Development of the acceleration measuring method

dc.citation.epage39
dc.citation.issue2
dc.citation.journalTitleУкраїнський журнал інформаційних технологій
dc.citation.spage33
dc.citation.volume4
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationІТ-компанія N-iX
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationN-iX – Software Development Company
dc.contributor.authorТеслюк, В. М.
dc.contributor.authorЗагарюк, Р. В.
dc.contributor.authorІванців, Р. Д.
dc.contributor.authorСенета, М. Я.
dc.contributor.authorТкачук, К. І.
dc.contributor.authorКоваль, А. В.
dc.contributor.authorTeslyuk, V. M.
dc.contributor.authorZaharyuk, R. V.
dc.contributor.authorIvantsiv, R. D.
dc.contributor.authorSeneta, M. Ya.
dc.contributor.authorTkachuk, K. I.
dc.contributor.authorKoval, A. V.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-03-27T08:56:56Z
dc.date.available2024-03-27T08:56:56Z
dc.date.created2022-02-28
dc.date.issued2022-02-28
dc.description.abstractПроаналізовано наявні методи вимірювання пришвидшень, наведено сучасні дослідження з даної тематики та розроблено новий метод у вигляді електричної схеми з використанням генератора стабільної частоти. Серед уже відомих методів виділено три такі групи – на підставі компенсаційних акселерометрів з дискретним виходом, на підставі акселерометрів з аналого-цифровим перетворювачем та методи вимірювання з використанням навісних елементів. Основною відмінністю запропонованого методу від наявних є використання в його схемі двох резонансних контурів із вбудованими давачі ємності, розроблених за технологіями мікроелектромеханічної системи. Описано принцип роботи пристрою вимірювання пришвидшення, наведено його структурні схеми та проаналізовано особливості функціонування його складових. Наведено основні переваги застосування запропонованого методу та описано його технічну відмінність від уже впроваджених, що полягає також у використанні додаткового трансформатора. На підставі запропонованого методу вимірювання пришвидшення у вигляді електричної схеми досліджено робочі частотні характеристики пристрою, описано етапи перетворення сигналів акселерометра та наведено форми вхідних і вихідних сигналів. Використання двох резонансних кіл у вбудованих давачах потужності та генератора стабільних частот у схемі приладу вимірювання пришвидшення дає змогу визначати зміни частотних характеристик у резонансних контурах з мінімальними змінами потужності в ємнісних давачах. Остаточне значення частоти є лінійним в діапазоні частот акселерометра, оскільки частотні характеристики першого і другого резонансних кіл є зворотними і симетричними відносно горизонтальної осі. Особливістю розробленого нового методу вимірювання пришвидшень є можливість використання цієї схеми при дуже низьких вхідних напругах. Завдяки запропонованому методу можна досягти підвищення точності вимірювання пришвидшення, розширення робочих можливостей самого пристрою, а це дає змогу застосовувати його в умовах вібрації та зміни положення.
dc.description.abstractThe existing acceleration measuring methods are analyzed in the article. An overview of modern research on this topic is also provided. A new method of measuring acceleration in the form of an electrical circuit using a stable frequency generator is developed. Among the already known methods, the following three groups are highlighted in the analysis: methods based on compensatory accelerometers with discrete output; methods based on accelerometers with the analog-to-digital converter; measurement techniques, which use mounted elements. The main difference between the proposed method and the existing ones is the use of circuits of two resonant circles with built-in capacitance sensors, developed according to microelectromechanical system technologies. The principle of operation of the acceleration measuring device is described in the article, and its structural diagrams are provided. The peculiarities of the functioning of its components are analyzed. The main advantages of using the proposed method are highlighted. It is described the technical difference of this method from those already implemented ones, which also lies in the presence of an additional transformer. Based on the proposed method of measuring acceleration in the form of an electrical circuit, the operating frequency characteristics of the device are investigated. The stages of conversion of accelerometer signals are described in the article as well as the forms of input and output signals. The use of two resonant circles within built capacity sensors and the stable frequencies generator in the scheme of acceleration measuring device allows for measurement of the frequency characteristics changes in resonant circuits with minimum capacity changes in sensors. The resulting frequency value is linear in the range of the accelerometer frequency due to the frequency characteristics of the first and second resonance circles, which are reversed and symmetrical about the horizontal axis. A feature of the developed new measurement method is the possibility of using this scheme at very low input voltages. Due to the proposed method, it is possible to increase the accuracy of acceleration measurement and expand the working capabilities of the device. In its turn, it allows applying this device in vibration and position variation conditions.
dc.format.extent33-39
dc.format.pages7
dc.identifier.citationDevelopment of the acceleration measuring method / V. M. Teslyuk, R. V. Zaharyuk, R. D. Ivantsiv, M. Ya. Seneta, K. I. Tkachuk, A. V. Koval // Ukrainian Journal of Information Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 4. — No 2. — P. 33–39.
dc.identifier.citationenDevelopment of the acceleration measuring method / V. M. Teslyuk, R. V. Zaharyuk, R. D. Ivantsiv, M. Ya. Seneta, K. I. Tkachuk, A. V. Koval // Ukrainian Journal of Information Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 4. — No 2. — P. 33–39.
dc.identifier.issn2707-1898
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61553
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofУкраїнський журнал інформаційних технологій, 2 (4), 2022
dc.relation.ispartofUkrainian Journal of Information Technology, 2 (4), 2022
dc.relation.references[1] Korvink, Jan, & Paul, Oliver (2006). MEMS: A practical guide of design, analysis, and applications. Springer, 965. https://doi.org/10.1007/978-3-540-33655-6
dc.relation.references[2] Teslyuk, V., Pereyma, M., Denysyuk, P., & Chimich, I. (2006). Computer-aided system for MEMS design "Pro-MIP". Proc. of the 2nd Inter. Conf. of Young Scientists "Perspective Technologies and Methods in MEMS Design" (MEMSTECH), 49–52. https://doi.org/10.1109/MEMSTECH.2006.288661
dc.relation.references[3] Petersen, K. (2005). A new age for MEMS. Solid – state sensors, actuators and microsystems (TRANSDUCER'05): Proc. of the 13-th Intern. Conf. Digest of Technical Papers, 1, 1–4.
dc.relation.references[4] Keller, J. (2006). DARPA approaches industry for ideas for unmanned underwater surveillance technology. Military & Aerospace Electronics. Retrieved from: https://www.militaryaerospace.com/communications/article/16708779/darpa-approaches-industry-for-ideas-for-unmanned-underwater-surveillance-technology
dc.relation.references[5] Saha, I., Islam, R., Kanakaraju, K., et al. (1999). Silicon micromachined accelerometers for space inertial systems. SPIE: Proc. of the Intern. Conf. Bellingham, 3903, 162–170. https://doi.org/10.1117/12.369456
dc.relation.references[6] Zhang, X. М., Chau, F. S., Quan, C., et al. (2001). A study of the static characteristic of a torsional micromirror. Sensors and Actuators A, 90, 73–81. https://doi.org/10.1016/S0924-4247(01)00453-8
dc.relation.references[7] Batko, W., Felis, J., Flach, A., Kamisiński, T., Giesko, T., & Zbrowski, A. (2008). A concept of an actuator for the positioning measurement system in an anechoic room. Archives of Acoustics, 33(2), 201–207. Retrieved from: https://www.infona.pl/resource/bwmeta1.element.baztecharticle-BATA-0002-0021
dc.relation.references[8] Gang, Z. (1998). Design and Simulation of A CMOSMEMS Accelerometer. Department of Electrical and Computer Engineering. Carnegie Mellon University, 40. Retrieved from: https://research.ece.cmu.edu/~mems/pubs/pdfs/ece/ms_thesis/0049_zhang-1998.pdf
dc.relation.references[9] Partridge, A., Reynolds, J. K., Chui, B. W., et al. (2000). A High – performance planar piezoresistive accelerometer. Journal of microelectromechanical systems, 9(1), 58–66. https://doi.org/10.1109/84.825778
dc.relation.references[10] Szermer, Michał, Napieralski, Andrzej, Szaniawski, Krzysztof, Olszacki, Michał, & Maj, Cezary. (2009). Sensors and actuators in MEMS technologies as the elements of mechatronics. Przeglad Elektrotechniczny, 9, 279–286.
dc.relation.references[11] Rehman, Abdul, Muhammad, Javed, Sarwar, Usman, Khan, Suleman, Iwendi, Celestine, Mittal, Mohit, & Kumar, Neeraj. (2020). Analyzing the effectiveness and contribution of each axis of tri-axial accelerometer sensor for accurate activity recognition. Sensors, 20(8), 2216. https://doi.org/10.3390/s20082216
dc.relation.references[12] Leoni Santos, Guto, Takako Endo, Patricia, Henrique de Carvalho Monteiro, Kayo, et al. (2019). Accelerometer-based human fall detection using convolutional neural networks. Sensors, 19(7), 1644. https://doi.org/10.3390/s19071644
dc.relation.references[13] Mustafazade, A., Pandit, M., Zhao, C., et al. (2020). A vibrating beam MEMS accelerometer for gravity and seismic measurements. Sci Rep 10, 10415. https://doi.org/10.1038/s41598-020-67046-x
dc.relation.references[14] Farrahia, Vahid, Niemeläabc, Maisa, Kangasac, Maarit, Korpelainencde, Raija, & Jämsä, Timo. (2019, February). Calibration and validation of accelerometer-based activity monitors: A systematic review of machine-learning approaches. Gait & Posture, 68, 285–299. https://doi.org/10.1016/j.gaitpost.2018.12.003
dc.relation.references[15] Pang-jo, Chun, Tatsuro, Yamane, Shota, Izumi, & Naoya, Kuramoto. (2020). Development of a machine learning-based damage identification method using multi-point simultaneous acceleration measurement results. Sensors, 20, 2780. https://doi.org/10.3390/s20102780
dc.relation.references[16] Glazov, A. V. (1974, Apr.). Compensation accelerometers with discontinuous output. SU1839856.
dc.relation.references[17] Glazov, A. V., & Smirnov E. S. (1978, Sep.). Compensation accelerometers with discontinuous output. SU1839853.
dc.relation.references[18] Glazov, A. V., & Smirnov, E. S. (1985, Nov.). Method of measuring linear acceleration. SU1839979.
dc.relation.references[19] Glazov, A. V., & Koptilin, V. A. (1987, Feb.). Method of measuring linear acceleration. SU1839889.
dc.relation.references[20] Glazov, A. V., & Smirnov, E. S. (1981, Feb.). Method of measuring acceleration. SU1839852.
dc.relation.references[21] Sumarokov, V. V., & Mumin, O. L. (1998). Body displacement meter RU2175114 07.
dc.relation.references[22] Zagaryuka, R. V., Ivantsiva, R.-A. D., & Lobura, M. V. (2009). Patent 88405, Ukraine. G01P 15/125. Device for measuring acceleration. Applicant and owner of the Lviv Research Radio Technical Institute, Lviv Polytechnic National University. No. a 2008 03858; application 03/27/08; published 12.10.09, Bull. No. 19.
dc.relation.references[23] Teslyuk, V., Kushnir, Yu., Zaharyuk, R., & Pereyma, M. (2007). A computer aided analysis of a capacitive accelerometer parameters. The Experience of Designing and Application of CAD Systems in Microelectronics. Proceedings of the 9th International Conference, CADSM, 548–550. https://doi.org/10.1109/CADSM.2007.4297649
dc.relation.referencesen[1] Korvink, Jan, & Paul, Oliver (2006). MEMS: A practical guide of design, analysis, and applications. Springer, 965. https://doi.org/10.1007/978-3-540-33655-6
dc.relation.referencesen[2] Teslyuk, V., Pereyma, M., Denysyuk, P., & Chimich, I. (2006). Computer-aided system for MEMS design "Pro-MIP". Proc. of the 2nd Inter. Conf. of Young Scientists "Perspective Technologies and Methods in MEMS Design" (MEMSTECH), 49–52. https://doi.org/10.1109/MEMSTECH.2006.288661
dc.relation.referencesen[3] Petersen, K. (2005). A new age for MEMS. Solid – state sensors, actuators and microsystems (TRANSDUCER'05): Proc. of the 13-th Intern. Conf. Digest of Technical Papers, 1, 1–4.
dc.relation.referencesen[4] Keller, J. (2006). DARPA approaches industry for ideas for unmanned underwater surveillance technology. Military & Aerospace Electronics. Retrieved from: https://www.militaryaerospace.com/communications/article/16708779/darpa-approaches-industry-for-ideas-for-unmanned-underwater-surveillance-technology
dc.relation.referencesen[5] Saha, I., Islam, R., Kanakaraju, K., et al. (1999). Silicon micromachined accelerometers for space inertial systems. SPIE: Proc. of the Intern. Conf. Bellingham, 3903, 162–170. https://doi.org/10.1117/12.369456
dc.relation.referencesen[6] Zhang, X. M., Chau, F. S., Quan, C., et al. (2001). A study of the static characteristic of a torsional micromirror. Sensors and Actuators A, 90, 73–81. https://doi.org/10.1016/S0924-4247(01)00453-8
dc.relation.referencesen[7] Batko, W., Felis, J., Flach, A., Kamisiński, T., Giesko, T., & Zbrowski, A. (2008). A concept of an actuator for the positioning measurement system in an anechoic room. Archives of Acoustics, 33(2), 201–207. Retrieved from: https://www.infona.pl/resource/bwmeta1.element.baztecharticle-BATA-0002-0021
dc.relation.referencesen[8] Gang, Z. (1998). Design and Simulation of A CMOSMEMS Accelerometer. Department of Electrical and Computer Engineering. Carnegie Mellon University, 40. Retrieved from: https://research.ece.cmu.edu/~mems/pubs/pdfs/ece/ms_thesis/0049_zhang-1998.pdf
dc.relation.referencesen[9] Partridge, A., Reynolds, J. K., Chui, B. W., et al. (2000). A High – performance planar piezoresistive accelerometer. Journal of microelectromechanical systems, 9(1), 58–66. https://doi.org/10.1109/84.825778
dc.relation.referencesen[10] Szermer, Michał, Napieralski, Andrzej, Szaniawski, Krzysztof, Olszacki, Michał, & Maj, Cezary. (2009). Sensors and actuators in MEMS technologies as the elements of mechatronics. Przeglad Elektrotechniczny, 9, 279–286.
dc.relation.referencesen[11] Rehman, Abdul, Muhammad, Javed, Sarwar, Usman, Khan, Suleman, Iwendi, Celestine, Mittal, Mohit, & Kumar, Neeraj. (2020). Analyzing the effectiveness and contribution of each axis of tri-axial accelerometer sensor for accurate activity recognition. Sensors, 20(8), 2216. https://doi.org/10.3390/s20082216
dc.relation.referencesen[12] Leoni Santos, Guto, Takako Endo, Patricia, Henrique de Carvalho Monteiro, Kayo, et al. (2019). Accelerometer-based human fall detection using convolutional neural networks. Sensors, 19(7), 1644. https://doi.org/10.3390/s19071644
dc.relation.referencesen[13] Mustafazade, A., Pandit, M., Zhao, C., et al. (2020). A vibrating beam MEMS accelerometer for gravity and seismic measurements. Sci Rep 10, 10415. https://doi.org/10.1038/s41598-020-67046-x
dc.relation.referencesen[14] Farrahia, Vahid, Niemeläabc, Maisa, Kangasac, Maarit, Korpelainencde, Raija, & Jämsä, Timo. (2019, February). Calibration and validation of accelerometer-based activity monitors: A systematic review of machine-learning approaches. Gait & Posture, 68, 285–299. https://doi.org/10.1016/j.gaitpost.2018.12.003
dc.relation.referencesen[15] Pang-jo, Chun, Tatsuro, Yamane, Shota, Izumi, & Naoya, Kuramoto. (2020). Development of a machine learning-based damage identification method using multi-point simultaneous acceleration measurement results. Sensors, 20, 2780. https://doi.org/10.3390/s20102780
dc.relation.referencesen[16] Glazov, A. V. (1974, Apr.). Compensation accelerometers with discontinuous output. SU1839856.
dc.relation.referencesen[17] Glazov, A. V., & Smirnov E. S. (1978, Sep.). Compensation accelerometers with discontinuous output. SU1839853.
dc.relation.referencesen[18] Glazov, A. V., & Smirnov, E. S. (1985, Nov.). Method of measuring linear acceleration. SU1839979.
dc.relation.referencesen[19] Glazov, A. V., & Koptilin, V. A. (1987, Feb.). Method of measuring linear acceleration. SU1839889.
dc.relation.referencesen[20] Glazov, A. V., & Smirnov, E. S. (1981, Feb.). Method of measuring acceleration. SU1839852.
dc.relation.referencesen[21] Sumarokov, V. V., & Mumin, O. L. (1998). Body displacement meter RU2175114 07.
dc.relation.referencesen[22] Zagaryuka, R. V., Ivantsiva, R.-A. D., & Lobura, M. V. (2009). Patent 88405, Ukraine. G01P 15/125. Device for measuring acceleration. Applicant and owner of the Lviv Research Radio Technical Institute, Lviv Polytechnic National University. No. a 2008 03858; application 03/27/08; published 12.10.09, Bull. No. 19.
dc.relation.referencesen[23] Teslyuk, V., Kushnir, Yu., Zaharyuk, R., & Pereyma, M. (2007). A computer aided analysis of a capacitive accelerometer parameters. The Experience of Designing and Application of CAD Systems in Microelectronics. Proceedings of the 9th International Conference, CADSM, 548–550. https://doi.org/10.1109/CADSM.2007.4297649
dc.relation.urihttps://doi.org/10.1007/978-3-540-33655-6
dc.relation.urihttps://doi.org/10.1109/MEMSTECH.2006.288661
dc.relation.urihttps://www.militaryaerospace.com/communications/article/16708779/darpa-approaches-industry-for-ideas-for-unmanned-underwater-surveillance-technology
dc.relation.urihttps://doi.org/10.1117/12.369456
dc.relation.urihttps://doi.org/10.1016/S0924-4247(01)00453-8
dc.relation.urihttps://www.infona.pl/resource/bwmeta1.element.baztecharticle-BATA-0002-0021
dc.relation.urihttps://research.ece.cmu.edu/~mems/pubs/pdfs/ece/ms_thesis/0049_zhang-1998.pdf
dc.relation.urihttps://doi.org/10.1109/84.825778
dc.relation.urihttps://doi.org/10.3390/s20082216
dc.relation.urihttps://doi.org/10.3390/s19071644
dc.relation.urihttps://doi.org/10.1038/s41598-020-67046-x
dc.relation.urihttps://doi.org/10.1016/j.gaitpost.2018.12.003
dc.relation.urihttps://doi.org/10.3390/s20102780
dc.relation.urihttps://doi.org/10.1109/CADSM.2007.4297649
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subjectметод
dc.subjectрезонансний контур
dc.subjectвбудовані давачі ємності
dc.subjectмікроелектромеханічні системи
dc.subjectакселерометр
dc.subjectелектричне коло
dc.subjectmethod
dc.subjectresonant circuit
dc.subjectbuilt-in capacitors
dc.subjectmicroelectromechanical systems
dc.subjectmeasurement
dc.subjectacceleration
dc.subjectaccelerometer
dc.subjectelectrical circuit
dc.titleDevelopment of the acceleration measuring method
dc.title.alternativeРозроблення методу вимірювання пришвидшень
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2022v4n2_Teslyuk_V_M-Development_of_the_acceleration_33-39.pdf
Size:
1.71 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2022v4n2_Teslyuk_V_M-Development_of_the_acceleration_33-39__COVER.png
Size:
1.61 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.95 KB
Format:
Plain Text
Description: