Checking the possibilities of the classic technology of chemical metalization of polymer granules

dc.citation.epage153
dc.citation.issue1
dc.citation.journalTitleХімія, технологія речовин та їх застосування
dc.citation.spage148
dc.citation.volume6
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationТехнічний університет Кошице
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationTechnical University in Košice
dc.contributor.authorКучеренко, А. М.
dc.contributor.authorГайдос, І.
dc.contributor.authorКузнецова, М. Я.
dc.contributor.authorМоравський, В. С.
dc.contributor.authorKucherenko, A. M.
dc.contributor.authorGajdos, I.
dc.contributor.authorKuznetsova, M. Y.
dc.contributor.authorMoravskyi, V. S.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-09T09:24:46Z
dc.date.available2024-02-09T09:24:46Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractДосліджено можливість одержання металізованих гранул високотонажних полімерів із використанням класичної технології металізації. Показано, що дана технологія є не ефективною під час металізації поліетилену і поліпропілену. Певні позитивні моменти під час металізації вдалося досягти лише у випадку полівінілхлоридних гранул. Встановлено, що обробка гранул різними за природою травильними агентами не призводить до суттєвої зміни поверхневих властивостей, чим і можна пояснити низьку ефективність класичної технології під час металізації гранул поліетилену, поліпропілену і полівінілхлориду.
dc.description.abstractThe possibility of obtaining metallized granules of high-tonnage polymers using classical metallization technology was studied. It is shown that this technology is not effective during the metallization of polyethylene and polypropylene. Certain positive points during metallization were achieved only in the case of polyvinyl chloride granules. It was established that the treatment of granules with etching agents of different nature does not lead to a significant change in surface properties, which can explain the low efficiency of classical technology during the metallization of polyethylene, polypropylene and polyvinyl chloride granules.
dc.format.extent148-153
dc.format.pages6
dc.identifier.citationChecking the possibilities of the classic technology of chemical metalization of polymer granules / A. M. Kucherenko, I. Gajdos, M. Y. Kuznetsova, V. S. Moravskyi // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 6. — No 1. — P. 148–153.
dc.identifier.citationenChecking the possibilities of the classic technology of chemical metalization of polymer granules / A. M. Kucherenko, I. Gajdos, M. Y. Kuznetsova, V. S. Moravskyi // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 6. — No 1. — P. 148–153.
dc.identifier.doidoi.org/10.23939/ctas2023.01.148
dc.identifier.issn2617-7307
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61186
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofХімія, технологія речовин та їх застосування, 1 (6), 2023
dc.relation.ispartofChemistry, Technology and Application of Substances, 1 (6), 2023
dc.relation.references1. Wang, L., Yang, C., Wang, X., Shen, J., Sun, W., Wang, J., Yang, G., Cheng, Y., Wang, Z. (2023). Advances in polymers and composite dielectrics for thermal transport and high-temperature applications. Composites Part A: Applied Science and Manufacturing, 164, 107320. https://doi.org/10.1016/j.compositesa.2022.107320.
dc.relation.references2. Kim, K., Ju, H., Kim, J. (2016). Filler orientation of boron nitride composite via external electric field for thermal conductivity enhancement. Ceramics International, 42:7, 8657–8663. https://doi.org/10.1016/j.ceramint.2016. 02.098.
dc.relation.references3. Wei, Z., Xie, W., Ge, B., Zhang, Z., Yang, W., Xia. H., Wang, B., Jin, H., Gao, N., Shi, Z. (2020). Enhanced thermal conductivity of epoxy composites by constructing aluminum nitride honeycomb reinforcements. Composites Science and Technology, 199, 108304. https://doi.org/10.1016/j.compscitech.2020.108304.
dc.relation.references4. Guo, H., Hu, B., Wang, Q., Liu, J., Li, M., Li, B. (2023). Horizontally aligned graphene/silver heterostructure for anisotropically highly thermoconductive polymer-based composites by stress-induced assembly. Applied Surface Science, 615, 156404. https://doi.org/10.1016/j.apsusc.2023.156404.
dc.relation.references5. Dharani, K. S., Aravindh, M., Manoj, V. K., Madhumithra, C., Kaviya, P., Yaswanth, S. (2023). Fracture toughness of bio-fiber reinforced polymer composites- a review. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.01.334.
dc.relation.references6. Arun, R. R., Gautham, V., Mavinkere, R. S., Suchart, S. (2023). 5 – Physical modification of cellulose fiber surfaces, Ed: R. ArunRamnath, Mavinkere Rangappa Sanjay, Suchart Siengchin, Vincenzo Fiore. In Woodhead Publishing Series in Composites Science and Engineering, Cellulose Fibre Reinforced Composites, Woodhead Publishing. https://doi.org/10.1016/B978-0-323-90125-3.00016-1.
