Microprocessor subsystem of the smart house to control the multichannel irrigation of the room plants
dc.citation.epage | 7 | |
dc.citation.issue | 1 | |
dc.citation.spage | 1 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Borak, Taras | |
dc.contributor.author | Kushnir, Dmytro | |
dc.contributor.author | Paramud, Yaroslav | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-04-21T08:27:15Z | |
dc.date.available | 2023-04-21T08:27:15Z | |
dc.date.created | 2022-06-06 | |
dc.date.issued | 2022-06-06 | |
dc.description.abstract | This article develops the principles of building an intelligent home microprocessor subsystem to control the multi-channel irrigation of houseplants. The relevance of this topic has also been substantiated. Currently, there is a small number of devices in demand with a comfortable user interface and timer, which allows to adjust the watering at any time of day. The advantages over other available analogs and the need to create a customized system have been investigated. The developed structuralschematic diagram of the irrigation control system of houseplants based on the Arduino Nano microcontroller and a diagram of the algorithm of the subsystem has been proposed and given. As a result, there has been an example of the development of a subsystem that aims to improve and simplify the care of houseplants, which will save time and water resources. | |
dc.format.extent | 1-7 | |
dc.format.pages | 7 | |
dc.identifier.citation | Borak T. Microprocessor subsystem of the smart house to control the multichannel irrigation of the room plants / Taras Borak, Dmytro Kushnir, Yaroslav Paramud // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 7. — No 1. — P. 1–7. | |
dc.identifier.citationen | Borak T., Kushnir D., Paramud Y. (2022) Microprocessor subsystem of the smart house to control the multichannel irrigation of the room plants. Advances in Cyber-Physical Systems (Lviv), vol. 7, no 1, pp. 1-7. | |
dc.identifier.doi | https://doi.org/10.23939/acps2022.01.001 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/57966 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Advances in Cyber-Physical Systems, 1 (7), 2022 | |
dc.relation.references | [1] M. Makana, N. Nwulu and E. Dogo (2021), “Automated Microcontroller-Based Irrigation System”, Examining the Impact of Deep Learning and IoT on Multi-Industry Applications, 2021, pp. 45–60. DOI: 10.4018/978-1-7998-7511-6.ch004 (Accessed: 18 April 2022). | |
dc.relation.references | [2] Juniper, A. (2018). The Smart Smart Home Handbook: Control Your Home With Your Voice, 75 p. Available at: https://www.amazon.com/Smart-Home-Handbook-ControlVoice/dp/1781575800. (Accessed: 18 April 2022). | |
dc.relation.references | [3] Domb, M. (2019). Smart Home Systems Based on Internet of Things, 89 p. DOI: 10.5772/intechopen.84894. (Accessed: 18 April 2022). | |
dc.relation.references | [4] Robbins, T. (1997). Faculty of Engineering Science, University of Western Ontario. Automatic Plant Watering System, 35 p. Available at: https://books.google.com.ua/books/about/Automatic_Plant_Watering_ System.html. (Accessed: 18 April 2022). | |
dc.relation.references | [5] Almy, T. (2020). Far Inside the Arduino: Nano Every Supplement, 10 p. Available at: https://www.amazon.com/FarInside-Arduino-Every-Supplement/dp/B08GFL6VBF. (Accessed: 18 April 2022). | |
dc.relation.references | [6] Kurniawan, A. (2021). IoT Projects with Arduino Nano 33 BLE Sense, 24 p. Available at: https://www.amazon.com/ProjectsArduino-Sense-Step-Step. | |
dc.relation.references | [7] Blum, J. (2013). “Exploring Arduino: Tools and Techniques for Engineering Wizardry”, CRC Press, 131 p. DOI: 10.30609/jeti.v4i04.13174 (Accessed: 18 April 2022) | |
dc.relation.references | [8] Boxall, J. (2014). Arduino Workshop: A Hands-On Introduction with 65 Projects 1st Edition, 421 p. Available at: https://www.amazon.com/Arduino-Workshop-HandsIntroduction-Projects/dp/1593274483. (Accessed: 18 April 2022). | |
dc.relation.references | [9] K. Chochiang, K. Chaowanawatee, K. Silanon and T. Kliangsuwan (2019). “Arduino Visual Programming”, 2019 23rd International Computer Science and Engineering Conference (ICSEC), 2019, pp. 82–86. DOI: 10.1109/ICSEC47112.2019.8974710. (Accessed: 18 April 2022) | |
dc.relation.references | [10] V. Gurevich (2018). “Electric Relays: Principles and Applications”, CRC Press, 704 p. DOI: 10.1201/9781315221168 (Accessed: 18 April 2022). | |
dc.relation.references | [11] C. Cameron (2019). “Rotary Encoder”, Arduino Applied, 2019, pp. 177–187. DOI: 10.1007/978-1-4842-3960-5_9. (Accessed: 18 April 2022). | |
dc.relation.references | [12] Y. Badamasi (2014). “The working principle of an Arduino”, 2014 11th International Conference on Electronics, Computer and Computation (ICECCO), 2014, pp. 1–4. DOI: 10.1109/ICECCO.2014.6997578. (Accessed: 18 April 2022) | |
dc.relation.references | [13] N. Pavych, T. Pavych (2019). “Method for Time Minimisation of API Requests Service From Cyber-Physical System to Cloud Database Management System”. Advances in Cyber-Physical Systems, 2019, Vol. 4, No 2, pp. 125–131. DOI: 10.23939/acps2019.02.125. (Accessed: 18 April 2022). | |
dc.relation.references | [14] N. Pavych and V. Zahurskii (2021), “Software Architecture for Analyzing the Impact of News on the Stock Market”, 2021 11th International Conference on Advanced Computer Information Technologies (ACIT), 2021, pp. 613–617. DOI: 10.1109/ACIT52158.2021.9548457. (Accessed: 18 April 2022). | |
dc.relation.referencesen | [1] M. Makana, N. Nwulu and E. Dogo (2021), "Automated Microcontroller-Based Irrigation System", Examining the Impact of Deep Learning and IoT on Multi-Industry Applications, 2021, pp. 45–60. DOI: 10.4018/978-1-7998-7511-6.ch004 (Accessed: 18 April 2022). | |
dc.relation.referencesen | [2] Juniper, A. (2018). The Smart Smart Home Handbook: Control Your Home With Your Voice, 75 p. Available at: https://www.amazon.com/Smart-Home-Handbook-ControlVoice/dp/1781575800. (Accessed: 18 April 2022). | |
dc.relation.referencesen | [3] Domb, M. (2019). Smart Home Systems Based on Internet of Things, 89 p. DOI: 10.5772/intechopen.84894. (Accessed: 18 April 2022). | |
dc.relation.referencesen | [4] Robbins, T. (1997). Faculty of Engineering Science, University of Western Ontario. Automatic Plant Watering System, 35 p. Available at: https://books.google.com.ua/books/about/Automatic_Plant_Watering_ System.html. (Accessed: 18 April 2022). | |
dc.relation.referencesen | [5] Almy, T. (2020). Far Inside the Arduino: Nano Every Supplement, 10 p. Available at: https://www.amazon.com/FarInside-Arduino-Every-Supplement/dp/B08GFL6VBF. (Accessed: 18 April 2022). | |
dc.relation.referencesen | [6] Kurniawan, A. (2021). IoT Projects with Arduino Nano 33 BLE Sense, 24 p. Available at: https://www.amazon.com/ProjectsArduino-Sense-Step-Step. | |
dc.relation.referencesen | [7] Blum, J. (2013). "Exploring Arduino: Tools and Techniques for Engineering Wizardry", CRC Press, 131 p. DOI: 10.30609/jeti.v4i04.13174 (Accessed: 18 April 2022) | |
dc.relation.referencesen | [8] Boxall, J. (2014). Arduino Workshop: A Hands-On Introduction with 65 Projects 1st Edition, 421 p. Available at: https://www.amazon.com/Arduino-Workshop-HandsIntroduction-Projects/dp/1593274483. (Accessed: 18 April 2022). | |
dc.relation.referencesen | [9] K. Chochiang, K. Chaowanawatee, K. Silanon and T. Kliangsuwan (2019). "Arduino Visual Programming", 2019 23rd International Computer Science and Engineering Conference (ICSEC), 2019, pp. 82–86. DOI: 10.1109/ICSEC47112.2019.8974710. (Accessed: 18 April 2022) | |
dc.relation.referencesen | [10] V. Gurevich (2018). "Electric Relays: Principles and Applications", CRC Press, 704 p. DOI: 10.1201/9781315221168 (Accessed: 18 April 2022). | |
dc.relation.referencesen | [11] C. Cameron (2019). "Rotary Encoder", Arduino Applied, 2019, pp. 177–187. DOI: 10.1007/978-1-4842-3960-5_9. (Accessed: 18 April 2022). | |
dc.relation.referencesen | [12] Y. Badamasi (2014). "The working principle of an Arduino", 2014 11th International Conference on Electronics, Computer and Computation (ICECCO), 2014, pp. 1–4. DOI: 10.1109/ICECCO.2014.6997578. (Accessed: 18 April 2022) | |
dc.relation.referencesen | [13] N. Pavych, T. Pavych (2019). "Method for Time Minimisation of API Requests Service From Cyber-Physical System to Cloud Database Management System". Advances in Cyber-Physical Systems, 2019, Vol. 4, No 2, pp. 125–131. DOI: 10.23939/acps2019.02.125. (Accessed: 18 April 2022). | |
dc.relation.referencesen | [14] N. Pavych and V. Zahurskii (2021), "Software Architecture for Analyzing the Impact of News on the Stock Market", 2021 11th International Conference on Advanced Computer Information Technologies (ACIT), 2021, pp. 613–617. DOI: 10.1109/ACIT52158.2021.9548457. (Accessed: 18 April 2022). | |
dc.relation.uri | https://www.amazon.com/Smart-Home-Handbook-ControlVoice/dp/1781575800 | |
dc.relation.uri | https://books.google.com.ua/books/about/Automatic_Plant_Watering_ | |
dc.relation.uri | https://www.amazon.com/FarInside-Arduino-Every-Supplement/dp/B08GFL6VBF | |
dc.relation.uri | https://www.amazon.com/ProjectsArduino-Sense-Step-Step | |
dc.relation.uri | https://www.amazon.com/Arduino-Workshop-HandsIntroduction-Projects/dp/1593274483 | |
dc.rights.holder | © Національний університет „Львівська політехніка“, 2022 | |
dc.rights.holder | © Borak T., Kushnir D., Paramud Y., 2022 | |
dc.subject | computer system | |
dc.subject | smart home | |
dc.subject | multichannel watering | |
dc.subject | microprocessor | |
dc.title | Microprocessor subsystem of the smart house to control the multichannel irrigation of the room plants | |
dc.type | Article |