Checking the possibilities of the classic technology of chemical metalization of polymer granules
dc.citation.epage | 153 | |
dc.citation.issue | 1 | |
dc.citation.journalTitle | Хімія, технологія речовин та їх застосування | |
dc.citation.spage | 148 | |
dc.citation.volume | 6 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Технічний університет Кошице | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.affiliation | Technical University in Košice | |
dc.contributor.author | Кучеренко, А. М. | |
dc.contributor.author | Гайдос, І. | |
dc.contributor.author | Кузнецова, М. Я. | |
dc.contributor.author | Моравський, В. С. | |
dc.contributor.author | Kucherenko, A. M. | |
dc.contributor.author | Gajdos, I. | |
dc.contributor.author | Kuznetsova, M. Y. | |
dc.contributor.author | Moravskyi, V. S. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-02-09T09:24:46Z | |
dc.date.available | 2024-02-09T09:24:46Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Досліджено можливість одержання металізованих гранул високотонажних полімерів із використанням класичної технології металізації. Показано, що дана технологія є не ефективною під час металізації поліетилену і поліпропілену. Певні позитивні моменти під час металізації вдалося досягти лише у випадку полівінілхлоридних гранул. Встановлено, що обробка гранул різними за природою травильними агентами не призводить до суттєвої зміни поверхневих властивостей, чим і можна пояснити низьку ефективність класичної технології під час металізації гранул поліетилену, поліпропілену і полівінілхлориду. | |
dc.description.abstract | The possibility of obtaining metallized granules of high-tonnage polymers using classical metallization technology was studied. It is shown that this technology is not effective during the metallization of polyethylene and polypropylene. Certain positive points during metallization were achieved only in the case of polyvinyl chloride granules. It was established that the treatment of granules with etching agents of different nature does not lead to a significant change in surface properties, which can explain the low efficiency of classical technology during the metallization of polyethylene, polypropylene and polyvinyl chloride granules. | |
dc.format.extent | 148-153 | |
dc.format.pages | 6 | |
dc.identifier.citation | Checking the possibilities of the classic technology of chemical metalization of polymer granules / A. M. Kucherenko, I. Gajdos, M. Y. Kuznetsova, V. S. Moravskyi // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 6. — No 1. — P. 148–153. | |
dc.identifier.citationen | Checking the possibilities of the classic technology of chemical metalization of polymer granules / A. M. Kucherenko, I. Gajdos, M. Y. Kuznetsova, V. S. Moravskyi // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 6. — No 1. — P. 148–153. | |
dc.identifier.doi | doi.org/10.23939/ctas2023.01.148 | |
dc.identifier.issn | 2617-7307 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61186 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Хімія, технологія речовин та їх застосування, 1 (6), 2023 | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 1 (6), 2023 | |
dc.relation.references | 1. Wang, L., Yang, C., Wang, X., Shen, J., Sun, W., Wang, J., Yang, G., Cheng, Y., Wang, Z. (2023). Advances in polymers and composite dielectrics for thermal transport and high-temperature applications. Composites Part A: Applied Science and Manufacturing, 164, 107320. https://doi.org/10.1016/j.compositesa.2022.107320. | |
dc.relation.references | 2. Kim, K., Ju, H., Kim, J. (2016). Filler orientation of boron nitride composite via external electric field for thermal conductivity enhancement. Ceramics International, 42:7, 8657–8663. https://doi.org/10.1016/j.ceramint.2016. 02.098. | |
dc.relation.references | 3. Wei, Z., Xie, W., Ge, B., Zhang, Z., Yang, W., Xia. H., Wang, B., Jin, H., Gao, N., Shi, Z. (2020). Enhanced thermal conductivity of epoxy composites by constructing aluminum nitride honeycomb reinforcements. Composites Science and Technology, 199, 108304. https://doi.org/10.1016/j.compscitech.2020.108304. | |
dc.relation.references | 4. Guo, H., Hu, B., Wang, Q., Liu, J., Li, M., Li, B. (2023). Horizontally aligned graphene/silver heterostructure for anisotropically highly thermoconductive polymer-based composites by stress-induced assembly. Applied Surface Science, 615, 156404. https://doi.org/10.1016/j.apsusc.2023.156404. | |
dc.relation.references | 5. Dharani, K. S., Aravindh, M., Manoj, V. K., Madhumithra, C., Kaviya, P., Yaswanth, S. (2023). Fracture toughness of bio-fiber reinforced polymer composites- a review. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.01.334. | |
dc.relation.references | 6. Arun, R. R., Gautham, V., Mavinkere, R. S., Suchart, S. (2023). 5 – Physical modification of cellulose fiber surfaces, Ed: R. ArunRamnath, Mavinkere Rangappa Sanjay, Suchart Siengchin, Vincenzo Fiore. In Woodhead Publishing Series in Composites Science and Engineering, Cellulose Fibre Reinforced Composites, Woodhead Publishing. https://doi.org/10.1016/B978-0-323-90125-3.00016-1. | |
dc.relation.references | 7. Yadav, V., Singh, S., Chaudhary, N., Garg, M. P., Sharma, S., Kumar, A., Li, C., Eldin, E. M. (2023). Dry sliding wear characteristics of natural fibre reinforced polylactic acid composites for engineering applications: Fabrication, properties and characterizations. Journal of Materials Research and Technology, 23, 1189–1203. https://doi.org/10.1016/j.jmrt.2023.01.006. | |
dc.relation.references | 8. Tan. Q., Li, F., Liu, L., Liu, Y., Leng, J. (2023). Effects of vacuum thermal cycling, ultraviolet radiation and atomic oxygen on the mechanical properties of carbon fiber/ epoxy shape memory polymer composite. Polymer Testing, 118, 107915. https://doi.org/10.1016/j.polymertesting.2022.107915. | |
dc.relation.references | 9. Jithin, K. F., Thankachan, T. P., Mathew, J., Mervin, J. T., Kurian, J. (2023). Investigations on mechanical properties of wood composite for sustainable manufacturing. Materials Today: Proceedings, 72:6, 3111–3115. https://doi.org/10.1016/j.matpr.2022.09.428. | |
dc.relation.references | 10. Upadhyay, P., Rajput, V., Rajput, P. S., Mishra, V., KhanI, A., Jha, A., Agrawal, A. (2023). Physical, mechanical and sliding wear behaviour of epoxy composites filled with micro-sized marble dust composites. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.01.276. | |
dc.relation.references | 11. Fu, X., Lin, J., Liang, Z., Yao. R.,Wu,W., Fang, Z., Zou,W.,Wu, Z., Ning, H., Peng, J. (2023). Graphene oxide as a promising nanofiller for polymer composite. Surfaces and Interfaces, 37, 102747. https://doi.org/10.1016/j.surfin.2023.102747. | |
dc.relation.references | 12. Benltifa, M., Brahmi, C., Dumur, F., Limousy, L., Bousselmi, L., Lalevée, J. (2022). A comparison study of the photocatalytic efficiency of different developed photocatalysts/ polymer composites. European Polymer Journal, 181, 111660. https://doi.org/10.1016/j.eurpolymj.2022.111660. | |
dc.relation.references | 13. Kim, K. J., Rhee, M. H., Choi, B. I. (2009). Development of application technique of aluminum sandwich sheets for automotive hood. Int. J. Precis. Eng. Manuf, 10, 71–75. https://doi.org/10.1007/s12541-009-0073-5. | |
dc.relation.references | 14. Sun, G., Chen, D., Zhu, G., Li, Q. (2022). Lightweight hybrid materials and structures for energy absorption: A state-of-the-art review and outlook. Thin-Walled Structures, 172, 108760. https://doi.org/10.1016/j.tws.2021.108760. | |
dc.relation.references | 15. Pokkalla, D. K., Hassen, A. A., Nuttall, D., Tsiamis, N., Rencheck, M. L., Kumar, V., Nandwana, P., Joslin, C. B., Blanchard, P., Tamhankar, S. L., Maloney, P., Kunc, V., Kim, S. (2023). A novel additive manufacturing compression overmolding process for hybrid metal polymer composite structures. Additive Manufacturing Letters, 5, 100128. https://doi.org/10.1016/j.addlet.2023.100128. | |
dc.relation.references | 16. Kucherenko, А. N., Mankevych, S. О., Kuznetsova, М. Ya., Moravskyi, V. S. (2020). Peculiarities of metalization of pulled polyethylene. Chemistry, technology and application of substances, 3:2, 140–145. https://doi.org/10.23939/ctas2020.02.140. | |
dc.relation.references | 17. Kucherenko, А., Dovha, Y., Kuznetsova, M., Moravskyi, V. (2022). Analysis of processes which occur during the destruction of a copper shell formed on polyethylene granules. Chemistry, technology and application of substances, 5:1, 186–192. https://doi.org/10.23939/ctas2022.01.186. | |
dc.relation.references | 18. Moravskyi, V., Kucherenko, A., Kuznetsova, M., Dulebova, L., Spišák, E. (2022). Obtainment and characterization of metal-coated polyethylene granules asabasis for the developmen to fheatstorage systems. Polymers, 14:1, 218. https://doi.org/10.3390/polym14010218. | |
dc.relation.references | 19. Moravskyi, V., Kucherenko. A., Kuznetsova, M., Dulebova, L., Spišák, E.,Majerníková, J. (2020). Utilization of Polypropylene in the Production of Metal-Filled Polymer Composites: Development and Characteristics. Materials, 13, 2856. https://doi.org/10.3390/ma13122856. | |
dc.relation.referencesen | 1. Wang, L., Yang, C., Wang, X., Shen, J., Sun, W., Wang, J., Yang, G., Cheng, Y., Wang, Z. (2023). Advances in polymers and composite dielectrics for thermal transport and high-temperature applications. Composites Part A: Applied Science and Manufacturing, 164, 107320. https://doi.org/10.1016/j.compositesa.2022.107320. | |
dc.relation.referencesen | 2. Kim, K., Ju, H., Kim, J. (2016). Filler orientation of boron nitride composite via external electric field for thermal conductivity enhancement. Ceramics International, 42:7, 8657–8663. https://doi.org/10.1016/j.ceramint.2016. 02.098. | |
dc.relation.referencesen | 3. Wei, Z., Xie, W., Ge, B., Zhang, Z., Yang, W., Xia. H., Wang, B., Jin, H., Gao, N., Shi, Z. (2020). Enhanced thermal conductivity of epoxy composites by constructing aluminum nitride honeycomb reinforcements. Composites Science and Technology, 199, 108304. https://doi.org/10.1016/j.compscitech.2020.108304. | |
dc.relation.referencesen | 4. Guo, H., Hu, B., Wang, Q., Liu, J., Li, M., Li, B. (2023). Horizontally aligned graphene/silver heterostructure for anisotropically highly thermoconductive polymer-based composites by stress-induced assembly. Applied Surface Science, 615, 156404. https://doi.org/10.1016/j.apsusc.2023.156404. | |
dc.relation.referencesen | 5. Dharani, K. S., Aravindh, M., Manoj, V. K., Madhumithra, C., Kaviya, P., Yaswanth, S. (2023). Fracture toughness of bio-fiber reinforced polymer composites- a review. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.01.334. | |
dc.relation.referencesen | 6. Arun, R. R., Gautham, V., Mavinkere, R. S., Suchart, S. (2023). 5 – Physical modification of cellulose fiber surfaces, Ed: R. ArunRamnath, Mavinkere Rangappa Sanjay, Suchart Siengchin, Vincenzo Fiore. In Woodhead Publishing Series in Composites Science and Engineering, Cellulose Fibre Reinforced Composites, Woodhead Publishing. https://doi.org/10.1016/B978-0-323-90125-3.00016-1. | |
dc.relation.referencesen | 7. Yadav, V., Singh, S., Chaudhary, N., Garg, M. P., Sharma, S., Kumar, A., Li, C., Eldin, E. M. (2023). Dry sliding wear characteristics of natural fibre reinforced polylactic acid composites for engineering applications: Fabrication, properties and characterizations. Journal of Materials Research and Technology, 23, 1189–1203. https://doi.org/10.1016/j.jmrt.2023.01.006. | |
dc.relation.referencesen | 8. Tan. Q., Li, F., Liu, L., Liu, Y., Leng, J. (2023). Effects of vacuum thermal cycling, ultraviolet radiation and atomic oxygen on the mechanical properties of carbon fiber/ epoxy shape memory polymer composite. Polymer Testing, 118, 107915. https://doi.org/10.1016/j.polymertesting.2022.107915. | |
dc.relation.referencesen | 9. Jithin, K. F., Thankachan, T. P., Mathew, J., Mervin, J. T., Kurian, J. (2023). Investigations on mechanical properties of wood composite for sustainable manufacturing. Materials Today: Proceedings, 72:6, 3111–3115. https://doi.org/10.1016/j.matpr.2022.09.428. | |
dc.relation.referencesen | 10. Upadhyay, P., Rajput, V., Rajput, P. S., Mishra, V., KhanI, A., Jha, A., Agrawal, A. (2023). Physical, mechanical and sliding wear behaviour of epoxy composites filled with micro-sized marble dust composites. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.01.276. | |
dc.relation.referencesen | 11. Fu, X., Lin, J., Liang, Z., Yao. R.,Wu,W., Fang, Z., Zou,W.,Wu, Z., Ning, H., Peng, J. (2023). Graphene oxide as a promising nanofiller for polymer composite. Surfaces and Interfaces, 37, 102747. https://doi.org/10.1016/j.surfin.2023.102747. | |
dc.relation.referencesen | 12. Benltifa, M., Brahmi, C., Dumur, F., Limousy, L., Bousselmi, L., Lalevée, J. (2022). A comparison study of the photocatalytic efficiency of different developed photocatalysts/ polymer composites. European Polymer Journal, 181, 111660. https://doi.org/10.1016/j.eurpolymj.2022.111660. | |
dc.relation.referencesen | 13. Kim, K. J., Rhee, M. H., Choi, B. I. (2009). Development of application technique of aluminum sandwich sheets for automotive hood. Int. J. Precis. Eng. Manuf, 10, 71–75. https://doi.org/10.1007/s12541-009-0073-5. | |
dc.relation.referencesen | 14. Sun, G., Chen, D., Zhu, G., Li, Q. (2022). Lightweight hybrid materials and structures for energy absorption: A state-of-the-art review and outlook. Thin-Walled Structures, 172, 108760. https://doi.org/10.1016/j.tws.2021.108760. | |
dc.relation.referencesen | 15. Pokkalla, D. K., Hassen, A. A., Nuttall, D., Tsiamis, N., Rencheck, M. L., Kumar, V., Nandwana, P., Joslin, C. B., Blanchard, P., Tamhankar, S. L., Maloney, P., Kunc, V., Kim, S. (2023). A novel additive manufacturing compression overmolding process for hybrid metal polymer composite structures. Additive Manufacturing Letters, 5, 100128. https://doi.org/10.1016/j.addlet.2023.100128. | |
dc.relation.referencesen | 16. Kucherenko, A. N., Mankevych, S. O., Kuznetsova, M. Ya., Moravskyi, V. S. (2020). Peculiarities of metalization of pulled polyethylene. Chemistry, technology and application of substances, 3:2, 140–145. https://doi.org/10.23939/ctas2020.02.140. | |
dc.relation.referencesen | 17. Kucherenko, A., Dovha, Y., Kuznetsova, M., Moravskyi, V. (2022). Analysis of processes which occur during the destruction of a copper shell formed on polyethylene granules. Chemistry, technology and application of substances, 5:1, 186–192. https://doi.org/10.23939/ctas2022.01.186. | |
dc.relation.referencesen | 18. Moravskyi, V., Kucherenko, A., Kuznetsova, M., Dulebova, L., Spišák, E. (2022). Obtainment and characterization of metal-coated polyethylene granules asabasis for the developmen to fheatstorage systems. Polymers, 14:1, 218. https://doi.org/10.3390/polym14010218. | |
dc.relation.referencesen | 19. Moravskyi, V., Kucherenko. A., Kuznetsova, M., Dulebova, L., Spišák, E.,Majerníková, J. (2020). Utilization of Polypropylene in the Production of Metal-Filled Polymer Composites: Development and Characteristics. Materials, 13, 2856. https://doi.org/10.3390/ma13122856. | |
dc.relation.uri | https://doi.org/10.1016/j.compositesa.2022.107320 | |
dc.relation.uri | https://doi.org/10.1016/j.ceramint.2016 | |
dc.relation.uri | https://doi.org/10.1016/j.compscitech.2020.108304 | |
dc.relation.uri | https://doi.org/10.1016/j.apsusc.2023.156404 | |
dc.relation.uri | https://doi.org/10.1016/j.matpr.2023.01.334 | |
dc.relation.uri | https://doi.org/10.1016/B978-0-323-90125-3.00016-1 | |
dc.relation.uri | https://doi.org/10.1016/j.jmrt.2023.01.006 | |
dc.relation.uri | https://doi.org/10.1016/j.polymertesting.2022.107915 | |
dc.relation.uri | https://doi.org/10.1016/j.matpr.2022.09.428 | |
dc.relation.uri | https://doi.org/10.1016/j.matpr.2023.01.276 | |
dc.relation.uri | https://doi.org/10.1016/j.surfin.2023.102747 | |
dc.relation.uri | https://doi.org/10.1016/j.eurpolymj.2022.111660 | |
dc.relation.uri | https://doi.org/10.1007/s12541-009-0073-5 | |
dc.relation.uri | https://doi.org/10.1016/j.tws.2021.108760 | |
dc.relation.uri | https://doi.org/10.1016/j.addlet.2023.100128 | |
dc.relation.uri | https://doi.org/10.23939/ctas2020.02.140 | |
dc.relation.uri | https://doi.org/10.23939/ctas2022.01.186 | |
dc.relation.uri | https://doi.org/10.3390/polym14010218 | |
dc.relation.uri | https://doi.org/10.3390/ma13122856 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.subject | металізація | |
dc.subject | мідь | |
dc.subject | поверхневий натяг | |
dc.subject | поліетилен | |
dc.subject | поліпропілен | |
dc.subject | полівінілхлорид | |
dc.subject | metallization | |
dc.subject | copper | |
dc.subject | surface tension | |
dc.subject | polyethylene | |
dc.subject | polypropylene | |
dc.subject | polyvinyl chloride | |
dc.title | Checking the possibilities of the classic technology of chemical metalization of polymer granules | |
dc.title.alternative | Перевірка можливостей класичної технології хімічної металізації гранул полімерів | |
dc.type | Article |
Files
License bundle
1 - 1 of 1