dc.relation.references7. Yadav, V., Singh, S., Chaudhary, N., Garg, M. P., Sharma, S., Kumar, A., Li, C., Eldin, E. M. (2023). Dry sliding wear characteristics of natural fibre reinforced polylactic acid composites for engineering applications: Fabrication, properties and characterizations. Journal of Materials Research and Technology, 23, 1189–1203. https://doi.org/10.1016/j.jmrt.2023.01.006.
dc.relation.references8. Tan. Q., Li, F., Liu, L., Liu, Y., Leng, J. (2023). Effects of vacuum thermal cycling, ultraviolet radiation and atomic oxygen on the mechanical properties of carbon fiber/ epoxy shape memory polymer composite. Polymer Testing, 118, 107915. https://doi.org/10.1016/j.polymertesting.2022.107915.
dc.relation.references9. Jithin, K. F., Thankachan, T. P., Mathew, J., Mervin, J. T., Kurian, J. (2023). Investigations on mechanical properties of wood composite for sustainable manufacturing. Materials Today: Proceedings, 72:6, 3111–3115. https://doi.org/10.1016/j.matpr.2022.09.428.
dc.relation.references10. Upadhyay, P., Rajput, V., Rajput, P. S., Mishra, V., KhanI, A., Jha, A., Agrawal, A. (2023). Physical, mechanical and sliding wear behaviour of epoxy composites filled with micro-sized marble dust composites. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.01.276.
dc.relation.references11. Fu, X., Lin, J., Liang, Z., Yao. R.,Wu,W., Fang, Z., Zou,W.,Wu, Z., Ning, H., Peng, J. (2023). Graphene oxide as a promising nanofiller for polymer composite. Surfaces and Interfaces, 37, 102747. https://doi.org/10.1016/j.surfin.2023.102747.
dc.relation.references12. Benltifa, M., Brahmi, C., Dumur, F., Limousy, L., Bousselmi, L., Lalevée, J. (2022). A comparison study of the photocatalytic efficiency of different developed photocatalysts/ polymer composites. European Polymer Journal, 181, 111660. https://doi.org/10.1016/j.eurpolymj.2022.111660.
dc.relation.references13. Kim, K. J., Rhee, M. H., Choi, B. I. (2009). Development of application technique of aluminum sandwich sheets for automotive hood. Int. J. Precis. Eng. Manuf, 10, 71–75. https://doi.org/10.1007/s12541-009-0073-5.
dc.relation.references14. Sun, G., Chen, D., Zhu, G., Li, Q. (2022). Lightweight hybrid materials and structures for energy absorption: A state-of-the-art review and outlook. Thin-Walled Structures, 172, 108760. https://doi.org/10.1016/j.tws.2021.108760.
dc.relation.references15. Pokkalla, D. K., Hassen, A. A., Nuttall, D., Tsiamis, N., Rencheck, M. L., Kumar, V., Nandwana, P., Joslin, C. B., Blanchard, P., Tamhankar, S. L., Maloney, P., Kunc, V., Kim, S. (2023). A novel additive manufacturing compression overmolding process for hybrid metal polymer composite structures. Additive Manufacturing Letters, 5, 100128. https://doi.org/10.1016/j.addlet.2023.100128.
dc.relation.references16. Kucherenko, А. N., Mankevych, S. О., Kuznetsova, М. Ya., Moravskyi, V. S. (2020). Peculiarities of metalization of pulled polyethylene. Chemistry, technology and application of substances, 3:2, 140–145. https://doi.org/10.23939/ctas2020.02.140.
dc.relation.references17. Kucherenko, А., Dovha, Y., Kuznetsova, M., Moravskyi, V. (2022). Analysis of processes which occur during the destruction of a copper shell formed on polyethylene granules. Chemistry, technology and application of substances, 5:1, 186–192. https://doi.org/10.23939/ctas2022.01.186.
dc.relation.references18. Moravskyi, V., Kucherenko, A., Kuznetsova, M., Dulebova, L., Spišák, E. (2022). Obtainment and characterization of metal-coated polyethylene granules asabasis for the developmen to fheatstorage systems. Polymers, 14:1, 218. https://doi.org/10.3390/polym14010218.
dc.relation.references19. Moravskyi, V., Kucherenko. A., Kuznetsova, M., Dulebova, L., Spišák, E.,Majerníková, J. (2020). Utilization of Polypropylene in the Production of Metal-Filled Polymer Composites: Development and Characteristics. Materials, 13, 2856. https://doi.org/10.3390/ma13122856.
dc.relation.referencesen1. Wang, L., Yang, C., Wang, X., Shen, J., Sun, W., Wang, J., Yang, G., Cheng, Y., Wang, Z. (2023). Advances in polymers and composite dielectrics for thermal transport and high-temperature applications. Composites Part A: Applied Science and Manufacturing, 164, 107320. https://doi.org/10.1016/j.compositesa.2022.107320.
dc.relation.referencesen2. Kim, K., Ju, H., Kim, J. (2016). Filler orientation of boron nitride composite via external electric field for thermal conductivity enhancement. Ceramics International, 42:7, 8657–8663. https://doi.org/10.1016/j.ceramint.2016. 02.098.
dc.relation.referencesen3. Wei, Z., Xie, W., Ge, B., Zhang, Z., Yang, W., Xia. H., Wang, B., Jin, H., Gao, N., Shi, Z. (2020). Enhanced thermal conductivity of epoxy composites by constructing aluminum nitride honeycomb reinforcements. Composites Science and Technology, 199, 108304. https://doi.org/10.1016/j.compscitech.2020.108304.
dc.relation.referencesen4. Guo, H., Hu, B., Wang, Q., Liu, J., Li, M., Li, B. (2023). Horizontally aligned graphene/silver heterostructure for anisotropically highly thermoconductive polymer-based composites by stress-induced assembly. Applied Surface Science, 615, 156404. https://doi.org/10.1016/j.apsusc.2023.156404.
dc.relation.referencesen5. Dharani, K. S., Aravindh, M., Manoj, V. K., Madhumithra, C., Kaviya, P., Yaswanth, S. (2023). Fracture toughness of bio-fiber reinforced polymer composites- a review. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.01.334.
dc.relation.referencesen6. Arun, R. R., Gautham, V., Mavinkere, R. S., Suchart, S. (2023). 5 – Physical modification of cellulose fiber surfaces, Ed: R. ArunRamnath, Mavinkere Rangappa Sanjay, Suchart Siengchin, Vincenzo Fiore. In Woodhead Publishing Series in Composites Science and Engineering, Cellulose Fibre Reinforced Composites, Woodhead Publishing. https://doi.org/10.1016/B978-0-323-90125-3.00016-1.
dc.relation.referencesen7. Yadav, V., Singh, S., Chaudhary, N., Garg, M. P., Sharma, S., Kumar, A., Li, C., Eldin, E. M. (2023). Dry sliding wear characteristics of natural fibre reinforced polylactic acid composites for engineering applications: Fabrication, properties and characterizations. Journal of Materials Research and Technology, 23, 1189–1203. https://doi.org/10.1016/j.jmrt.2023.01.006.
dc.relation.referencesen8. Tan. Q., Li, F., Liu, L., Liu, Y., Leng, J. (2023). Effects of vacuum thermal cycling, ultraviolet radiation and atomic oxygen on the mechanical properties of carbon fiber/ epoxy shape memory polymer composite. Polymer Testing, 118, 107915. https://doi.org/10.1016/j.polymertesting.2022.107915.
dc.relation.referencesen9. Jithin, K. F., Thankachan, T. P., Mathew, J., Mervin, J. T., Kurian, J. (2023). Investigations on mechanical properties of wood composite for sustainable manufacturing. Materials Today: Proceedings, 72:6, 3111–3115. https://doi.org/10.1016/j.matpr.2022.09.428.
dc.relation.referencesen10. Upadhyay, P., Rajput, V., Rajput, P. S., Mishra, V., KhanI, A., Jha, A., Agrawal, A. (2023). Physical, mechanical and sliding wear behaviour of epoxy composites filled with micro-sized marble dust composites. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.01.276.
dc.relation.referencesen11. Fu, X., Lin, J., Liang, Z., Yao. R.,Wu,W., Fang, Z., Zou,W.,Wu, Z., Ning, H., Peng, J. (2023). Graphene oxide as a promising nanofiller for polymer composite. Surfaces and Interfaces, 37, 102747. https://doi.org/10.1016/j.surfin.2023.102747.
dc.relation.referencesen12. Benltifa, M., Brahmi, C., Dumur, F., Limousy, L., Bousselmi, L., Lalevée, J. (2022). A comparison study of the photocatalytic efficiency of different developed photocatalysts/ polymer composites. European Polymer Journal, 181, 111660. https://doi.org/10.1016/j.eurpolymj.2022.111660.
dc.relation.referencesen13. Kim, K. J., Rhee, M. H., Choi, B. I. (2009). Development of application technique of aluminum sandwich sheets for automotive hood. Int. J. Precis. Eng. Manuf, 10, 71–75. https://doi.org/10.1007/s12541-009-0073-5.
dc.relation.referencesen14. Sun, G., Chen, D., Zhu, G., Li, Q. (2022). Lightweight hybrid materials and structures for energy absorption: A state-of-the-art review and outlook. Thin-Walled Structures, 172, 108760. https://doi.org/10.1016/j.tws.2021.108760.
dc.relation.referencesen15. Pokkalla, D. K., Hassen, A. A., Nuttall, D., Tsiamis, N., Rencheck, M. L., Kumar, V., Nandwana, P., Joslin, C. B., Blanchard, P., Tamhankar, S. L., Maloney, P., Kunc, V., Kim, S. (2023). A novel additive manufacturing compression overmolding process for hybrid metal polymer composite structures. Additive Manufacturing Letters, 5, 100128. https://doi.org/10.1016/j.addlet.2023.100128.
dc.relation.referencesen16. Kucherenko, A. N., Mankevych, S. O., Kuznetsova, M. Ya., Moravskyi, V. S. (2020). Peculiarities of metalization of pulled polyethylene. Chemistry, technology and application of substances, 3:2, 140–145. https://doi.org/10.23939/ctas2020.02.140.
dc.relation.referencesen17. Kucherenko, A., Dovha, Y., Kuznetsova, M., Moravskyi, V. (2022). Analysis of processes which occur during the destruction of a copper shell formed on polyethylene granules. Chemistry, technology and application of substances, 5:1, 186–192. https://doi.org/10.23939/ctas2022.01.186.
dc.relation.referencesen18. Moravskyi, V., Kucherenko, A., Kuznetsova, M., Dulebova, L., Spišák, E. (2022). Obtainment and characterization of metal-coated polyethylene granules asabasis for the developmen to fheatstorage systems. Polymers, 14:1, 218. https://doi.org/10.3390/polym14010218.
dc.relation.referencesen19. Moravskyi, V., Kucherenko. A., Kuznetsova, M., Dulebova, L., Spišák, E.,Majerníková, J. (2020). Utilization of Polypropylene in the Production of Metal-Filled Polymer Composites: Development and Characteristics. Materials, 13, 2856. https://doi.org/10.3390/ma13122856.
dc.relation.urihttps://doi.org/10.1016/j.compositesa.2022.107320
dc.relation.urihttps://doi.org/10.1016/j.ceramint.2016
dc.relation.urihttps://doi.org/10.1016/j.compscitech.2020.108304
dc.relation.urihttps://doi.org/10.1016/j.apsusc.2023.156404
dc.relation.urihttps://doi.org/10.1016/j.matpr.2023.01.334
dc.relation.urihttps://doi.org/10.1016/B978-0-323-90125-3.00016-1
dc.relation.urihttps://doi.org/10.1016/j.jmrt.2023.01.006
dc.relation.urihttps://doi.org/10.1016/j.polymertesting.2022.107915
dc.relation.urihttps://doi.org/10.1016/j.matpr.2022.09.428
dc.relation.urihttps://doi.org/10.1016/j.matpr.2023.01.276
dc.relation.urihttps://doi.org/10.1016/j.surfin.2023.102747
dc.relation.urihttps://doi.org/10.1016/j.eurpolymj.2022.111660
dc.relation.urihttps://doi.org/10.1007/s12541-009-0073-5
dc.relation.urihttps://doi.org/10.1016/j.tws.2021.108760
dc.relation.urihttps://doi.org/10.1016/j.addlet.2023.100128
dc.relation.urihttps://doi.org/10.23939/ctas2020.02.140
dc.relation.urihttps://doi.org/10.23939/ctas2022.01.186
dc.relation.urihttps://doi.org/10.3390/polym14010218
dc.relation.urihttps://doi.org/10.3390/ma13122856
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectметалізація
dc.subjectмідь
dc.subjectповерхневий натяг
dc.subjectполіетилен
dc.subjectполіпропілен
dc.subjectполівінілхлорид
dc.subjectmetallization
dc.subjectcopper
dc.subjectsurface tension
dc.subjectpolyethylene
dc.subjectpolypropylene
dc.subjectpolyvinyl chloride
dc.titleChecking the possibilities of the classic technology of chemical metalization of polymer granules
dc.title.alternativeПеревірка можливостей класичної технології хімічної металізації гранул полімерів
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v6n1_Kucherenko_A_M-Checking_the_possibilities_148-153.pdf
Size:
448.28 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v6n1_Kucherenko_A_M-Checking_the_possibilities_148-153__COVER.png
Size:
508.39 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.89 KB
Format:
Plain Text
Description: