Theory of continental drift – causes of the motion. Historical review and observations

dc.citation.epage69
dc.citation.issue1 (34)
dc.citation.journalTitleГеодинаміка
dc.citation.spage57
dc.contributor.affiliationCoalExp Pražmo
dc.contributor.affiliationAnect Praha
dc.contributor.affiliationСілезький університет Опава
dc.contributor.affiliationЧеський технічний університет
dc.contributor.affiliationNad Palatou Praha
dc.contributor.affiliationCoalExp Pražmo
dc.contributor.affiliationAnect Praha
dc.contributor.affiliationSilesian University Opava
dc.contributor.affiliationCzech Technical University
dc.contributor.affiliationNad Palatou Praha
dc.contributor.authorКаленда, Павел
dc.contributor.authorНойманн, Лібор
dc.contributor.authorВандрол, Іво
dc.contributor.authorПрохазка, Вацлав
dc.contributor.authorОстриханський, Любор
dc.contributor.authorKalenda, Pavel
dc.contributor.authorNeumann, Libor
dc.contributor.authorWandrol, Ivo
dc.contributor.authorProcházka, Václav
dc.contributor.authorOstřihanský, Lubor
dc.coverage.placenameЛьвів
dc.date.accessioned2024-02-13T09:29:38Z
dc.date.available2024-02-13T09:29:38Z
dc.date.created2023-06-26
dc.date.issued2023-06-26
dc.description.abstractТеорія дрейфу материків була опублікована ще в 1912 р., але механізм і джерело енергії цього руху досі не з’ясовані. Загальноприйнята модель конвекційних течій у мантії в багатьох випадках суперечить таким спостереженням, як розпоширення дна океану, розтяг рифтів від потрійних точок на всі боки, більш-менш односторонній рух літосфери щодо мантії тощо. У першій частині статті відображено еволюцію поглядів на цю проблематику, а також дані вимірювань, які документують важливу роль позаземних джерел енергії для руху літосферних плит у добовому, річному та довгостроковому кліматичних циклах. У другій частині статті буде викладена вся теорія механізму руху літосферних плит, яка ґрунтується на накопиченні енергії, що надходить від Сонця, в породах кори, храповому механізмі та проникненні термопружної хвилі із земної поверхні через всю кору.
dc.description.abstractThe theory of continental drift was published as early as 1912, but the mechanism and energy source of this motion has not yet been elucidated. In many cases, the generally accepted model of convection currents in the mantle contradicts observations such as the spreading of the ocean floor, the extension of rifts from triple points to all sides, the more or less unilateral movement of the lithosphere relative to the mantle, and others. In the first part of the double article, the evolution of views on this issue is shown, as well as measured data that document the important role of extraterrestrial energy sources for the movement of lithospheric plates in daily, annual and long-term climate cycles. In the second part of the two-part article, the entire theory of the mechanism of lithospheric plate motion will be outlined, based on the accumulation of incoming energy from the Sun in crustal rocks, the ratcheting mechanism, and the thermoelastic wave penetrating from the Earth's surface through the entire crust.
dc.format.extent57-69
dc.format.pages13
dc.identifier.citationTheory of continental drift – causes of the motion. Historical review and observations / Pavel Kalenda, Libor Neumann, Ivo Wandrol, Václav Procházka, Lubor Ostřihanský // Geodynamics. — Lviv Politechnic Publishing House, 2023. — No 1 (34). — P. 57–69.
dc.identifier.citationenTheory of continental drift – causes of the motion. Historical review and observations / Pavel Kalenda, Libor Neumann, Ivo Wandrol, Václav Procházka, Lubor Ostřihanský // Geodynamics. — Lviv Politechnic Publishing House, 2023. — No 1 (34). — P. 57–69.
dc.identifier.doidoi.org/10.23939/jgd2023.01.057
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61316
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofГеодинаміка, 1 (34), 2023
dc.relation.ispartofGeodynamics, 1 (34), 2023
dc.relation.referencesAgostini, M., Altenmüller, K., Appel, S., Atroshchenko, V., Bagdasarian, Z., Basilico, D., ... & Borexino Collaboration. (2020). Comprehensive geoneutrino analysis with Borexino. Physical Review D, 101(1), 012009. https://doi.org/10.1103/PhysRevD.101.012009
dc.relation.referencesAllègre, C., Manhès, G., & Lewin, É. (2001). Chemical composition of the Earth and the volatility control on planetary genetics. Earth and Planetary Science Letters, 185(1-2), 49-69. https://doi.org/10.1016/S0012-821X(00)00359-9
dc.relation.referencesAnderson, Don L., & Dziewonski, A. M. (1984). The Earth's interior: A new frontier and a new challenge for earth scientists: in Global Change, no. 5, eds. T. F. Malone and J. G. Roederer, ICSU Press, p. 345-353. https://authors.library.caltech.edu/45511/1/Anderson_1985p195.pdf
dc.relation.referencesAnderson, D. L. (1988). Temperature and pressure derivatives of elastic constants with application to the mantle, Jour. Geophys. Res., 93, p. 4688-4700. https://doi.org/10.1029/JB093iB05p04688
dc.relation.referencesAnderson, D. L. (2000). The thermal state of the upper mantle; No role for mantle plumes, Geophysical Research Letters, 27(22), 3623-3626. https://doi.org/10.1029/2000GL011533
dc.relation.referencesBelousov, V. V. (1962). Basic problems in geotectonics, McGraw-Hill, New York.
dc.relation.referencesBenioff, H. (1949). Seismic evidence for the fault origin of oceanic deeps. Bulletin of the Geological Society of America. 60 (12): 1837-1866. https://doi.org/10.1130/0016-7606(1949)60[1837:SEFTFO]2.0.CO;2
dc.relation.referencesBerger, J. & Wyatt, F. (1973). Some observations on earth strain tides in California, Phil. Trans. Roy. Soc. London, Ser. A, 274, 67-277. https://royalsocietypublishing.org/doi/abs/10.1098/rsta.1973.0052
dc.relation.referencesBerger, J. (1975). A Note on Thermoelastic Strains and Tilts, J. Geophys. Res., 80, 274-277. https://doi.org/10.1029/JB080i002p00274
dc.relation.referencesBraitenberg, C., Romeo, G., Taccetti, Q., & Nagy, I. (2006). The very-broad-band long-base tiltmeters of Grotta Gigante (Trieste, Italy): Secular term tilting and the great Sumatra-Andaman islands earthquake of December 26, 2004. Journal of Geodynamics, 41(1-3), 164-174. https://doi.org/10.1016/j.jog.2005.08.015
dc.relation.referencesBrázdil, R., et al. (1988): Introduction to the planet Earth study. SPN, Praha, 368 pp. (in Czech)
dc.relation.referencesBrimich, L. (2006). Strain measurements at the Vyhne tidal station. Contributions to geophysics and geodesy, Vol. 36/4. https://journal.geo.sav.sk/cgg/article/view/337
dc.relation.referencesBuffett, B. A. (2002). Estimates of heat flow in the deep mantle based on the power requirements for the geodynamo. Geophysical Research Letters, 29(12), 7-1. https://doi.org/10.1029/2001GL014649https://doi.org/10.1029/2001GL014649
dc.relation.referencesCarey, W. S. (1958). The tectonic approach to continental drift. In: S. W. Carey (ed.): Continental drift – A symposium. University of Tasmania, Hobart, 177-363 (expanding Earth from p. 311 to p. 349).
dc.relation.referencesCarey, S. W. (1975). The Expanding Earth-an essay review, Earth Sci. Rev.,11, 105–143. https://doi.org/10.1016/0012-8252(75)90097-5
dc.relation.referencesCarey, S. W. (1976). The expanding Earth. Elsevier, Amsterdam, pp. 488.
dc.relation.referencesCrespi, M., Cuffaro, M., Doglioni, C., Giannone1, F. & Riguzzi, F. (2007). Space geodesy validation of the global lithospheric flow. Geophys. J. Int., 168, 491–506. https://doi.org/10.1111/j.1365-246X.2006.03226.x
dc.relation.referencesCroll, J. G. A. (2019). Phanerozoic climate and vertical tectonic cycles. UCL Press. https://doi.org/10.14324/111.444/000009.v1. p 1-7. https://www.researchgate.net/publication/331082713_Phanerozoic_Climate_and_Vertical_Tectonic_Cycles
dc.relation.referencesDavies, J. H., & Davies, D. R. (2010). Earth's surface heat flux. Solid Earth, 1(1), 5-24. https://doi.org/10.5194/se-1-5-2010, 2010.
dc.relation.referencesDenis, C., Schreider, A.A., Varga, P., & Zavoti, J. (2002). Despinning of the Earth rotation in the geological past and geomagnetic and geomagnetic paleointensities. Journal of Geodynamics, 34, 667-685. https://doi.org/10.1016/S0264-3707(02)00049-2
dc.relation.referencesDoglioni, C. (1993). Geological evidence for a global tectonic polarity. Journal of the geological society, London, 150(5), 991-1002. https://doi.org/10.1144/gsjgs.150.5.0991
dc.relation.referencesDoglioni, C., Carminati, E. & Bonatti, E. (2003). Rift asymmetry and continental uplift. Tectonics, 22(3), 1024, 8-1 – 8-13. https://doi.org/10.1029/2002TC001459.
dc.relation.referencesDoglioni, C., Green, D.H. & Mongelli, F. (2005). On the shallow origin of hotspot and the westward drift of the lithosphere. Geological Society of America Special Paper, 388, 735-749. https://doi.org/10.1130/0-8137-2388-4.735
dc.relation.referencesDoglioni, C. (2014). Asymmetric Earth: mechanisms of plate tectonics and earthquakes. Rendiconti Accademia Nazionale delle Scienze detta dei XL, Memorie di Scienze Fisiche e Naturali, 9–27, https://doi.org/10.4399/97888548717171.
dc.relation.referencesDomeier, M, & Torsvik, T. H. (2014). Plate tectonics in the late Paleozoic. Geoscience Frontiers, 5(3), 303-350. https://doi.org/10.1016/j.gsf.2014.01.002
dc.relation.referencesDziewonski, A. M., & Anderson, Don L., (1984). Seismic tomography of the Earth's interior: Am. Scientist, 72(5), 483-494. https://www.jstor.org/stable/27852863.
dc.relation.referencesFoulger, G. R. (2010). Plates vs Plumes: A Geological Controversy. Wiley-Blackwell. 328 pp.
dc.relation.referencesGando A. et al. (KamLAND Collaboration, 45 co-authors) (2013). Reactor on-off antineutrino measurement with KamLAND. Physical Review D, 88 (3), Article 033001. https://doi.org/10.1103/PhysRevD.88.033001
dc.relation.referencesGarai, J. (1997). The driving mechanism of plate tectonics, Eos, Transactions, AGU, 78 (46) Fall Meet. Suppl., pp. 712. https://doi.org/10.48550/arXiv.0709.1303
dc.relation.referencesGarai, J. (2007) Global coupling at 660 km is proposed to explain plate tectonics and the generation of the earth’s magnetic field. arXiv preprint arXiv:0709.1303. https://doi.org/10.48550/arXiv.0709.1303
dc.relation.referencesGerdes A., Wörner G., & Henk, A. (2000). Postcollisional granite generation and HT-HP metamorphism by radiogenic heating: the Variscan South Bohemian Batholith. Journal of the Geological Society, 157: 577-587. https://doi.org/10.1144/jgs.157.3.577
dc.relation.referencesGrillo, B., Braitenberg, C., Devoti, R. & Nagy, I. (2011). The study of karstic aquifers by geodetic measurements in bus de la Genziana station – Cansiglio plateau (northeastern Italy). Acta Carsologica, 40/1, 161–173, Postojna 2011. https://doi.org/10.3986/ac.v40i1.35
dc.relation.referencesHeaton, T.H. (1975). Tidal Triggering of Earthquakes. Geophysical Journal International, 43(2), 307-326, https://doi.org/10.1111/j.1365-246X.1975.tb00637.x
dc.relation.referencesHeirtzler, J. R., Le Pichon, X., & Baron, J. G. (1966, June). Magnetic anomalies over the Reykjanes Ridge. In Deep Sea Research and Oceanographic Abstracts, 13(3), 427-443). Elsevier.. https://doi.org/10.1016/0011-7471(66)91078-3
dc.relation.referencesHolmes A. (1928). Radioactivity and Earth movements. Transactions of the Geological Society of Glasgow. 18, 559-606.
dc.relation.referencesHolmes, A. (1939). Radioaktivity and the Earth movement. Trans. Geol. Soc. Glasg., 28, 559-606.
dc.relation.referencesHolmes, A. (1944). Principles of Physical Geology. (Edinburgh: Thomas Nelson and Sons, 1944 and New York: Ronald Press, 1945).
dc.relation.referencesHvožďara, M., Brimich, L., & Skalský, L. (1988). Thermo-elastic deformations due to annual temperature variation at the tidal station in Vyhne. Studia Geophysica et Geodaetica, 32(2), 129-135. https://doi.org/10.1007/BF01637575
dc.relation.referencesIllis, B. (2009). Searching the PaleoClimate Record for Estimated Correlations: Temperature, CO2 and Sea Level. Watts up with that?
dc.relation.referencesJeffreys, H. (1974). Theoretical aspects of continental drift. In Kahle, pp. 395-405.
dc.relation.referencesKalenda, P., Skalský, L., & Málek, J. (2005). Effect of earth tides on California seismicity. Seminar MFF UK Praha, 22.4.2005. (in Czech)
dc.relation.referencesKalenda, P., Neumann, L., Málek, J., Skalský, L., Procházka, V., Ostřihanský, L., Kopf, & T., Wandrol, I. (2012). Tilts, global tectonics and earthquake prediction. SWB, London, 247pp. http://seismonet.com/media_files/1/POL_Tilts_Global%20Tectonics%20and%20Earthquake%20Prediction.pdf
dc.relation.referencesKalenda, P., & Neumann, L. (2014). The tilt of the elevator shaft of bunker Skutina. Transactions of the VŠB. Technical University of Ostrava, Mechanical Series, 1(LX), 55-62. http://transactions.fs.vsb.cz/2014-1/1978.pdf
dc.relation.referencesKalenda, P., Wandrol, I., Holub, K. & Rušajová, J. (2015). The possible explanation of seasonal and annual variations of secondary microseisms. Terrestrial Atmospheric and Oceanic Sciences, 26(2), 103-109. https://pdfs.semanticscholar.org/96c7/39372bb91dde027a506f02d119556c32ba...
dc.relation.referencesKárník,V., & Tobyáš, V. (1961). Underground measurements of the seismic noise level. Studia Geophysica et Geodaetica, 5(3), 231-236. https://doi.org/10.1007/BF02585381
dc.relation.referencesKery, P., & Vine, F.(1996). Global Tectonics, Blackwell Science. Surveys in Geophysics, 19(1).
dc.relation.referencesKutterolf, S., Jegen M., Mitrovica J. X., Kwasnitschka T., Freundt A., & Huybers P. J. (2013). A detection of Milankovitch frequencies in global volcanic activity. Geology, 41(2), 227-230; https://doi.org/10.1130/G33419.1
dc.relation.referencesLee K.K.M., Steinle-Neumann, G., & Jeanloz, R (2004). Ab-initio high-pressure alloying of iron and potassium: Implications for the Earth's core. Geophysical Research Letters, 31(11), Art. No. L11603. https://doi.org/10.1029/2004GL019839
dc.relation.referencesMelchior, P. & Skalský, L. (1969). Station: Příbram/Belg. Mesures faites dans les composantes Nord-Sud et Est-Ouest avec les pendules horizontaux VN No. 76 et No.77 en 1966, 1967 et 1968. Observatorie Royal de Belgique.
dc.relation.referencesMcDonough W. F., & Sun S. (1995). The composition of the Earth. Chemical geology, 120(3-4), 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
dc.relation.referencesMunk, W., & Wunsch C. (1998). Abyssal recipes II: energetics of tidal and wind mixing. Deep Sea Research Part I: Oceanographic Research Papers, 45(12), 1977-2010. https://doi.org/10.1016/S0967-0637(98)00070-3
dc.relation.referencesNeumann, L. (2005). Gravity dynamics and gravity noise on the Earth surface. 116 pp. http://www.dynamicgravity.org/p1/doc/AppendixB-Results.pdf
dc.relation.referencesNeumann, L., & Kalenda, P. (2010). Static vertical pendulum – apparatus for in-situ relative stress measurement. In: Rock stress and earthquakes (F.Xie ed.), 255-261. https://onepetro.org/ISRMISRS/proceedings-abstract/ISRS10/All-ISRS10/38660
dc.relation.referencesOstřihanský, L. (2004). Plate movements, earthquakes and variations of the Earth's rotation. Acta Universitatis Carolinae – Geologica, 48(1):89-98.
dc.relation.referencesOstřihanský, L. (2012). Earth's rotation variations and earthquakes 2010-2011. Solid Earth Discussions, 4(1): 33-130. https://doi.org/10.5194/sed-4-33-2012.
dc.relation.referencesPratt, D. (2000). Plate Tectonics: A Paradigm Under Threat. Journal of Scientific Exploration, 1493), 307-352, 2000). http://www.portalgeobrasil.org/geo/mat/terra/14.3_pratt.pdf
dc.relation.referencesProcházka V. (2014). Composition of atmosphere and the climate in ancient past of the Earth: What is the relation with movement of lithospheric plates (discussion). Acta Mus. Meridionale, Sci. Nat. 53, 46-51.
dc.relation.referencesRajlich P. (2004). Geology between the expansion of the Earth and Bohemia. 234 pp.(in Czech).
dc.relation.referencesRansford, G. A. (1982). The accretional heating of the terrestrial planets: a review, Physics of the Earth and Planetary Interiors, 29(3-4), 209-217. https://doi.org/10.1016/0031-9201(82)90012-7
dc.relation.referencesRichard, Y., Doglioni, C. & Sabedini, R. (1991). Differential rotation between lithosphere and mantle: a consequence of lateral mantle viscosity variations. Journal of Geophysical Research: Solid Earth, 96(B5), 8407-8415. https://doi.org/10.1029/91JB00204
dc.relation.referencesRousseau, A. (2005). A new global theory of the Earth's dynamics: a single cause can explain all the geophysical and geological phenomena. http://hal.archivesouvertes.fr/docs/00/02/94/00/PDF/global-geodyn.pdf.
dc.relation.referencesRudnick, R. L. & Fountain, D. M. (1995). Nature and composition of the continental crust: a lower crustal perspective. Reviews of Geophysics, 33, 267–309. https://doi.org/10.1029/95RG01302
dc.relation.referencesSammon L. G., & McDonough W. F. (2022). Quantifying Earth’s radiogenic heat budget. Earth Planet. Sci. Lett. 593, 117684, https://doi.org/10.1016/j.epsl.2022.117684.
dc.relation.referencesSaunders, A. D., & Tarney, J. (1984). Geochemical characteristics of basaltic volcanism within back-arc basins. Geological Society, London, Special Publications, 16(1), 59-76. https://doi.org/10.1144/GSL.SP.1984.016.01.05
dc.relation.referencesScalera, G., & Jacob, K. H. (2003). Why expanding Earth? A book in honour of Ott Christoph Hilgenberg. INGV Publisher, Roma, 465 pp. https://ci.nii.ac.jp/ncid/BA65189019?l=ja
dc.relation.referencesScoppola, B., Boccaletti, D., Bevis, M., Carminati, E. & Doglioni, C., (2006). The westward drift of the lithosphere: A rotational drag? Geological Society of America Bulletin, 118(1-2), 199-209.
dc.relation.referencesScotese, Ch. R. (2003). Paleomap project. http://www.scotese.com/climate.htm.
dc.relation.referencesScotese, Ch. R. (2009). Late Proterozoic plate tectonics and palaeogeography: a tale of two supercontinents, Rodinia and Pannotia. Geological Society, London, Special Publications, 326, 67-83, https://doi.org/10.1144/SP326.4
dc.relation.referencesSchubert, G., Turcotte, D. L., & Olson. P. (2001). Mantle Convection in the Earth and Planets. [s.l.]: Cambridge University Press, 2001. ISBN 052135367X.
dc.relation.referencesSheth, H. C. (2011). Book reviews: Foulger 'Plates_vs_Plumes_A_Geological_Controversy“. BOOK REVIEWS. Current Science, Vol. 100, No. 1, 10 January 2011 , 122-124.
dc.relation.referencesStejskal, V., Skalský, L. & Kašpárek, L. (2007). Results of two-years' seismo-hydrological monitoring in the area of the Hronov-Poříčí Fault Zone, Western Sudetes. Acta Geodynamica et Geomaterialia, 4(4), 59-76. https://www.irsm.cas.cz/materialy/acta_content/2007_04/5_Stejskal.pdf
dc.relation.referencesTanimoto T., Lay T. (2000). Mantle dynamics and seismic tomography. Proceedings of the National Academy of Science. Vol. 97, No. 23, pp. 12409–12410. https://doi.org/10.1073/pnas.210382197. PMID 11035784.
dc.relation.referencesTaylor S. R., & McLennan S. M. (1985). The continental crust: its composition and evolution. – Blackwell, Oxford, 312 pp. https://www.osti.gov/biblio/6582885
dc.relation.referencesVarga, P., Gambis, D., Bizouard, Ch., Bus1, Z. & Kiszely, M. (2005). Tidal influence through LOD variations on the temporal distribution of earthquake occurrences. Proc. of Conferrence „Earth dynamics and reference systems: five years after the adoption of the IAU 2000 Resolutions“, Warszawa. https://syrte.obspm.fr/jsr/journees2005/pdf/s3_09_Varga.pdf
dc.relation.referencesVine, F. J., & Mathews, D. H. (1963). Magnetic anomalies over oceanic ridges. Nature, 199, 947-949. http://www.muststayawake.com/SDAG/library/Science/BirthOfPlateTectonicsT...
dc.relation.referencesVine, F. J. (1966). Sea-floor spreading of the ocean floor: new evidence. Science, 154, 1405-1415. https://doi.org/10.1126/science.154.3755.1405
dc.relation.referencesWandrol, I. (2017). Modelling the mechanical behaviour of the Earth's crust. Disertation, VŠB-TU Ostrava, 2017 (in Czech??).
dc.relation.referencesWedepohl, K. H. (1995). The composition of the continental crust. Geochimica et Cosmochimica Acta. 59. 1217-1232. https://doi.org/10.1016/0016-7037(95)00038-2.
dc.relation.referencesWegener, A. (1912), Die Entstehung der Kontinente, Peterm. Mitt.: 185-195, 253-256, 305-309. https://doi.org/10.1007/BF02202896
dc.relation.referencesZátopek, A. (1941). About seismic unrest. ŘH, 22 (1941), 59, 81. (in Czech)
dc.relation.referencesZielinski, G. A., Mayewski, P. A., Meeker, L. D., Whitlow, S., & Twickler, M. S. (1996). A 110,000-yr record of explosive volcanism from the GISP2 (Greenland) ice core. Quaternary Research, 45(2), 109-118. https://doi.org/10.1006/qres.1996.0013
dc.relation.referencesenAgostini, M., Altenmüller, K., Appel, S., Atroshchenko, V., Bagdasarian, Z., Basilico, D., ... & Borexino Collaboration. (2020). Comprehensive geoneutrino analysis with Borexino. Physical Review D, 101(1), 012009. https://doi.org/10.1103/PhysRevD.101.012009
dc.relation.referencesenAllègre, C., Manhès, G., & Lewin, É. (2001). Chemical composition of the Earth and the volatility control on planetary genetics. Earth and Planetary Science Letters, 185(1-2), 49-69. https://doi.org/10.1016/S0012-821X(00)00359-9
dc.relation.referencesenAnderson, Don L., & Dziewonski, A. M. (1984). The Earth's interior: A new frontier and a new challenge for earth scientists: in Global Change, no. 5, eds. T. F. Malone and J. G. Roederer, ICSU Press, p. 345-353. https://authors.library.caltech.edu/45511/1/Anderson_1985p195.pdf
dc.relation.referencesenAnderson, D. L. (1988). Temperature and pressure derivatives of elastic constants with application to the mantle, Jour. Geophys. Res., 93, p. 4688-4700. https://doi.org/10.1029/JB093iB05p04688
dc.relation.referencesenAnderson, D. L. (2000). The thermal state of the upper mantle; No role for mantle plumes, Geophysical Research Letters, 27(22), 3623-3626. https://doi.org/10.1029/2000GL011533
dc.relation.referencesenBelousov, V. V. (1962). Basic problems in geotectonics, McGraw-Hill, New York.
dc.relation.referencesenBenioff, H. (1949). Seismic evidence for the fault origin of oceanic deeps. Bulletin of the Geological Society of America. 60 (12): 1837-1866. https://doi.org/10.1130/0016-7606(1949)60[1837:SEFTFO]2.0.CO;2
dc.relation.referencesenBerger, J. & Wyatt, F. (1973). Some observations on earth strain tides in California, Phil. Trans. Roy. Soc. London, Ser. A, 274, 67-277. https://royalsocietypublishing.org/doi/abs/10.1098/rsta.1973.0052
dc.relation.referencesenBerger, J. (1975). A Note on Thermoelastic Strains and Tilts, J. Geophys. Res., 80, 274-277. https://doi.org/10.1029/JB080i002p00274
dc.relation.referencesenBraitenberg, C., Romeo, G., Taccetti, Q., & Nagy, I. (2006). The very-broad-band long-base tiltmeters of Grotta Gigante (Trieste, Italy): Secular term tilting and the great Sumatra-Andaman islands earthquake of December 26, 2004. Journal of Geodynamics, 41(1-3), 164-174. https://doi.org/10.1016/j.jog.2005.08.015
dc.relation.referencesenBrázdil, R., et al. (1988): Introduction to the planet Earth study. SPN, Praha, 368 pp. (in Czech)
dc.relation.referencesenBrimich, L. (2006). Strain measurements at the Vyhne tidal station. Contributions to geophysics and geodesy, Vol. 36/4. https://journal.geo.sav.sk/cgg/article/view/337
dc.relation.referencesenBuffett, B. A. (2002). Estimates of heat flow in the deep mantle based on the power requirements for the geodynamo. Geophysical Research Letters, 29(12), 7-1. https://doi.org/10.1029/2001GL014649https://doi.org/10.1029/2001GL014649
dc.relation.referencesenCarey, W. S. (1958). The tectonic approach to continental drift. In: S. W. Carey (ed.): Continental drift – A symposium. University of Tasmania, Hobart, 177-363 (expanding Earth from p. 311 to p. 349).
dc.relation.referencesenCarey, S. W. (1975). The Expanding Earth-an essay review, Earth Sci. Rev.,11, 105–143. https://doi.org/10.1016/0012-8252(75)90097-5
dc.relation.referencesenCarey, S. W. (1976). The expanding Earth. Elsevier, Amsterdam, pp. 488.
dc.relation.referencesenCrespi, M., Cuffaro, M., Doglioni, C., Giannone1, F. & Riguzzi, F. (2007). Space geodesy validation of the global lithospheric flow. Geophys. J. Int., 168, 491–506. https://doi.org/10.1111/j.1365-246X.2006.03226.x
dc.relation.referencesenCroll, J. G. A. (2019). Phanerozoic climate and vertical tectonic cycles. UCL Press. https://doi.org/10.14324/111.444/000009.v1. p 1-7. https://www.researchgate.net/publication/331082713_Phanerozoic_Climate_and_Vertical_Tectonic_Cycles
dc.relation.referencesenDavies, J. H., & Davies, D. R. (2010). Earth's surface heat flux. Solid Earth, 1(1), 5-24. https://doi.org/10.5194/se-1-5-2010, 2010.
dc.relation.referencesenDenis, C., Schreider, A.A., Varga, P., & Zavoti, J. (2002). Despinning of the Earth rotation in the geological past and geomagnetic and geomagnetic paleointensities. Journal of Geodynamics, 34, 667-685. https://doi.org/10.1016/S0264-3707(02)00049-2
dc.relation.referencesenDoglioni, C. (1993). Geological evidence for a global tectonic polarity. Journal of the geological society, London, 150(5), 991-1002. https://doi.org/10.1144/gsjgs.150.5.0991
dc.relation.referencesenDoglioni, C., Carminati, E. & Bonatti, E. (2003). Rift asymmetry and continental uplift. Tectonics, 22(3), 1024, 8-1 – 8-13. https://doi.org/10.1029/2002TC001459.
dc.relation.referencesenDoglioni, C., Green, D.H. & Mongelli, F. (2005). On the shallow origin of hotspot and the westward drift of the lithosphere. Geological Society of America Special Paper, 388, 735-749. https://doi.org/10.1130/0-8137-2388-4.735
dc.relation.referencesenDoglioni, C. (2014). Asymmetric Earth: mechanisms of plate tectonics and earthquakes. Rendiconti Accademia Nazionale delle Scienze detta dei XL, Memorie di Scienze Fisiche e Naturali, 9–27, https://doi.org/10.4399/97888548717171.
dc.relation.referencesenDomeier, M, & Torsvik, T. H. (2014). Plate tectonics in the late Paleozoic. Geoscience Frontiers, 5(3), 303-350. https://doi.org/10.1016/j.gsf.2014.01.002
dc.relation.referencesenDziewonski, A. M., & Anderson, Don L., (1984). Seismic tomography of the Earth's interior: Am. Scientist, 72(5), 483-494. https://www.jstor.org/stable/27852863.
dc.relation.referencesenFoulger, G. R. (2010). Plates vs Plumes: A Geological Controversy. Wiley-Blackwell. 328 pp.
dc.relation.referencesenGando A. et al. (KamLAND Collaboration, 45 co-authors) (2013). Reactor on-off antineutrino measurement with KamLAND. Physical Review D, 88 (3), Article 033001. https://doi.org/10.1103/PhysRevD.88.033001
dc.relation.referencesenGarai, J. (1997). The driving mechanism of plate tectonics, Eos, Transactions, AGU, 78 (46) Fall Meet. Suppl., pp. 712. https://doi.org/10.48550/arXiv.0709.1303
dc.relation.referencesenGarai, J. (2007) Global coupling at 660 km is proposed to explain plate tectonics and the generation of the earth’s magnetic field. arXiv preprint arXiv:0709.1303. https://doi.org/10.48550/arXiv.0709.1303
dc.relation.referencesenGerdes A., Wörner G., & Henk, A. (2000). Postcollisional granite generation and HT-HP metamorphism by radiogenic heating: the Variscan South Bohemian Batholith. Journal of the Geological Society, 157: 577-587. https://doi.org/10.1144/jgs.157.3.577
dc.relation.referencesenGrillo, B., Braitenberg, C., Devoti, R. & Nagy, I. (2011). The study of karstic aquifers by geodetic measurements in bus de la Genziana station – Cansiglio plateau (northeastern Italy). Acta Carsologica, 40/1, 161–173, Postojna 2011. https://doi.org/10.3986/ac.v40i1.35
dc.relation.referencesenHeaton, T.H. (1975). Tidal Triggering of Earthquakes. Geophysical Journal International, 43(2), 307-326, https://doi.org/10.1111/j.1365-246X.1975.tb00637.x
dc.relation.referencesenHeirtzler, J. R., Le Pichon, X., & Baron, J. G. (1966, June). Magnetic anomalies over the Reykjanes Ridge. In Deep Sea Research and Oceanographic Abstracts, 13(3), 427-443). Elsevier.. https://doi.org/10.1016/0011-7471(66)91078-3
dc.relation.referencesenHolmes A. (1928). Radioactivity and Earth movements. Transactions of the Geological Society of Glasgow. 18, 559-606.
dc.relation.referencesenHolmes, A. (1939). Radioaktivity and the Earth movement. Trans. Geol. Soc. Glasg., 28, 559-606.
dc.relation.referencesenHolmes, A. (1944). Principles of Physical Geology. (Edinburgh: Thomas Nelson and Sons, 1944 and New York: Ronald Press, 1945).
dc.relation.referencesenHvožďara, M., Brimich, L., & Skalský, L. (1988). Thermo-elastic deformations due to annual temperature variation at the tidal station in Vyhne. Studia Geophysica et Geodaetica, 32(2), 129-135. https://doi.org/10.1007/BF01637575
dc.relation.referencesenIllis, B. (2009). Searching the PaleoClimate Record for Estimated Correlations: Temperature, CO2 and Sea Level. Watts up with that?
dc.relation.referencesenJeffreys, H. (1974). Theoretical aspects of continental drift. In Kahle, pp. 395-405.
dc.relation.referencesenKalenda, P., Skalský, L., & Málek, J. (2005). Effect of earth tides on California seismicity. Seminar MFF UK Praha, 22.4.2005. (in Czech)
dc.relation.referencesenKalenda, P., Neumann, L., Málek, J., Skalský, L., Procházka, V., Ostřihanský, L., Kopf, & T., Wandrol, I. (2012). Tilts, global tectonics and earthquake prediction. SWB, London, 247pp. http://seismonet.com/media_files/1/POL_Tilts_Global%20Tectonics%20and%20Earthquake%20Prediction.pdf
dc.relation.referencesenKalenda, P., & Neumann, L. (2014). The tilt of the elevator shaft of bunker Skutina. Transactions of the VŠB. Technical University of Ostrava, Mechanical Series, 1(LX), 55-62. http://transactions.fs.vsb.cz/2014-1/1978.pdf
dc.relation.referencesenKalenda, P., Wandrol, I., Holub, K. & Rušajová, J. (2015). The possible explanation of seasonal and annual variations of secondary microseisms. Terrestrial Atmospheric and Oceanic Sciences, 26(2), 103-109. https://pdfs.semanticscholar.org/96c7/39372bb91dde027a506f02d119556c32ba...
dc.relation.referencesenKárník,V., & Tobyáš, V. (1961). Underground measurements of the seismic noise level. Studia Geophysica et Geodaetica, 5(3), 231-236. https://doi.org/10.1007/BF02585381
dc.relation.referencesenKery, P., & Vine, F.(1996). Global Tectonics, Blackwell Science. Surveys in Geophysics, 19(1).
dc.relation.referencesenKutterolf, S., Jegen M., Mitrovica J. X., Kwasnitschka T., Freundt A., & Huybers P. J. (2013). A detection of Milankovitch frequencies in global volcanic activity. Geology, 41(2), 227-230; https://doi.org/10.1130/G33419.1
dc.relation.referencesenLee K.K.M., Steinle-Neumann, G., & Jeanloz, R (2004). Ab-initio high-pressure alloying of iron and potassium: Implications for the Earth's core. Geophysical Research Letters, 31(11), Art. No. L11603. https://doi.org/10.1029/2004GL019839
dc.relation.referencesenMelchior, P. & Skalský, L. (1969). Station: Příbram/Belg. Mesures faites dans les composantes Nord-Sud et Est-Ouest avec les pendules horizontaux VN No. 76 et No.77 en 1966, 1967 et 1968. Observatorie Royal de Belgique.
dc.relation.referencesenMcDonough W. F., & Sun S. (1995). The composition of the Earth. Chemical geology, 120(3-4), 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
dc.relation.referencesenMunk, W., & Wunsch C. (1998). Abyssal recipes II: energetics of tidal and wind mixing. Deep Sea Research Part I: Oceanographic Research Papers, 45(12), 1977-2010. https://doi.org/10.1016/S0967-0637(98)00070-3
dc.relation.referencesenNeumann, L. (2005). Gravity dynamics and gravity noise on the Earth surface. 116 pp. http://www.dynamicgravity.org/p1/doc/AppendixB-Results.pdf
dc.relation.referencesenNeumann, L., & Kalenda, P. (2010). Static vertical pendulum – apparatus for in-situ relative stress measurement. In: Rock stress and earthquakes (F.Xie ed.), 255-261. https://onepetro.org/ISRMISRS/proceedings-abstract/ISRS10/All-ISRS10/38660
dc.relation.referencesenOstřihanský, L. (2004). Plate movements, earthquakes and variations of the Earth's rotation. Acta Universitatis Carolinae – Geologica, 48(1):89-98.
dc.relation.referencesenOstřihanský, L. (2012). Earth's rotation variations and earthquakes 2010-2011. Solid Earth Discussions, 4(1): 33-130. https://doi.org/10.5194/sed-4-33-2012.
dc.relation.referencesenPratt, D. (2000). Plate Tectonics: A Paradigm Under Threat. Journal of Scientific Exploration, 1493), 307-352, 2000). http://www.portalgeobrasil.org/geo/mat/terra/14.3_pratt.pdf
dc.relation.referencesenProcházka V. (2014). Composition of atmosphere and the climate in ancient past of the Earth: What is the relation with movement of lithospheric plates (discussion). Acta Mus. Meridionale, Sci. Nat. 53, 46-51.
dc.relation.referencesenRajlich P. (2004). Geology between the expansion of the Earth and Bohemia. 234 pp.(in Czech).
dc.relation.referencesenRansford, G. A. (1982). The accretional heating of the terrestrial planets: a review, Physics of the Earth and Planetary Interiors, 29(3-4), 209-217. https://doi.org/10.1016/0031-9201(82)90012-7
dc.relation.referencesenRichard, Y., Doglioni, C. & Sabedini, R. (1991). Differential rotation between lithosphere and mantle: a consequence of lateral mantle viscosity variations. Journal of Geophysical Research: Solid Earth, 96(B5), 8407-8415. https://doi.org/10.1029/91JB00204
dc.relation.referencesenRousseau, A. (2005). A new global theory of the Earth's dynamics: a single cause can explain all the geophysical and geological phenomena. http://hal.archivesouvertes.fr/docs/00/02/94/00/PDF/global-geodyn.pdf.
dc.relation.referencesenRudnick, R. L. & Fountain, D. M. (1995). Nature and composition of the continental crust: a lower crustal perspective. Reviews of Geophysics, 33, 267–309. https://doi.org/10.1029/95RG01302
dc.relation.referencesenSammon L. G., & McDonough W. F. (2022). Quantifying Earth’s radiogenic heat budget. Earth Planet. Sci. Lett. 593, 117684, https://doi.org/10.1016/j.epsl.2022.117684.
dc.relation.referencesenSaunders, A. D., & Tarney, J. (1984). Geochemical characteristics of basaltic volcanism within back-arc basins. Geological Society, London, Special Publications, 16(1), 59-76. https://doi.org/10.1144/GSL.SP.1984.016.01.05
dc.relation.referencesenScalera, G., & Jacob, K. H. (2003). Why expanding Earth? A book in honour of Ott Christoph Hilgenberg. INGV Publisher, Roma, 465 pp. https://ci.nii.ac.jp/ncid/BA65189019?l=ja
dc.relation.referencesenScoppola, B., Boccaletti, D., Bevis, M., Carminati, E. & Doglioni, C., (2006). The westward drift of the lithosphere: A rotational drag? Geological Society of America Bulletin, 118(1-2), 199-209.
dc.relation.referencesenScotese, Ch. R. (2003). Paleomap project. http://www.scotese.com/climate.htm.
dc.relation.referencesenScotese, Ch. R. (2009). Late Proterozoic plate tectonics and palaeogeography: a tale of two supercontinents, Rodinia and Pannotia. Geological Society, London, Special Publications, 326, 67-83, https://doi.org/10.1144/SP326.4
dc.relation.referencesenSchubert, G., Turcotte, D. L., & Olson. P. (2001). Mantle Convection in the Earth and Planets. [s.l.]: Cambridge University Press, 2001. ISBN 052135367X.
dc.relation.referencesenSheth, H. C. (2011). Book reviews: Foulger 'Plates_vs_Plumes_A_Geological_Controversy". BOOK REVIEWS. Current Science, Vol. 100, No. 1, 10 January 2011 , 122-124.
dc.relation.referencesenStejskal, V., Skalský, L. & Kašpárek, L. (2007). Results of two-years' seismo-hydrological monitoring in the area of the Hronov-Poříčí Fault Zone, Western Sudetes. Acta Geodynamica et Geomaterialia, 4(4), 59-76. https://www.irsm.cas.cz/materialy/acta_content/2007_04/5_Stejskal.pdf
dc.relation.referencesenTanimoto T., Lay T. (2000). Mantle dynamics and seismic tomography. Proceedings of the National Academy of Science. Vol. 97, No. 23, pp. 12409–12410. https://doi.org/10.1073/pnas.210382197. PMID 11035784.
dc.relation.referencesenTaylor S. R., & McLennan S. M. (1985). The continental crust: its composition and evolution, Blackwell, Oxford, 312 pp. https://www.osti.gov/biblio/6582885
dc.relation.referencesenVarga, P., Gambis, D., Bizouard, Ch., Bus1, Z. & Kiszely, M. (2005). Tidal influence through LOD variations on the temporal distribution of earthquake occurrences. Proc. of Conferrence "Earth dynamics and reference systems: five years after the adoption of the IAU 2000 Resolutions", Warszawa. https://syrte.obspm.fr/jsr/journees2005/pdf/s3_09_Varga.pdf
dc.relation.referencesenVine, F. J., & Mathews, D. H. (1963). Magnetic anomalies over oceanic ridges. Nature, 199, 947-949. http://www.muststayawake.com/SDAG/library/Science/BirthOfPlateTectonicsT...
dc.relation.referencesenVine, F. J. (1966). Sea-floor spreading of the ocean floor: new evidence. Science, 154, 1405-1415. https://doi.org/10.1126/science.154.3755.1405
dc.relation.referencesenWandrol, I. (2017). Modelling the mechanical behaviour of the Earth's crust. Disertation, VŠB-TU Ostrava, 2017 (in Czech??).
dc.relation.referencesenWedepohl, K. H. (1995). The composition of the continental crust. Geochimica et Cosmochimica Acta. 59. 1217-1232. https://doi.org/10.1016/0016-7037(95)00038-2.
dc.relation.referencesenWegener, A. (1912), Die Entstehung der Kontinente, Peterm. Mitt., 185-195, 253-256, 305-309. https://doi.org/10.1007/BF02202896
dc.relation.referencesenZátopek, A. (1941). About seismic unrest. ŘH, 22 (1941), 59, 81. (in Czech)
dc.relation.referencesenZielinski, G. A., Mayewski, P. A., Meeker, L. D., Whitlow, S., & Twickler, M. S. (1996). A 110,000-yr record of explosive volcanism from the GISP2 (Greenland) ice core. Quaternary Research, 45(2), 109-118. https://doi.org/10.1006/qres.1996.0013
dc.relation.urihttps://doi.org/10.1103/PhysRevD.101.012009
dc.relation.urihttps://doi.org/10.1016/S0012-821X(00)00359-9
dc.relation.urihttps://authors.library.caltech.edu/45511/1/Anderson_1985p195.pdf
dc.relation.urihttps://doi.org/10.1029/JB093iB05p04688
dc.relation.urihttps://doi.org/10.1029/2000GL011533
dc.relation.urihttps://doi.org/10.1130/0016-7606(1949)60
dc.relation.urihttps://royalsocietypublishing.org/doi/abs/10.1098/rsta.1973.0052
dc.relation.urihttps://doi.org/10.1029/JB080i002p00274
dc.relation.urihttps://doi.org/10.1016/j.jog.2005.08.015
dc.relation.urihttps://journal.geo.sav.sk/cgg/article/view/337
dc.relation.urihttps://doi.org/10.1029/2001GL014649https://doi.org/10.1029/2001GL014649
dc.relation.urihttps://doi.org/10.1016/0012-8252(75)90097-5
dc.relation.urihttps://doi.org/10.1111/j.1365-246X.2006.03226.x
dc.relation.urihttps://doi.org/10.14324/111.444/000009.v1
dc.relation.urihttps://www.researchgate.net/publication/331082713_Phanerozoic_Climate_and_Vertical_Tectonic_Cycles
dc.relation.urihttps://doi.org/10.5194/se-1-5-2010
dc.relation.urihttps://doi.org/10.1016/S0264-3707(02)00049-2
dc.relation.urihttps://doi.org/10.1144/gsjgs.150.5.0991
dc.relation.urihttps://doi.org/10.1029/2002TC001459
dc.relation.urihttps://doi.org/10.1130/0-8137-2388-4.735
dc.relation.urihttps://doi.org/10.4399/97888548717171
dc.relation.urihttps://doi.org/10.1016/j.gsf.2014.01.002
dc.relation.urihttps://www.jstor.org/stable/27852863
dc.relation.urihttps://doi.org/10.1103/PhysRevD.88.033001
dc.relation.urihttps://doi.org/10.48550/arXiv.0709.1303
dc.relation.urihttps://doi.org/10.1144/jgs.157.3.577
dc.relation.urihttps://doi.org/10.3986/ac.v40i1.35
dc.relation.urihttps://doi.org/10.1111/j.1365-246X.1975.tb00637.x
dc.relation.urihttps://doi.org/10.1016/0011-7471(66)91078-3
dc.relation.urihttps://doi.org/10.1007/BF01637575
dc.relation.urihttp://seismonet.com/media_files/1/POL_Tilts_Global%20Tectonics%20and%20Earthquake%20Prediction.pdf
dc.relation.urihttp://transactions.fs.vsb.cz/2014-1/1978.pdf
dc.relation.urihttps://pdfs.semanticscholar.org/96c7/39372bb91dde027a506f02d119556c32ba..
dc.relation.urihttps://doi.org/10.1007/BF02585381
dc.relation.urihttps://doi.org/10.1130/G33419.1
dc.relation.urihttps://doi.org/10.1029/2004GL019839
dc.relation.urihttps://doi.org/10.1016/0009-2541(94)00140-4
dc.relation.urihttps://doi.org/10.1016/S0967-0637(98)00070-3
dc.relation.urihttp://www.dynamicgravity.org/p1/doc/AppendixB-Results.pdf
dc.relation.urihttps://onepetro.org/ISRMISRS/proceedings-abstract/ISRS10/All-ISRS10/38660
dc.relation.urihttps://doi.org/10.5194/sed-4-33-2012
dc.relation.urihttp://www.portalgeobrasil.org/geo/mat/terra/14.3_pratt.pdf
dc.relation.urihttps://doi.org/10.1016/0031-9201(82)90012-7
dc.relation.urihttps://doi.org/10.1029/91JB00204
dc.relation.urihttp://hal.archivesouvertes.fr/docs/00/02/94/00/PDF/global-geodyn.pdf
dc.relation.urihttps://doi.org/10.1029/95RG01302
dc.relation.urihttps://doi.org/10.1016/j.epsl.2022.117684
dc.relation.urihttps://doi.org/10.1144/GSL.SP.1984.016.01.05
dc.relation.urihttps://ci.nii.ac.jp/ncid/BA65189019?l=ja
dc.relation.urihttp://www.scotese.com/climate.htm
dc.relation.urihttps://doi.org/10.1144/SP326.4
dc.relation.urihttps://www.irsm.cas.cz/materialy/acta_content/2007_04/5_Stejskal.pdf
dc.relation.urihttps://doi.org/10.1073/pnas.210382197
dc.relation.urihttps://www.osti.gov/biblio/6582885
dc.relation.urihttps://syrte.obspm.fr/jsr/journees2005/pdf/s3_09_Varga.pdf
dc.relation.urihttp://www.muststayawake.com/SDAG/library/Science/BirthOfPlateTectonicsT..
dc.relation.urihttps://doi.org/10.1126/science.154.3755.1405
dc.relation.urihttps://doi.org/10.1016/0016-7037(95)00038-2
dc.relation.urihttps://doi.org/10.1007/BF02202896
dc.relation.urihttps://doi.org/10.1006/qres.1996.0013
dc.rights.holder© Інститут геології і геохімії горючих копалин Національної академії наук України, 2023
dc.rights.holder© Інститут геофізики ім. С. І. Субботіна Національної академії наук України, 2023
dc.rights.holder© Національний університет «Львівська політехніка», 2023
dc.rights.holder© P. Kalenda, L. Neumann, I. Wandrol, V. Procházka, L. Ostřihanský
dc.subjectдрейф материків
dc.subjectрух плит
dc.subjectмеханізм
dc.subjectакумуляція сонячної енергії
dc.subjectcontinental drift
dc.subjectmotion of plates
dc.subjectmechanism
dc.subjectsolar energy accumulation
dc.subject.udc551.14
dc.subject.udc551.24
dc.titleTheory of continental drift – causes of the motion. Historical review and observations
dc.title.alternativeТеорія дрейфу материків – причини руху. Історичний огляд і спостереження
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023n1_Kalenda_P-Theory_of_continental_drift_57-69.pdf
Size:
1.28 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023n1_Kalenda_P-Theory_of_continental_drift_57-69__COVER.png
Size:
513.87 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.95 KB
Format:
Plain Text
Description: