydrogels. Chemistry & Chemical Technology, 14(3), 312-317. https://doi.org/10.23939/chcht14.03.312
dc.relation.references25. Suberlyak, O., Grytsenko, O., & Kochubei, V. (2015). The role of FeSO4 in the obtaining of polyvinylpirolidone copolymers. Chemistry & Chemical Technology, 9, 429-434. DOI: https://doi.org/10.23939/chcht09.04.429
dc.relation.references26. Dubyaga, V. P., Perepechkin, L. P., & Katalevskiy, Ye. Ye. (1981). Polimernyye membrany. Moskva: Khimiya.
dc.relation.references27. Ahmed Enas M., Aggor Fatma S., Awad Ahmed M., & El-Aref Ahmed T. (2013). An innovative method for preparation of nanometal hydroxide superabsorbent hydrogel. Carbohydr Polym., 91, 693-698. https://doi.org/10.1016/j.carbpol.2012.08.056
dc.relation.references28. Suberlyak O. V., Baran N. M., Melnyk Yu. Ya., Grytsenko O. M., & Yaculchak G. V. (2020). Regularities of strengthening of film hydrogel membranes based on 2- hydroxyetylmetacrylate copolymers and polyvinylpyrrolidone. Functional Materials, 27(2), 329-333. DOI: https://doi.org/10.15407/fm27.02.329
dc.relation.referencesen1. Hoffman, A. S. (2012). Hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 64, 18-23. DOI: https://doi.org/10.1016/j.addr.2012.09.010
dc.relation.referencesen2. Chobit, M. R. (2018). Zastosuvannia peroksydovanykh polisakharydiv dlia oderzhannia hidrohelevykh kompozytiv. Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, 1 (1), 139-144. doi.org/10.23939/ctas2018.01.139
dc.relation.referencesen3. Abass, A., Stuart, S., Lopes, B. T. Zhou, D., Geraghty, B., Wu, R., & Elsheikh, A. (2019). Simulated optical performance of soft contact lenses on the eye. PLoS ONE, 14(5), e0216484. https://doi.org/10.1371/journal.pone.0216484
dc.relation.referencesen4. Larrañeta, E., Stewart, S., Ervine, M., Al- Kasasbeh, R., & Donnelly, R. (2018). Hydrogels for Hydrophobic Drug Delivery. Classification, Synthesis and Applications. Journal of Functional Biomaterials, 9(1), 13. https://doi.org/10.3390/jfb9010013
dc.relation.referencesen5. Rafieian, S., Mirzadeh, H., Mahdavi, H., & Masoumi, M. E. (2018). A review on nanocomposite hydrogels and their biomedical applications. Science and Engineering of Composite Materials, 26(1), 154-174. https://doi.org/10.1515/secm-2017-0161
dc.relation.referencesen6. Lebediev, V. V., Tykhomyrova, T. S., Savchenko, D. O., Lozovytskyi, A. O., Lytvynenko, Ye. I. (2020). Vyvchennia osoblyvostei heleutvorennia ta reolohichnykh protsesiv hidrohelei na osnovi zhelatynu dlia kosmetolohii ta medytsyny. Intehrovani tekhnolohii ta enerhozberezhennia, 4, 3-10. doi.org/10.20998/2078- 5364.2020.4.01.
dc.relation.referencesen7. Laftah, W. A., Hashim, S., & Ibrahim, A. N. (2011). Polymer hydrogels: A Review. Polymer-Plastics Technology and Engineering, 50, 1475-1486. DOI: https://doi.org/10.1080/03602559.2011.593082
dc.relation.referencesen8. Mel'nyk, Yu. Ya., Baran, N. M., Yatsul'chak, H. V., & Komyshna M. H. (2017). Formuvannya ta vlastyvosti kompozytsiynykh poliamid-hidrohelevykh membran. Visnyk NU "LP" "Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya", 868, 406-412.
dc.relation.referencesen9. Avramenko, V. L, Pidgorna, L. P, Cherkashchyna, G. M, & Bliznyuk, O. V. (2018). Technology of production and processing of polymers for medical and biological purposes: monograph. Kharkiv: Technology Center, 356. https://doi.org/10.15587/978-617-7319-17-6
dc.relation.referencesen10. Maikovych, O. V., Nosova, N. G., Yakoviv, M. V., Varvarenko, S. M., & Voronov, S. A. (2021). Composite materials based on polyacrylamide and gelatin reinforced with polypropylene microfiber. Voprosy Khimii i Khimicheskoi Tekhnologii, 1, 45-54. DOI: https://doi.org/10.32434/0321-4095-2021-134-1-45-54
dc.relation.referencesen11. Varvarenko, S., Voronov, A., Samaryk, V., Tarnavchyk, I., Nosova, N., Kohut, A., & Voronov, S. (2010). Covalent grafting of polyacrylamide-based hydrogels to a polypropylene surface activated with functional polyperoxide. Reactive and Functional Polymers, 70(9), 647-655. https://doi.org/10.1016/j.reactfunctpolym.2010.05.014
dc.relation.referencesen12. Przyluski, J., Poitarzewski, Z., & Wieczorek, W. (1997). Proton-conducting hydrogel membranes. Polymer, 39(18), 4343-4347. https://doi.org/10.1016/S0032-3861(97)00525-9
dc.relation.referencesen13. Fomina, A. P., Lesovoj, D. E., Artyuhov, A. A., & Shtilman M. I. (2011). Biodegradiruemye polimernye gidrogeli na osnove proizvodnyh krahmala i polivinilovogo spirta. Uspehi v himii i himicheskoj tehnologii, 3(19), 83-87.
dc.relation.referencesen14. Minko, S. (2006). Responsive Polymer Brushes. J. of Macromolecular Science, Part C: Polymer Reviews, 46, 397-420. DOI: https://doi.org/10.1080/15583720600945402
dc.relation.referencesen15. Suberlyak, O., & Skorokhoda, V. (2018). Hydrogels based on polyvinylpyrrolidone copolymers. Haider & A. Haider (Eds.), Hydrogel, 136-214. London, UK: IntechOpen. DOI: https://doi.org/10.5772/intechopen.72082
dc.relation.referencesen16. Suberlyak, O. V., Baran, N. M., & Yatsul'chak, H. V. (2017). Physicomechanical properties of the films based on polyamide-polyvinylpyrrolidone mixtures. Materials Science, 53(3), 392-397. https://doi.org/10.1007/s11003-017-0087-6
dc.relation.referencesen17. Montheard, J., Chatzopoulos, M., & Chappard, D. (1992). 2-Hydroxyethyl Methacrylate (HEMA): chemical properties and applications in biomedical fields. Journal of Macromolecular Science, 32, 1-34. https://doi.org/10.1080/15321799208018377
dc.relation.referencesen18. Yanez, F., Concheiro, A., & Alvarez-Lorenzo, C. (2008). Macromolecule release and smoothness of semiinterpenetrating PVP-pHEMA networks for comfortable soft contact lenses. Eur. J. Pharm. Biopharm., 69, 1094- 1103. https://doi.org/10.1016/j.ejpb.2008.01.023
dc.relation.referencesen19. Malešić, N., Rusmirović, J., & Jovašević, J. (2014). Antimicrobial Hydrogels Based on 2- hydroxyethylmethacrylate and Itaconic Acid Containing Silver (I) Ion. Tehnika, 69, 563-568. DOI: https://doi.org/10.5937/tehnika1404563M
dc.relation.referencesen20. Prasitsilp, M., Siriwittayakorn, T., Molloy, R., Suebsanit, N., Siriwittayakorn, P., & Veeranondha, S., (2003). Cytotoxicity study of homopolymers and copolymers of 2-hydroxyethyl methacrylate and some alkyl acrylates for potential use as temporary skin substitutes. Journal of Materials Science: Materials in Medicine, 14, 595-600. https://doi.org/10.1023/A:1024066806347
dc.relation.referencesen21. Teodorescu, M., & Bercea, M. (2015). Poly(vinylpyrrolidone) - a versatile polymer for biomedical and beyond medical applications. Polymer-Plastics Technology and Engineering, 54, 923-943. https://doi.org/10.1080/03602559.2014.979506
dc.relation.referencesen22. Baran, N. M., Grytsenko, O. M., Mel'nyk, Yu. Ya., Yatsul'chak, H. V. (2021). Osoblyvosti oderzhannya ta vlastyvosti kombinovanykh hidrohelevykh membran na osnovi polikaproamidu i kopolimeriv polivinilpirolidonu. Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya, 4(2), 203-209. https://doi.org/10.23939/ctas2021.02.203
dc.relation.referencesen23. Baran, N. M., Mel'nyk, Yu. Ya., Suberlyak, S. A., Yatsul'chak, H. V., & Zemke, V. M. (2018). Formuvannya kompozytsiynykh plivkovykh hidrohelevykh membran. Visnyk Natsional'noho universytetu "L'vivs'ka politekhnika". Seriya: Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya, 1(2), 132-135. https://ena.lpnu.ua/handle/ntb/46344
dc.relation.referencesen24. Suberlyak, O., Grytsenko, O., Baran, N., Yatsulchak, G., & Berezhnyy, B. (2020). Formation Features of Tubular Products on the Basis of Composite Hydrogels. Chemistry & Chemical Technology, 14(3), 312-317. https://doi.org/10.23939/chcht14.03.312
dc.relation.referencesen25. Suberlyak, O., Grytsenko, O., & Kochubei, V. (2015). The role of FeSO4 in the obtaining of polyvinylpirolidone copolymers. Chemistry & Chemical Technology, 9, 429-434. DOI: https://doi.org/10.23939/chcht09.04.429
dc.relation.referencesen26. Dubyaga, V. P., Perepechkin, L. P., & Katalevskiy, Ye. Ye. (1981). Polimernyye membrany. Moskva: Khimiya.
dc.relation.referencesen27. Ahmed Enas M., Aggor Fatma S., Awad Ahmed M., & El-Aref Ahmed T. (2013). An innovative method for preparation of nanometal hydroxide superabsorbent hydrogel. Carbohydr Polym., 91, 693-698. https://doi.org/10.1016/j.carbpol.2012.08.056
dc.relation.referencesen28. Suberlyak O. V., Baran N. M., Melnyk Yu. Ya., Grytsenko O. M., & Yaculchak G. V. (2020). Regularities of strengthening of film hydrogel membranes based on 2- hydroxyetylmetacrylate copolymers and polyvinylpyrrolidone. Functional Materials, 27(2), 329-333. DOI: https://doi.org/10.15407/fm27.02.329
dc.relation.urihttps://doi.org/10.1016/j.addr.2012.09.010
dc.relation.urihttps://doi.org/10.1371/journal.pone.0216484
dc.relation.urihttps://doi.org/10.3390/jfb9010013
dc.relation.urihttps://doi.org/10.1515/secm-2017-0161
dc.relation.urihttps://doi.org/10.1080/03602559.2011.593082
dc.relation.urihttps://doi.org/10.15587/978-617-7319-17-6
dc.relation.urihttps://doi.org/10.32434/0321-4095-2021-134-1-45-54
dc.relation.urihttps://doi.org/10.1016/j.reactfunctpolym.2010.05.014
dc.relation.urihttps://doi.org/10.1016/S0032-3861(97)00525-9
dc.relation.urihttps://doi.org/10.1080/15583720600945402
dc.relation.urihttps://doi.org/10.5772/intechopen.72082
dc.relation.urihttps://doi.org/10.1007/s11003-017-0087-6
dc.relation.urihttps://doi.org/10.1080/15321799208018377
dc.relation.urihttps://doi.org/10.1016/j.ejpb.2008.01.023
dc.relation.urihttps://doi.org/10.5937/tehnika1404563M
dc.relation.urihttps://doi.org/10.1023/A:1024066806347
dc.relation.urihttps://doi.org/10.1080/03602559.2014.979506
dc.relation.urihttps://doi.org/10.23939/ctas2021.02.203
dc.relation.urihttps://ena.lpnu.ua/handle/ntb/46344
dc.relation.urihttps://doi.org/10.23939/chcht14.03.312
dc.relation.urihttps://doi.org/10.23939/chcht09.04.429
dc.relation.urihttps://doi.org/10.1016/j.carbpol.2012.08.056
dc.relation.urihttps://doi.org/10.15407/fm27.02.329
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subjectдвошарові мембрани
dc.subjectкомпозиційні гідрогелі
dc.subject2-гідроксіетилметакрилат
dc.subjectполівінілпіролідон
dc.subjectполіамід
dc.subjectмолекулярна маса
dc.subjecttwo-layer membranes
dc.subjectcomposite hydrogels
dc.subject2-hydroxyethylmethacrylate
dc.subjectpolyvinylpyrrolidone
dc.subjectpolyamide
dc.subjectmolecular weight
dc.titleВплив молекулярної маси полівінілпіролідону на сорбційні та фізико-механічні властивості гідрогель/полікапроамідних двошарових мембран
dc.title.alternativeInfluence of polyvinylpyrrolidone molecular weight on the sorption and physical-mechanical properties of hydrogel/polycaproamide two-layer membranes
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2022v5n2_Baran_N_M-Influence_of_polyvinylpyrrolidone_171-177.pdf
Size:
868.89 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2022v5n2_Baran_N_M-Influence_of_polyvinylpyrrolidone_171-177__COVER.png
Size:
462.12 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.85 KB
Format:
Plain Text
Description: